JPH11204632A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH11204632A
JPH11204632A JP1784898A JP1784898A JPH11204632A JP H11204632 A JPH11204632 A JP H11204632A JP 1784898 A JP1784898 A JP 1784898A JP 1784898 A JP1784898 A JP 1784898A JP H11204632 A JPH11204632 A JP H11204632A
Authority
JP
Japan
Prior art keywords
impurity region
semiconductor substrate
impurity
semiconductor device
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1784898A
Other languages
Japanese (ja)
Other versions
JP3954184B2 (en
Inventor
Katsuto Sasaki
克仁 佐々木
Isao Kimura
偉作夫 木村
Mamoru Ishikiriyama
衛 石切山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP1784898A priority Critical patent/JP3954184B2/en
Publication of JPH11204632A publication Critical patent/JPH11204632A/en
Application granted granted Critical
Publication of JP3954184B2 publication Critical patent/JP3954184B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a specified breakdown strength to a semiconductor device by improving a breakdown voltage value in a depletion layer, without increasing the film thickness of an electrically insulating film on a semiconductor substrate. SOLUTION: This device is provided with a conductive layer 18, which is extended to the side of a first impurity region 12 in an electrically insulating film 14 on a semiconductor substrate 11 as a field relaxing means and is placed at approximately the same potential as that of the semiconductor board 11, and a third impurity region 19 which is formed in a surface of the semiconductor substrate 11, shows conductivity equal to that of the semiconductor board 11, has an impurity concentration which is higher is than the impurity concentration of the semiconductor substrate and is lower than an impurity concentration of a second impurity region 13, and is extended towards the first impurity region 12 and is formed apart from the first impurity region. In addition, an extended end 18a of a layer 18 to the side of the first impurity region 12 is placed closer to the side of the second impurity region 13 than an extended end 19a of the third impurity region 19 placed to the side of the firs impurity region 12.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体基板を用い
た半導体装置に関し、特に、耐圧性を高めるための電界
緩和手段が組み込まれた半導体装置に関する。
[0001] 1. Field of the Invention [0002] The present invention relates to a semiconductor device using a semiconductor substrate, and more particularly, to a semiconductor device in which electric field relaxation means for increasing withstand voltage is incorporated.

【0002】[0002]

【従来の技術】半導体基板にトランジスタのような種々
の回路素子を組み込んで形成される集積回路では、素子
の機能部分として、半導体基板の表面に、該半導体基板
の導電型と逆の導電型を示す第1の不純物領域が形成さ
れる。この不純物領域に、該不純物領域から半導体基板
を覆う酸化膜上に伸びる電路を経て、半導体基板との間
に逆電圧が印加されると、その電圧値に応じて、前記電
路下で半導体基板の表面に沿って不純物領域から空乏層
が伸びる。
2. Description of the Related Art In an integrated circuit formed by incorporating various circuit elements such as transistors into a semiconductor substrate, a conductive type opposite to the conductive type of the semiconductor substrate is provided on the surface of the semiconductor substrate as a functional part of the element. The first impurity region shown is formed. When a reverse voltage is applied between the impurity region and the semiconductor substrate via an electric path extending from the impurity region to the oxide film covering the semiconductor substrate, a reverse voltage is applied to the semiconductor substrate under the electric path according to the voltage value. A depletion layer extends from the impurity region along the surface.

【0003】この空乏層が周辺の回路部分に達すると、
該回路部分の電気特性に強い悪影響を及ぼす。この周辺
回路への空乏層の伸長を防止する技術として、半導体基
板と同一の導電型を示しかつ該基板の不純物濃度よりも
高い不純物濃度を有する第2の不純物領域を、チャンネ
ルストッパとして半導体基板に設ける技術がある。
When this depletion layer reaches the peripheral circuit portion,
This has a strong adverse effect on the electrical characteristics of the circuit portion. As a technique for preventing the depletion layer from extending to the peripheral circuit, a second impurity region having the same conductivity type as the semiconductor substrate and having an impurity concentration higher than the impurity concentration of the substrate is provided on the semiconductor substrate as a channel stopper. There is a technology to provide.

【0004】ところで、半導体基板と第1の不純物領域
との間に逆方向電圧が印加されるとき、基本的には、こ
の逆方向電圧が印加される第1の不純物領域と半導体基
板との接合面での耐圧性の如何で、この第1の不純物領
域を含む素子の耐圧性が決まる。しかしながら、空乏層
の伸長を防止するための第2の不純物領域からなるチャ
ンネルストッパが設けられると、逆方向電圧の増大に伴
ってチャンネルストッパへ向けて伸長する空乏層がチャ
ンネルストッパに到達した後、このストッパにより伸長
を妨げられた空乏層に強い電界の集中が生じ易い。その
ため、チャンネルストッパが組み込まれた半導体装置で
は、前記した接合面の限界電圧値よりも低い降伏電圧値
で空乏層に関連したブレークダウンが生じることがあ
る。この空乏層での前記したブレークダウンは、半導体
装置の耐圧性の低下をもたらす。
When a reverse voltage is applied between the semiconductor substrate and the first impurity region, basically, a junction between the first impurity region to which the reverse voltage is applied and the semiconductor substrate is formed. The withstand voltage of the element including the first impurity region is determined depending on the withstand voltage in the surface. However, when a channel stopper including the second impurity region for preventing the extension of the depletion layer is provided, the depletion layer extending toward the channel stopper as the reverse voltage increases reaches the channel stopper. A strong electric field is likely to be concentrated on the depletion layer whose elongation is prevented by the stopper. Therefore, in a semiconductor device in which a channel stopper is incorporated, breakdown related to a depletion layer may occur at a breakdown voltage value lower than the above-described limit voltage value of the junction surface. The above-described breakdown in the depletion layer causes a decrease in breakdown voltage of the semiconductor device.

【0005】そこで、この空乏層での電界の集中を緩和
するための電界緩和手段として、1987年、8月に発
行された「アイ・スリー・イ・トランザクション・オン
・エレクトロン・デバイスイズ(IEEE TRANSACTIONS ON
ELECTRON DEVICES )」、ED-34 巻、第8号、第181
6〜1821頁に記載されているような電界低減領域
(FRR)を形成することが提案されている。
[0005] Therefore, as an electric field relaxation means for relaxing the concentration of the electric field in the depletion layer, "I Three Transactions on Electron Devices" published in August, 1987. ON
ELECTRON DEVICES) ", Volume ED-34, Issue 8, Issue 181
It has been proposed to form an electric field reduction region (FRR) as described on pages 6-1821.

【0006】電界低減領域は、第2の不純物領域である
チャンネルストッパと同一の導電型を示す第3の不純物
領域からなり、このチャンネルストッパから、半導体基
板の表面に沿って、該半導体基板との間に逆電圧が印加
される第1の不純物領域へ向けて伸長するように、形成
される。
The electric field reduction region is composed of a third impurity region having the same conductivity type as the channel stopper serving as the second impurity region, and is formed along the surface of the semiconductor substrate from the channel stopper along the surface of the semiconductor substrate. It is formed to extend toward the first impurity region to which a reverse voltage is applied.

【0007】この電界低減領域は、半導体基板と第1の
不純物領域との間の逆方向電圧の増大に応じて、空乏層
の伸び抑制しつつその伸長を許すことにより、空乏層で
の電界の集中を緩和する作用をなす。この電界低減領域
の緩和作用により、空乏層の電界低減領域内でのブレー
クダウンが防止され、空乏層がチャンネルストッパに到
達するときの逆方向電圧値が高められる。この電界低減
領域による電界緩和効果は、この電界低減領域を構成す
る第3の不純物領域の不純物濃度の変化に関連して変化
し、半導体基板の不純物濃度よりも高くかつチャンネル
ストッパの不純物濃度よりも低い所定の値で得られる所
定の空乏層抑制効果でもって、空乏層に最も高い耐圧性
が見られる。
The electric field reduction region suppresses the extension of the depletion layer and allows the extension of the depletion layer in response to an increase in the reverse voltage between the semiconductor substrate and the first impurity region, thereby reducing the electric field in the depletion layer. It acts to reduce concentration. This relaxation of the electric field reduction region prevents breakdown of the depletion layer in the electric field reduction region, and increases the reverse voltage value when the depletion layer reaches the channel stopper. The electric field relaxation effect of the electric field reduction region changes in association with the change in the impurity concentration of the third impurity region forming the electric field reduction region, and is higher than the impurity concentration of the semiconductor substrate and higher than the impurity concentration of the channel stopper. The depletion layer has the highest withstand voltage due to the predetermined depletion layer suppression effect obtained at a low predetermined value.

【0008】従って、この所定の値からずれた不純物濃
度では、その増減に伴い、いずれの場合においても、す
なわち、電界低減領域による空乏層の伸長抑制効果が大
きすぎても、また小さすぎても、空乏層での耐圧性は、
所定の値で得られた耐圧性よりも低下する。このことか
ら、電界低減領域の不純物濃度は、この電界低減領域に
よって最も高い耐圧性が得られるように、所定の値に設
定される。
Therefore, in the case where the impurity concentration deviates from the predetermined value, the effect of suppressing the extension of the depletion layer by the electric field reduction region is too large or too small in accordance with the increase or decrease. , The pressure resistance in the depletion layer is
It is lower than the pressure resistance obtained at a predetermined value. For this reason, the impurity concentration of the electric field reduction region is set to a predetermined value so that the highest withstand voltage can be obtained by the electric field reduction region.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、この電
界低減領域により所望の耐圧性を得るには、すなわち空
乏層での降伏電圧が、逆方向電圧を印加される第1の不
純物領域と半導体基板との接合面での限界電圧の値以上
となるためには、半導体基板上を覆いかつ該基板と第1
の不純物領域から伸びる電路との間に配置される酸化膜
のような電気絶縁膜に、約2.5μm以上の大きな膜厚
寸法が必要となる。そのため、半導体装置の薄型化を図
る上で、より薄い厚さ寸法の電気絶縁膜で所定の耐圧性
が得られる半導体装置が求められていた。
However, in order to obtain a desired breakdown voltage with the electric field reduction region, the breakdown voltage in the depletion layer is reduced by the first impurity region to which the reverse voltage is applied and the semiconductor substrate. In order for the voltage to be equal to or higher than the threshold voltage at the bonding surface of
The electrical insulating film such as an oxide film disposed between the conductive region extending from the impurity region needs a large film thickness of about 2.5 μm or more. Therefore, in order to reduce the thickness of the semiconductor device, there has been a demand for a semiconductor device capable of obtaining a predetermined withstand voltage with an electric insulating film having a smaller thickness.

【0010】前記した空乏層のチャンネルストッパへの
伸長を抑制する手段として、前記した電界低減領域の他
に、半導体基板上の絶縁膜内に半導体基板と同電位のシ
ールド電極をチャンネルストッパに対応する領域から空
乏層が伸びる第1の不純物領域の側へ向けて伸長させる
技術がある。このシールド電極は、第1の不純物領域へ
向けての伸長端位置で、空乏層の伸長を強く規制する。
As means for suppressing the extension of the depletion layer to the channel stopper, a shield electrode having the same potential as that of the semiconductor substrate is provided in the insulating film on the semiconductor substrate in addition to the electric field reduction region. There is a technique for extending the depletion layer from the region toward the first impurity region. The shield electrode strongly restricts the extension of the depletion layer at the extension end position toward the first impurity region.

【0011】そのため、前記したように、所定の空乏層
抑制効果でのみ最適な耐圧性を発揮し、空乏層の伸長抑
制効果が小さすぎても、また大きすぎても、空乏層での
耐圧性を逆に低下させる従来の前記電界低減領域からな
る緩和手段と、空乏層の伸長をより強く規制するシール
ド電極からなる緩和手段を組み合わせたとしても、これ
らの組み合わせによっては、それぞれが単独で用いられ
た場合よりも低い耐圧性しか得られないと考えられてい
た。
Therefore, as described above, optimum pressure resistance is exhibited only with a predetermined depletion layer suppression effect, and if the depletion layer extension suppression effect is too small or too large, the pressure resistance in the depletion layer is too large. Conversely, even if the conventional relaxation means comprising the electric field reduction region and the relaxation means comprising the shield electrode for more strongly restricting the elongation of the depletion layer are combined, depending on these combinations, each may be used alone. It was thought that only lower pressure resistance could be obtained than in the case of the above.

【0012】[0012]

【課題を解決するための手段】しかしながら、本願発明
者らは、前記した両電界緩和手段が特定の関係で組み合
わされたとき、それぞれ単独で用いられたときよりも極
めて優れた耐圧特性が得られることを見い出した。ま
た、本願発明者らは、シールド電極による空乏層の伸長
規制効果を低減させ、これにより空乏層の段階的伸長を
許すことにより、空乏層での電界の集中効果が緩和され
ることを見い出した。
However, the present inventors have found that when the two electric field relaxation means described above are combined in a specific relationship, a very excellent breakdown voltage characteristic can be obtained as compared with the case where each of them is used alone. I found something. In addition, the inventors of the present application have found that the effect of restricting the extension of the depletion layer by the shield electrode is reduced, thereby allowing the stepwise extension of the depletion layer, thereby alleviating the electric field concentration effect in the depletion layer. .

【0013】本発明は、p型またはn型のいずれか一方
の導電型を示す半導体基板と、p型またはn型の他方の
導電型を示し、半導体基板の表面に設けられた電気絶縁
膜上に伸びる電路を経て半導体基板との間に逆方向電位
が印加される第1の不純物領域と、該第1の不純物領域
から電路下で該電路に沿って伸長しようとする空乏層の
伸びを抑制すべく、第1の不純物領域から間隔をおいて
半導体基板の表面に形成され半導体基板と同一の導電型
を示しかつ該半導体基板の不純物濃度よりも高い不純物
濃度を有する第2の不純物領域と、空乏層での電界の集
中を防止する電界緩和手段とを含む半導体装置を対象と
する。
The present invention relates to a semiconductor substrate showing either p-type or n-type conductivity, and a semiconductor substrate showing the other p-type or n-type conductivity, on an electric insulating film provided on the surface of the semiconductor substrate. A first impurity region to which a reverse potential is applied between the first impurity region and the semiconductor substrate via an electric path extending to the first impurity region; and a depletion layer that is to extend along the electric path from the first impurity region under the electric circuit. A second impurity region formed on the surface of the semiconductor substrate at a distance from the first impurity region and having the same conductivity type as the semiconductor substrate and having an impurity concentration higher than the impurity concentration of the semiconductor substrate; The present invention is directed to a semiconductor device including an electric field relaxing means for preventing concentration of an electric field in a depletion layer.

【0014】本発明は、前記電界緩和手段が、電気絶縁
膜中で第2の不純物領域に対応する領域から当該領域を
越えて第1の不純物領域の側へ伸長し、半導体基板とほ
ぼ同電位におかれる導電層と、半導体基板の表面で第1
および第2の不純物領域間に形成され、半導体基板と同
一の導電型を示し該半導体基板の不純物濃度よりも高く
かつ第2の不純物領域の不純物濃度よりも低い不純物濃
度を有し、第2の不純物領域からまたはその近傍から第
1の不純物領域へ向けて伸長しかつ該第1の不純物領域
と間隔をおいて形成される第3の不純物領域とを備え、
第1の不純物領域の側への導電層の伸長端が、第1の不
純物領域の側への第3の不純物領域の伸長端よりも第2
の不純物領域の側に位置することを特徴とする。
According to the present invention, the electric field relaxation means extends from a region corresponding to the second impurity region in the electric insulating film to the first impurity region side beyond the region and has substantially the same potential as the semiconductor substrate. A conductive layer placed on the surface of the semiconductor substrate;
And a second impurity region formed between the second impurity region and having the same conductivity type as the semiconductor substrate, having an impurity concentration higher than the impurity concentration of the semiconductor substrate and lower than the impurity concentration of the second impurity region. A third impurity region extending from or near the impurity region toward the first impurity region and formed at a distance from the first impurity region;
The extension end of the conductive layer toward the first impurity region is closer to the second impurity region than the extension end of the third impurity region toward the first impurity region.
Is located on the side of the impurity region.

【0015】第3の不純物領域は、従来の前記電界低減
領域におけると同様、半導体基板と第1の不純物領域と
の間の逆方向電圧の増大に応じて、空乏層の伸び抑制し
つつその伸長を許すことにより、空乏層での電界の集中
を緩和する作用をなす。また、電気絶縁膜中で第2の不
純物領域に対応する領域から当該領域を越えて第1の不
純物領域の側へ伸長し、半導体基板とほぼ同電位におか
れる導電層は、従来の前記シールド電極におけると同
様、第1の不純物領域へ向けての伸長端位置で、空乏層
の伸長を強く規制する。
The third impurity region suppresses the extension of the depletion layer while suppressing the extension of the depletion layer in response to the increase in the reverse voltage between the semiconductor substrate and the first impurity region, as in the conventional electric field reduction region. Is allowed to reduce the concentration of the electric field in the depletion layer. The conductive layer extending from the region corresponding to the second impurity region in the electric insulating film to the first impurity region beyond the region and being substantially at the same potential as the semiconductor substrate is formed by a conventional shield layer. As in the case of the electrode, the extension of the depletion layer is strongly restricted at the extension end position toward the first impurity region.

【0016】この導電層における第1の不純物領域の側
への伸長端を、第3の不純物領域における第1の不純物
領域の側への伸長端よりも第2の不純物領域の側に位置
させるという、この特定の関係を満足することよって、
個々の緩和手段によっては得られず、また両緩和手段の
組み合わせによっては著しい低減を招くと考えられてい
た空乏層での降伏電圧値を著しく増大させることがで
き、これにより、半導体装置に所定の耐圧特性を与える
ことができることを確認できた。
The extended end of the conductive layer toward the first impurity region is located closer to the second impurity region than the extended end of the third impurity region toward the first impurity region. By satisfying this particular relationship,
The breakdown voltage value in the depletion layer, which cannot be obtained by individual relaxation means and is considered to cause a significant reduction by a combination of both relaxation means, can be significantly increased. It was confirmed that withstand voltage characteristics could be given.

【0017】また、本発明は、前記電界緩和手段が、電
気絶縁膜中で第2の不純物領域に対応する領域から当該
領域を越えて第1の不純物領域の側へ伸長し、半導体基
板とほぼ同電位におかれる導電層を含み、該導電層が、
空乏層の伸長方向に一致する電路の伸長方向に沿った縦
断面でみて、電路の伸長方向にそれぞれの幅方向を沿わ
せてこの伸長方向へ相互に間隔をおいて整列的に配置さ
れる複数の細幅部を備え、各細幅部間にスリットが規定
されていることを特徴とする。
Further, according to the present invention, the electric field relaxation means extends from a region corresponding to the second impurity region in the electric insulating film to the first impurity region side beyond the region and substantially extends from the semiconductor substrate. Including a conductive layer at the same potential, the conductive layer,
When viewed in a longitudinal section along the direction of extension of the circuit, which coincides with the direction of extension of the depletion layer, a plurality of lines are arranged at intervals in the direction of extension of the circuit along their respective widths. Characterized in that slits are defined between the narrow portions.

【0018】スリットが規定された導電層によれば、前
記逆方向電圧の増大に伴って空乏層が第2の不純物領域
であるチャンネルストッパへ向けて伸長しようとすると
き、第2の不純物領域からチャンネルストッパへ向けて
整列的に配置された、スリットを規定する導電層の各細
幅部の第1の不純物領域側に位置するそれぞれの縁部で
もって空乏層の伸びが段階的に規制される。
According to the conductive layer in which the slit is defined, when the depletion layer tries to extend toward the channel stopper, which is the second impurity region, as the reverse voltage increases, the second impurity region Elongation of the depletion layer is regulated stepwise by respective edges located on the first impurity region side of each narrow portion of the conductive layer defining the slit, which are arranged in alignment with the channel stopper. .

【0019】すなわち、第1の不純物領域の側に位置す
る前記細幅部の前記縁部で伸長が規制された空乏層は、
前記逆方向電圧の増大に伴って、その臨界電界値に達す
る前に、当該細幅部に隣り合ってチャンネルストッパ側
に位置する前記細幅部の前記縁部に達する。以降、それ
ぞれの細幅部ごとに、空乏層は、臨界電圧値に達する前
に引き続く細幅部へ向けて段階的に伸長することから、
空乏層の伸びを段階的に適正に制御することができ、空
乏層での電界の集中を効果的に防止することができる。
That is, the depletion layer whose extension is regulated by the edge of the narrow portion located on the side of the first impurity region is:
With the increase in the reverse voltage, before reaching the critical electric field value, the edge reaches the narrow portion adjacent to the narrow portion and located on the channel stopper side. After that, for each narrow portion, the depletion layer gradually expands toward the subsequent narrow portion before reaching the critical voltage value.
Elongation of the depletion layer can be appropriately controlled stepwise, and electric field concentration in the depletion layer can be effectively prevented.

【0020】その結果、空乏層の伸びが最終的に拘束さ
れるチャンネルストッパに至ったときの逆方向電圧値の
増大が図られ、これにより、空乏層での降伏電圧値の増
大による半導体装置の耐圧性の向上が図られる。このよ
うなスリットを有する導電層の所定の電界緩和効果は、
導電層を半導体基板とほぼ同電位に保持することによっ
て、はじめて得られる。従って、導電層を浮遊電極とし
ても、この浮遊電極に、本願発明におけるような空乏層
の伸びを段階的に抑制する作用を期待できないことか
ら、空乏層がチャンネルストッパに至ったときの逆方向
電圧を本願発明の導電層におけるような高い値に設定す
ることは不可能となる。そのため、浮遊電極では、本願
発明におけるような優れた電界緩和効果を達成すること
は不可能である。
As a result, the reverse voltage value at the time of reaching the channel stopper where the expansion of the depletion layer is finally constrained is increased, whereby the breakdown voltage value at the depletion layer is increased and the semiconductor device is reduced. The pressure resistance is improved. The predetermined electric field relaxation effect of the conductive layer having such a slit is as follows.
It is obtained only when the conductive layer is kept at substantially the same potential as the semiconductor substrate. Therefore, even if the conductive layer is used as a floating electrode, it is not possible to expect the floating electrode to function to gradually suppress the expansion of the depletion layer as in the present invention. Therefore, the reverse voltage when the depletion layer reaches the channel stopper is not expected. Cannot be set to a high value as in the conductive layer of the present invention. Therefore, the floating electrode cannot achieve the excellent electric field relaxation effect as in the present invention.

【0021】[0021]

【発明の実施の形態】以下、本発明を図示の実施の形態
について詳細に説明する。 〈具体例1〉図1は、本発明に係る半導体装置の具体例
1を示す。本発明に係る半導体装置10は、図示の例で
は、ダイオードであり、例えば20Ω・cmの固有抵抗値
を有するN型シリコンからなる半導体基板11に組み込
まれている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the illustrated embodiments. <Embodiment 1> FIG. 1 shows Embodiment 1 of a semiconductor device according to the present invention. The semiconductor device 10 according to the present invention is a diode in the illustrated example, and is incorporated in a semiconductor substrate 11 made of N-type silicon having a specific resistance value of, for example, 20 Ω · cm.

【0022】半導体基板11の表面には、カソードとし
て、第1の不純物領域12が形成されている。第1の不
純物領域12は、半導体基板11の導電型とは逆のP型
の導電性を示す。また、半導体基板11の表面には、第
1の不純物領域12から間隔をおいて、第2の不純物領
域13が形成されている。第2の不純物領域13は、半
導体基板11と同一の導電型を示し、しかもその不純物
濃度が半導体基板11のそれよりも大きな高濃度不純物
領域である。この第2の不純物領域13は、ダイオード
のカソードとして使用され、また後述するチャンネルス
トッパとしても機能する。
On the surface of the semiconductor substrate 11, a first impurity region 12 is formed as a cathode. The first impurity region 12 exhibits P-type conductivity, which is opposite to the conductivity type of the semiconductor substrate 11. On the surface of the semiconductor substrate 11, a second impurity region 13 is formed at a distance from the first impurity region 12. The second impurity region 13 is a high-concentration impurity region having the same conductivity type as that of the semiconductor substrate 11 and having a higher impurity concentration than that of the semiconductor substrate 11. This second impurity region 13 is used as a cathode of a diode, and also functions as a channel stopper described later.

【0023】半導体基板11の表面には、例えば半導体
基板11の熱酸化により、電気絶縁膜14が形成されて
いる。図示の例では、絶縁膜14は、半導体基板11上
を直接的に覆う例えば1μmの厚さ寸法を有する下層1
4aと該下層を部分的に覆う例えば1μmの厚さ寸法を
有する上層14bとで構成される積層構造を備える。
An electric insulating film 14 is formed on the surface of the semiconductor substrate 11 by, for example, thermal oxidation of the semiconductor substrate 11. In the illustrated example, the insulating film 14 directly covers the semiconductor substrate 11 and has a thickness of, for example, 1 μm.
4a and an upper layer 14b partially covering the lower layer and having a thickness of, for example, 1 μm.

【0024】下層14aにおける上層14bから露出す
る部分には、第1の不純物領域12を露出させるための
コンタクトホール15が形成されており、このコンタク
トホール15を経て、絶縁膜14上に伸びる引き出し線
すなわち電路16が第1の不純物領域12に接続されて
いる。電路16は、第2の不純物領域13の上方の領域
に伸びる。また、第2の不純物領域13には、図示しな
い従来よく知られた配線が接続されており、該配線およ
び第1の不純物領域12から伸びる電路16を経て、第
1の不純物領域12をアノードとし、第2の不純物領域
13をカソードとして、両者間に逆方向電圧が印加され
る。
A contact hole 15 for exposing the first impurity region 12 is formed in a portion of the lower layer 14a exposed from the upper layer 14b, and a lead line extending on the insulating film 14 through the contact hole 15 is formed. That is, the electric path 16 is connected to the first impurity region 12. The electric circuit 16 extends to a region above the second impurity region 13. Further, a well-known wiring (not shown) is connected to the second impurity region 13, and the first impurity region 12 is used as an anode through the wiring and an electric path 16 extending from the first impurity region 12. The second impurity region 13 is used as a cathode, and a reverse voltage is applied between the two.

【0025】アノード12およびカソード13間に逆方
向電圧が印加されると、図中仮想線で示されているよう
に、第1の不純物領域12から電路16に沿って、該電
路下を第2の不純物領域13へ向けて空乏層17(17
a、17b、17cおよび17d)が伸長する。図示の
例では、カソード13が半導体基板11と同一導電型を
有し該基板の不純物濃度よりも大きな高濃度不純物領域
13からなることから、逆方向電圧値の増大によって空
乏層17が伸長しても、その伸長端が第2の不純物領域
13を越えて伸長することはなく、従って、カソードで
ある第2の不純物領域13がチャンネルストッパの機能
を兼ねる。第2の不純物領域13のチャンネルストッパ
機能により、空乏層17による周辺回路部分への悪影響
が防止される。
When a reverse voltage is applied between the anode 12 and the cathode 13, as shown by the phantom line in FIG. Depletion layer 17 (17) toward impurity region 13 of
a, 17b, 17c and 17d) extend. In the illustrated example, since the cathode 13 has the same conductivity type as the semiconductor substrate 11 and is formed of the high-concentration impurity region 13 having a higher impurity concentration than the substrate, the depletion layer 17 extends due to an increase in the reverse voltage value. However, the extended end does not extend beyond the second impurity region 13, so that the second impurity region 13 serving as a cathode also functions as a channel stopper. The channel stopper function of the second impurity region 13 prevents the depletion layer 17 from affecting the peripheral circuit.

【0026】前記逆方向電圧値の増大に伴って、空乏層
17が第2の不純物領域13に達した後、さらにその電
圧値が増大すると、空乏層17の伸長が規制された状態
にあることから、この空乏層17に電界の集中が生じ易
い。この電界の集中による空乏層17でのブレークダウ
ンを抑制し、空乏層17での降伏電圧値の増大を図るた
めの電界緩和手段として、導電層18および第3の不純
物領域19が設けられている。
After the depletion layer 17 reaches the second impurity region 13 with the increase in the reverse voltage value, if the voltage value further increases, the extension of the depletion layer 17 is restricted. Therefore, the electric field is easily concentrated in the depletion layer 17. The conductive layer 18 and the third impurity region 19 are provided as electric field relaxation means for suppressing the breakdown in the depletion layer 17 due to the concentration of the electric field and increasing the breakdown voltage value in the depletion layer 17. .

【0027】導電層18は、図示の例では、絶縁膜14
の下層14aとその上層14bとの間に形成された導電
体からなる。導電層18を、例えば1000Åの膜厚を
有し、燐が不純物として添加されたポリシリコンで形成
することができる。導電層18は、第2の不純物領域1
3に対応した領域から当該領域を越えて第1の不純物領
域12が設けられた側に伸長し、伸長端18aに帰す
る。この導電層18は、半導体基板11に電気的に接続
されることにより、半導体基板11と同電位に保持され
ている。
In the illustrated example, the conductive layer 18 is formed of the insulating film 14.
And a conductor formed between the lower layer 14a and the upper layer 14b. The conductive layer 18 can be formed of polysilicon having a thickness of, for example, 1000 ° and doped with phosphorus as an impurity. The conductive layer 18 is formed in the second impurity region 1
The region extends from the region corresponding to 3 to the side where the first impurity region 12 is provided beyond the region and returns to the extended end 18a. The conductive layer 18 is maintained at the same potential as the semiconductor substrate 11 by being electrically connected to the semiconductor substrate 11.

【0028】第3の不純物領域19は、半導体基板11
の表面における第1の不純物領域12および第2の不純
物領域13間に形成されている。第3の不純物領域19
は、半導体基板11の導電型と同一の導電型を示し、そ
の不純物濃度は半導体基板11のそれより高くしかも第
2の不純物領域13のそれより低く設定されている。こ
の第3の不純物領域19の不純物濃度は、前記した濃度
範囲内で、従来の電界低減領域(FFR)におけると同
様に、例えば単独で用いられたときに最も高い降伏電圧
値が得られる不純物濃度値を採用することが望ましい。
The third impurity region 19 is formed in the semiconductor substrate 11
Is formed between the first impurity region 12 and the second impurity region 13 on the surface of the substrate. Third impurity region 19
Represents the same conductivity type as that of the semiconductor substrate 11, and the impurity concentration thereof is set higher than that of the semiconductor substrate 11 and lower than that of the second impurity region 13. The impurity concentration of the third impurity region 19 is, for example, within the above-described concentration range, as in the conventional electric field reduction region (FFR), for example, the impurity concentration that provides the highest breakdown voltage value when used alone. It is desirable to adopt a value.

【0029】第3の不純物領域19は、具体例1では、
第2の不純物領域13内から該不純物領域13に連続し
て、第1の不純物領域12が設けられた側に伸長し、第
1の不純物領域12から間隔をおく伸長端19aに帰す
る。また、導電層18は、第3の不純物領域19の伸長
端19aを越えて第1の不純物領域12の側に伸長する
ことはなく、従って、導電層18の伸長端18aは、第
3の不純物領域19の伸長端19aよりも第2の不純物
領域13の側に位置する。
In the first embodiment, the third impurity region 19
The second impurity region 13 extends from the second impurity region 13 to the side where the first impurity region 12 is provided, continuing to the impurity region 13, and returns to the extended end 19 a spaced from the first impurity region 12. Further, the conductive layer 18 does not extend to the side of the first impurity region 12 beyond the extended end 19a of the third impurity region 19, and therefore, the extended end 18a of the conductive layer 18 is Region 19 is located closer to second impurity region 13 than extension end 19a.

【0030】導電層18および第3の不純物領域19が
設けられた具体例1の半導体装置10では、電路16を
経てアノードである第1の不純物領域12と、第2の不
純物領域13と同電位の半導体基板11との間に、逆方
向電圧が印加されると、図1に仮想線で示されているよ
うに、電路16下をアノード12から第2の不純物領域
13へ向けて、半導体基板11の表面に沿って、空乏層
17aが伸びる。この空乏層17aの先端は、前記逆方
向電圧値の増大に伴い、図中、符号17bおよび17c
で示されているように、半導体基板11の表面に沿っ
て、順次、第2の不純物領域13へ向けて伸長する。
In the semiconductor device 10 of the specific example 1 in which the conductive layer 18 and the third impurity region 19 are provided, the first impurity region 12 serving as the anode and the second impurity region 13 have the same potential via the electric path 16. When a reverse voltage is applied between the semiconductor substrate 11 and the semiconductor substrate 11, as shown by the phantom line in FIG. The depletion layer 17a extends along the surface of the eleventh layer. The leading ends of the depletion layers 17a are denoted by reference numerals 17b and 17c in FIG.
As shown by, the semiconductor substrate 11 sequentially extends toward the second impurity region 13 along the surface of the semiconductor substrate 11.

【0031】この半導体基板11の表面上での空乏層1
7の先端が第3の不純物領域19に達すると、該第3の
不純物領域19は、前記逆方向電圧値の増大に伴い、空
乏層17の先端の移動すなわち空乏層17の伸長を規制
しつつ、空乏層17内でブレークダウンを生じさせない
ように、適正にその伸長を許す。
Depletion layer 1 on the surface of semiconductor substrate 11
When the tip of 7 reaches the third impurity region 19, the third impurity region 19 regulates the movement of the tip of the depletion layer 17, that is, the extension of the depletion layer 17 with the increase in the reverse voltage value. In order to prevent the breakdown from occurring in the depletion layer 17, the extension is properly performed.

【0032】空乏層17の前記した伸長により、図1に
符号17cで示されているように、半導体基板11の表
面上での空乏層17の先端が、導電層18の伸長端18
aに対応する符号Aで示されている位置に達すると、半
導体基板11の表面上での空乏層17の移動が阻止され
ることから、前記逆方向電圧値がさらに増大すると、そ
の増大に伴って、空乏層17cの前記先端の下部は、符
号17dで示されているように、第2の不純物領域13
へ向けて大きく膨らみ出る。このとき、符号Aで示され
る部分で空乏層17に最も大きな電界の集中が見られ
る。
Due to the extension of the depletion layer 17, as shown by reference numeral 17 c in FIG. 1, the tip of the depletion layer 17 on the surface of the semiconductor substrate 11 becomes the extension end 18 of the conductive layer 18.
When the position indicated by the symbol A corresponding to a is reached, the movement of the depletion layer 17 on the surface of the semiconductor substrate 11 is prevented. Therefore, when the reverse voltage value further increases, the reverse voltage value increases. The lower part of the tip of the depletion layer 17c is, as indicated by reference numeral 17d, a second impurity region 13c.
It swells greatly toward. At this time, the largest concentration of the electric field is observed in the depletion layer 17 in the portion indicated by the symbol A.

【0033】この最も大きな電界の集中が生じる部分A
でブレークダウンが生じない限り、空乏層17は、符号
Aで示す部分の下方で膨らみ出た下部で、符号17dで
示されているように、第2の不純物領域13に達する。
第2の不純物領域13は、前記したようなチャンネルス
トッパ作用により、この第2の不純物領域13を越える
空乏層17の伸長を防止する。
A portion A where the largest electric field concentration occurs
As long as the breakdown does not occur, the depletion layer 17 reaches the second impurity region 13 as indicated by reference numeral 17d at the lower portion bulging below the portion indicated by reference numeral A.
The second impurity region 13 prevents the depletion layer 17 from extending beyond the second impurity region 13 by the channel stopper function as described above.

【0034】前記したような空乏層17の伸長を可能と
する導電層18および第3の不純物領域19の組み合わ
せからなる電界緩和手段を含む半導体装置10の耐圧特
性と、従来の半導体装置のそれとの比較が図2のグラフ
に示されている。
The breakdown voltage characteristics of the semiconductor device 10 including the electric field relaxation means composed of the combination of the conductive layer 18 and the third impurity region 19 enabling the depletion layer 17 to extend as described above are different from those of the conventional semiconductor device. A comparison is shown in the graph of FIG.

【0035】図2のグラフの横軸は絶縁膜14の最大厚
さ寸法値(μm)を示し、縦軸は半導体装置の降伏電圧
値(V)を示す。特性線20は、本発明に係る半導体装
置10の耐圧特性を示し、特性線21は、電界緩和手段
として、シールド電極のみを設けた従来例のそれを示
し、また特性線22は、電界緩和手段として、電界低減
領域のみを設けた従来例のそれを示す。
The horizontal axis of the graph of FIG. 2 indicates the maximum thickness dimension value (μm) of the insulating film 14, and the vertical axis indicates the breakdown voltage value (V) of the semiconductor device. A characteristic line 20 indicates the withstand voltage characteristic of the semiconductor device 10 according to the present invention, a characteristic line 21 indicates that of the conventional example in which only the shield electrode is provided as the electric field relaxation means, and a characteristic line 22 indicates the electric field relaxation means. A conventional example in which only an electric field reduction region is provided is shown.

【0036】本発明に係る半導体装置10では、絶縁膜
14の膜厚が2.5μmを越えると、400Vを越える
高い降伏電圧が得られる。これは、空乏層17での符号
Aで示した箇所での降伏電圧値が少なくともアノード1
2と半導体基板11との間の接合耐圧値以上となったこ
とを意味する。また、本発明に係る半導体装置10で
は、絶縁膜14の膜厚が2μmとなっても、接合耐圧に
近いほぼ400Vの耐圧特性を示す。このときの降伏電
圧は、空乏層17の符号Aで示した箇所でのブレークダ
ウン電圧値であると考えられる。
In the semiconductor device 10 according to the present invention, when the thickness of the insulating film 14 exceeds 2.5 μm, a high breakdown voltage exceeding 400 V can be obtained. This is because the breakdown voltage at the location indicated by the symbol A in the depletion layer 17 is at least the anode 1
This means that the junction breakdown voltage between the semiconductor substrate 2 and the semiconductor substrate 11 has become equal to or higher than the withstand voltage. Further, in the semiconductor device 10 according to the present invention, even when the thickness of the insulating film 14 is 2 μm, the semiconductor device 10 exhibits a withstand voltage characteristic of approximately 400 V which is close to the junction withstand voltage. It is considered that the breakdown voltage at this time is a breakdown voltage value at a location indicated by the symbol A in the depletion layer 17.

【0037】これに対し、特性線21および22で示さ
れる従来技術では、絶縁膜の膜厚が2.5μmを越える
と特性線22で示される一方の従来技術でのみ本願にお
けると同様な降伏電圧値を得られるものの、絶縁膜の膜
厚が2μmになると、いずれも降伏電圧が350Vを大
きく下回る値を示す。このことは、従来技術では、絶縁
膜の膜厚が2μmになると、空乏層でのブレークダウン
電圧が350Vを大きく下回る値となり、本願における
ような電界緩和効果を奏し得ないことを意味する。
On the other hand, in the prior art shown by the characteristic lines 21 and 22, when the thickness of the insulating film exceeds 2.5 μm, the breakdown voltage similar to that in the present application is obtained only by the one prior art shown by the characteristic line 22. Although a value can be obtained, when the thickness of the insulating film is 2 μm, the breakdown voltage is much lower than 350 V in all cases. This means that in the prior art, when the thickness of the insulating film is 2 μm, the breakdown voltage in the depletion layer becomes a value significantly lower than 350 V, and the electric field relaxation effect as in the present application cannot be obtained.

【0038】このことから、本発明に係る半導体装置1
0によれば、単に従来の導電層および電界緩和のための
不純物領域を組み合わせた場合には電界緩和効果の低減
を招くと考えられていた両電界緩和手段を特定の組み合
わせの位置関係を満たすことにより、絶縁膜14にたと
え2μmというような薄膜の絶縁膜を用いても、このよ
うな薄い絶縁膜での従来の降伏電圧値よりも約80Vも
高い、ほぼ400Vという極めて高い降伏電圧を得るこ
とができ、これにより耐圧特性を高めることが可能とな
る。
Thus, the semiconductor device 1 according to the present invention
According to 0, both electric field relaxation means, which were thought to cause a reduction in the electric field relaxation effect when a conventional conductive layer and an impurity region for electric field relaxation are simply combined, satisfy the positional relationship of a specific combination. As a result, even if a thin insulating film having a thickness of 2 μm is used as the insulating film 14, an extremely high breakdown voltage of approximately 400 V, which is about 80 V higher than the conventional breakdown voltage value of such a thin insulating film, can be obtained. This makes it possible to improve the breakdown voltage characteristics.

【0039】従って、半導体装置の耐圧性を高めると共
にその厚さ寸法の低減を図ることができ、これにより、
耐圧性に優れた半導体装置のコンパクト化が可能とな
る。
Therefore, the withstand voltage of the semiconductor device can be increased and the thickness of the semiconductor device can be reduced.
It is possible to reduce the size of a semiconductor device having excellent withstand voltage.

【0040】〈具体例2〉図3に示す具体例2では、第
3の不純物領域19は、第2の不純物領域13から間隔
をおいて配置されており、この第2の不純物領域13に
近接する第2の不純物領域13の基端部19bと、第2
の不純物領域13との間隔に対応する中間位置に導電層
18の伸長端18aが位置する。
<Embodiment 2> In the embodiment 2 shown in FIG. 3, the third impurity region 19 is arranged at a distance from the second impurity region 13 and is close to the second impurity region 13. The base end 19b of the second impurity region 13
The extension end 18a of the conductive layer 18 is located at an intermediate position corresponding to the distance from the impurity region 13.

【0041】具体例2の半導体装置10では、導電層1
8の伸長端18aが前記中間位置にあることから、半導
体基板11の表面に沿って伸びる空乏層17の前記先端
の移動が導電層18により規制される位置、すなわち伸
長端18aに対応する符号Aで示す位置は、第3の不純
物領域19と第2の不純物領域13との間にある。
In the semiconductor device 10 of the second embodiment, the conductive layer 1
8 is located at the intermediate position, the movement of the tip of the depletion layer 17 extending along the surface of the semiconductor substrate 11 is restricted by the conductive layer 18, that is, the code A corresponding to the extended end 18a. Is located between the third impurity region 19 and the second impurity region 13.

【0042】従って、具体例2では、この符号Aで示さ
れる位置は、半導体基板11中であり、この半導体基板
11は、第3の不純物領域19および第2の不純物領域
13のそれぞれの不純物濃度よりもその値が低いことか
ら、その不純物濃度の差に基づき、第3の不純物領域1
9中での空乏層17の伸長抑制効果に比較して、より低
い抑制効果を示す。そのため、空乏層17cの前記先端
が符号Aで示す位置に達した後、さらに前記逆方向電圧
の増大に伴って前記先端の下方で空乏層17cが第2の
不純物領域13へ向けて膨らもうとするとき、この膨ら
みが具体例1における示したような強い拘束を受けるこ
とはない。
Therefore, in the specific example 2, the position indicated by the symbol A is in the semiconductor substrate 11, and the semiconductor substrate 11 has the respective impurity concentrations of the third impurity region 19 and the second impurity region 13. Is lower than that of the third impurity region 1 based on the difference in the impurity concentration.
9 shows a lower suppression effect than the extension suppression effect of the depletion layer 17 in FIG. Therefore, after the tip of the depletion layer 17c reaches the position indicated by the symbol A, the depletion layer 17c expands toward the second impurity region 13 below the tip as the reverse voltage increases. In this case, the bulge does not receive the strong constraint as shown in the first embodiment.

【0043】このことから、具体例2の半導体装置10
によれば、空乏層17cの前記先端が符号Aで示す位置
に達した後の前記逆方向電圧の増大に対し、空乏層17
dの伸長の抑制効果の低減を図ることができ、これによ
り符号Aで示される位置での電界の増加割合を低減させ
ることができることから、空乏層17の符号Aで示す位
置でのブレークダウンをより確実に防止することがで
き、さらに優れた耐圧性を得ることができる。
Accordingly, the semiconductor device 10 of the second embodiment is
According to the above, when the reverse voltage increases after the tip of the depletion layer 17 c reaches the position indicated by the symbol A, the depletion layer 17 c
Since the effect of suppressing the extension of d can be reduced, and the rate of increase of the electric field at the position indicated by the symbol A can be reduced, the breakdown of the depletion layer 17 at the position indicated by the symbol A can be reduced. This can be more reliably prevented, and further excellent pressure resistance can be obtained.

【0044】〈具体例3〉図4および図5に示す具体例
3の半導体装置10では、電界緩和として、導電層1
8′が設けられている。図4では、図面の簡素化のため
に、図5に示された絶縁膜14が省略されている。
<Embodiment 3> In the semiconductor device 10 of Embodiment 3 shown in FIG. 4 and FIG.
8 'is provided. 4, the insulating film 14 shown in FIG. 5 is omitted for simplification of the drawing.

【0045】具体例3の導電層18′は、均等な例えば
3μmの幅寸法wを有する複数の細幅部23を備える。
各細幅部23は、図5に明確に示されているように、ア
ノードである第1の不純物領域12から伸長する電路1
6の伸長方向にそれぞれの幅方向を沿わせて、また電路
16の伸長方向へ相互に均等な、例えば3μmの間隔s
をおくように、整列して配置されている。各細幅部23
は、図4に示すように、電路16に沿って配置された接
続部24を介して、第2の不純物領域13に電気的に接
続されている。また、図4に示す例では、カソードおよ
びチャンネルストッパとして機能する第2の不純物領域
13は、アノードとして機能する第1の不純物領域12
を取り巻いて形成されている。
The conductive layer 18 'of the third embodiment includes a plurality of narrow portions 23 having a uniform width dimension w of, for example, 3 μm.
As clearly shown in FIG. 5, each narrow portion 23 has a circuit 1 extending from the first impurity region 12 which is an anode.
6 along the respective width directions in the direction of extension and in the direction of extension of the electric circuit 16, for example, an interval s of, for example, 3 μm.
Are arranged in an aligned manner. Each narrow part 23
Is electrically connected to the second impurity region 13 via a connection portion 24 arranged along the electric path 16 as shown in FIG. In the example shown in FIG. 4, the second impurity region 13 functioning as a cathode and a channel stopper is replaced with the first impurity region 12 functioning as an anode.
Is formed.

【0046】具体例3の半導体装置10では、第1の不
純物領域12と半導体基板11との間に、逆方向電圧が
印加されると、図5に仮想線で示されているように、電
路16下をアノード12から第2の不純物領域13へ向
けて、半導体基板11の表面に沿って、空乏層17aが
伸びる。
In the semiconductor device 10 according to the third embodiment, when a reverse voltage is applied between the first impurity region 12 and the semiconductor substrate 11, as shown by a virtual line in FIG. The depletion layer 17 a extends along the surface of the semiconductor substrate 11 from the anode 12 toward the second impurity region 13 below the anode 16.

【0047】前記逆方向電圧値の増大に伴い、半導体基
板11上での空乏層17の先端が、最も第1の不純物領
域12に近接した位置にある細幅部23の近接縁部23
aに達すると、この点A1で空乏層17aの伸びが規制
される。
With the increase in the reverse voltage value, the leading edge of the depletion layer 17 on the semiconductor substrate 11 is moved closer to the edge portion 23 of the narrow portion 23 located closest to the first impurity region 12.
When a reaches a, the extension of the depletion layer 17a is regulated at this point A1.

【0048】さらに、前記電圧値が増大すると、この電
圧値の増大に応じて、各細幅部23間に規定されるスリ
ットsに対応した位置に、第1の不純物領域12からの
距離のそれぞれに応じた分離空乏層部分(17′a、1
7′b…)が形成される。
Further, when the voltage value increases, the distance from the first impurity region 12 to the position corresponding to the slit s defined between the narrow portions 23 in accordance with the increase in the voltage value. (17′a, 1 ′
7'b...) Are formed.

【0049】前記電圧値の増大により、空乏層17aの
点A1で示される位置での電界が臨界値に近づくと、こ
の電界値が臨界値に達する前に、空乏層17aの先端は
その前方位置に形成された分離空乏層部分17′aを併
合する。その結果、空乏層は符号A2で示される位置ま
で、その長さ分の伸長を許されることから、その電界の
緩和が図られる。
When the electric field at the position indicated by the point A1 of the depletion layer 17a approaches the critical value due to the increase in the voltage value, before the electric field value reaches the critical value, the tip of the depletion layer 17a is moved to the forward position. Are separated from each other. As a result, the depletion layer is allowed to extend by the length up to the position indicated by the reference symbol A2, so that the electric field is relaxed.

【0050】以下、前記電圧値の増大に伴い、空乏層1
7は、その伸びが段階的に許され(空乏層17a、17
b、17c)、最終的に第2の不純物領域13に達する
ことにより、この第2の不純物領域13のチャンネルス
トッパ作用により、空乏層17の伸びが防止される。
Hereinafter, as the voltage value increases, the depletion layer 1
7, the growth is allowed stepwise (depletion layers 17a, 17a).
b, 17c), when the depletion layer 17 finally reaches the second impurity region 13, the channel stopper function of the second impurity region 13 prevents the depletion layer 17 from extending.

【0051】前記したような空乏層17の段階的な伸長
を可能とする導電層18′が設けられた半導体装置10
の耐圧特性と、従来の半導体装置のそれとの比較が図6
のグラフに示されている。
The semiconductor device 10 provided with the conductive layer 18 'which enables the depletion layer 17 to expand stepwise as described above.
FIG. 6 shows a comparison between the breakdown voltage characteristic of the semiconductor device and that of the conventional semiconductor device.
Is shown in the graph.

【0052】図6のグラフの横軸および縦軸は、それぞ
れ図2のグラフにおけるそれらと同様である。図6のグ
ラフに示された特性線20′は、具体例3の半導体装置
10の耐圧特性を示し、特性線21は、電界緩和手段と
して、連続するシールド電極が設けられた従来例のそれ
を示す。
The horizontal and vertical axes of the graph of FIG. 6 are the same as those in the graph of FIG. A characteristic line 20 'shown in the graph of FIG. 6 shows the breakdown voltage characteristic of the semiconductor device 10 of the third embodiment, and a characteristic line 21 shows that of the conventional example in which a continuous shield electrode is provided as electric field relaxation means. Show.

【0053】特性線21を示す従来例では、絶縁膜の膜
厚が3μm以下では、前記接合耐圧に至らない低い降伏
電圧しか得られない。これに対し、具体例3の半導体装
置10では、具体例1におけると同様に、絶縁膜14の
膜厚が2.5μmを越えると、400Vを越える高い降
伏電圧が得られる。また、絶縁膜14の膜厚が2μmと
なっても、従来例で得られる降伏電圧値を約45V以上
も上回る、350Vをはるかに越える高い降伏電圧を得
ることができ、従来に比較して高い耐圧特性が得られ
る。
In the conventional example showing the characteristic line 21, when the thickness of the insulating film is 3 μm or less, only a low breakdown voltage which does not reach the junction breakdown voltage can be obtained. On the other hand, in the semiconductor device 10 of the third embodiment, as in the first embodiment, when the thickness of the insulating film 14 exceeds 2.5 μm, a high breakdown voltage exceeding 400 V can be obtained. Even if the thickness of the insulating film 14 is 2 μm, a high breakdown voltage exceeding 350 V, which is more than about 45 V higher than the breakdown voltage obtained in the conventional example, and higher than the conventional one can be obtained. Withstand voltage characteristics can be obtained.

【0054】〈具体例4〉具体例3では、均一な幅寸法
を有する細幅部23を備える導電層18′が設けられて
いた。これに対し、図4に示す具体例4の半導体装置1
0では、第2の不純物領域13上に位置する細幅部2
3′の幅寸法を第2の不純物領域13のそれにほぼ一致
させ、これにより、図4に示されているように、導電層
18′の細幅部23′で、第2の不純物領域13上を連
続的に覆うことができる。また、半導体装置10の耐圧
性を高める上で、図4に示されているように、不純物領
域13の第1の不純物領域12の側に位置する縁部13
aを導電層18′のスリット位置に対応させることが望
ましい。これにより、空乏層17が第2の不純物領域1
3に達するときの前記逆方向電圧値を高めることが可能
となる。
<Embodiment 4> In the embodiment 3, the conductive layer 18 'having the narrow portion 23 having a uniform width is provided. On the other hand, the semiconductor device 1 of the specific example 4 shown in FIG.
0, the narrow portion 2 located on the second impurity region 13
The width dimension of 3 'is made substantially equal to that of the second impurity region 13, so that the narrow portion 23' of the conductive layer 18 'is formed on the second impurity region 13 as shown in FIG. Can be continuously covered. Further, in order to improve the breakdown voltage of the semiconductor device 10, as shown in FIG. 4, the edge portion 13 located on the side of the first impurity region 12 of the impurity region 13 is formed.
It is desirable that a corresponds to the slit position of the conductive layer 18 '. As a result, the depletion layer 17 becomes the second impurity region 1
3, the reverse voltage value can be increased.

【0055】〈具体例5〉図8に示す具体例5の半導体
装置10では、導電層18′が格子状を呈する。図4お
よび図8に示されているように、第2の不純物領域13
が第1の不純物領域12を取り巻いて配置されていると
き、単に図4に示したような細幅部23が第2の不純物
領域13を横切るように、その長手方向寸法を増大させ
ると、当該細幅部下で空乏層が、その長手方向に沿って
伸長し、その結果、直ちに第2の不純物領域13に短絡
することから、電界緩和手段としての機能を損なう。
<Embodiment 5> In the semiconductor device 10 of Embodiment 5 shown in FIG. 8, the conductive layer 18 'has a lattice shape. As shown in FIGS. 4 and 8, the second impurity region 13
Is arranged around the first impurity region 12, when the longitudinal dimension is increased so that the narrow portion 23 as shown in FIG. The depletion layer extends along the longitudinal direction below the narrow portion, and as a result, is immediately short-circuited to the second impurity region 13, thereby impairing the function as the electric field relaxation means.

【0056】しかしながら、図8の具体例5に示される
とおり、格子状の導電層18′を用いることにより、具
体例4に沿って説明したように、電路16の伸長方向へ
の空乏層17の伸びを段階的に制御できることに加え
て、電路16の幅方向への空乏層17の伸びをも段階的
に制御することができる。これにより、電路16の幅方
向への導電層18′の伸長に伴う前記した短絡現象を防
止して導電層18′が第2の不純物領域13を横切るよ
うに、該導電層を電路16の幅方向へ延長させることが
できる。
However, as shown in the specific example 5 of FIG. 8, by using the lattice-shaped conductive layer 18 ', as described along the specific example 4, the depletion layer 17 in the extending direction of the electric circuit 16 is formed. In addition to being able to control the growth stepwise, the expansion of the depletion layer 17 in the width direction of the electric circuit 16 can also be controlled stepwise. This prevents the short-circuit phenomenon caused by the extension of the conductive layer 18 ′ in the width direction of the circuit 16 and prevents the conductive layer 18 ′ from crossing the second impurity region 13 so that the conductive layer 18 ′ crosses the width of the circuit 16. Direction.

【0057】従って、格子状の導電層18′によれば、
電路16の幅方向への導電層18′の伸長に伴う前記し
た短絡現象を招くことなく、導電層を電路16の幅方向
へ延長させることができ、これにより、導電層18′と
第2の不純物領域13とを接続するための接続部24の
引き回しについての配線の自由度が高まる。
Therefore, according to the lattice-shaped conductive layer 18 ',
The conductive layer can be extended in the width direction of the electric circuit 16 without causing the above-described short-circuit phenomenon caused by the extension of the conductive layer 18 'in the electric circuit 16 in the width direction. The degree of freedom of wiring for leading the connection portion 24 for connecting to the impurity region 13 is increased.

【0058】〈具体例6〉図9に示す具体例6の半導体
装置10では、導電層18′は、それぞれが相互に同心
的な配置を許すべくそれらの寸法を相互に異にし、それ
ぞれが全体に矩形枠体形状を呈する複数の細幅部23か
らなる。各細幅部23は、接続部24を介して第2の不
純物領域13に接続される。具体例6では、この接続部
24を、第1の不純物領域12の周りの360度の範囲
内の任意の部分に設けることができることから、具体例
5に比較して、接続部24の配置の自由度がさらに高ま
る。
<Embodiment 6> In the semiconductor device 10 of Embodiment 6 shown in FIG. 9, the conductive layers 18 'have dimensions different from each other so as to allow concentric arrangement with each other. And a plurality of narrow portions 23 having a rectangular frame shape. Each narrow portion 23 is connected to second impurity region 13 via connection portion 24. In the specific example 6, since the connection portion 24 can be provided at an arbitrary portion within a range of 360 degrees around the first impurity region 12, the arrangement of the connection portion 24 is smaller than that of the specific example 5. The degree of freedom is further increased.

【0059】〈具体例7〉図10に示す具体例7の半導
体装置10では、導電層18′は、複数の細幅部23お
よび23′の各幅寸法(W1、W2、W3、W4、W5)が第1の
不純物領域12の側の先端位置にある細幅部23から第
2の不純物領域13の側の基端位置にある細幅部23′
へ向けて、例えば、1μm、2μm、3μmおよび4μ
mというように、順次、漸増する。各細幅部23および
23′間のスリット幅sは、例えば3μmであり、相互
に同一である。
<Embodiment 7> In the semiconductor device 10 of the embodiment 7 shown in FIG. 10, the conductive layer 18 'has the width dimensions (W1, W2, W3, W4, W5) of the plurality of narrow portions 23 and 23'. ) Is from the narrow portion 23 at the distal end position on the first impurity region 12 side to the narrow width portion 23 ′ at the base end position on the second impurity region 13 side.
For example, 1 μm, 2 μm, 3 μm and 4 μm
The number gradually increases, such as m. The slit width s between the narrow portions 23 and 23 ′ is, for example, 3 μm, and is the same as each other.

【0060】具体例7の半導体装置10では、具体例3
に沿って説明したと同様に、第1の不純物領域12と半
導体基板11との間に印加される逆方向電圧の増大に伴
って、空乏層17の伸長する先端位置が、各細幅部23
および23′におけるそれぞれの第1の不純物領域12
に近接した位置にある近接縁部23aに対応する位置A
1、A2、A3、A4、A5の各点でそれぞれ段階的に規定され
る。
In the semiconductor device 10 of the embodiment 7, the embodiment 3
As described above, with the increase of the reverse voltage applied between the first impurity region 12 and the semiconductor substrate 11, the position of the leading end of the depletion layer 17 is changed to each narrow portion 23.
First impurity regions 12 at
A corresponding to the proximity edge 23a located at a position close to
1, A2, A3, A4, and A5 are defined step by step.

【0061】このことから、前記電圧値の増大に伴い、
空乏層17の先端位置が、順次、各点A1、A2、A3、A4、
A5に移動する。ところで、前記したとおり、各細幅部2
3および23′間のスリット幅sは、相互に同一である
が、複数の細幅部23および23′の各幅寸法(W1、W
2、W3、W4、W5)が漸増することから、点A1、A2、A3、A
4、A5間の各間隔は漸増する。
From this, as the voltage value increases,
The position of the tip of the depletion layer 17 is sequentially changed to each point A1, A2, A3, A4,
Go to A5. By the way, as described above, each narrow portion 2
3 and 23 'are the same, but each width dimension (W1, W2) of the plurality of narrow portions 23 and 23' is the same.
2, W3, W4, W5) gradually increase, so points A1, A2, A3, A
4, Each interval between A5 gradually increases.

【0062】そのため、具体例7によれば、前記電圧値
の増大に伴い、空乏層17の先端位置が、順次、各点A
1、A2、A3、A4、A5に移動すると、電圧値の増大に対す
る空乏層の伸長割合は増大することから、電界緩和効果
は一層高まる。
Therefore, according to the seventh embodiment, as the voltage value increases, the position of the tip of the depletion layer 17 is sequentially changed at each point A.
When moving to 1, A2, A3, A4, and A5, the rate of extension of the depletion layer with respect to the increase in the voltage value increases, so that the electric field relaxation effect further increases.

【0063】図11のグラフの横軸および縦軸は、それ
ぞれ図2および図6のグラフにおけるそれらと同様であ
る。図11のグラフに示された特性線20′は、具体例
3の半導体装置10の耐圧特性を示し、特性線25は、
具体例7の耐圧特性を示す。特性線25で示す具体例7
のによれば、絶縁膜の膜厚がたとえ2μmであっても、
前記接合耐圧値である400Vを大きく越える高い降伏
電圧が得られる。
The horizontal and vertical axes of the graph of FIG. 11 are the same as those in the graphs of FIGS. 2 and 6, respectively. A characteristic line 20 'shown in the graph of FIG. 11 shows the breakdown voltage characteristics of the semiconductor device 10 of the third embodiment, and a characteristic line 25
13 shows the breakdown voltage characteristics of Example 7. Specific example 7 indicated by a characteristic line 25
According to the above, even if the thickness of the insulating film is 2 μm,
A high breakdown voltage that greatly exceeds the junction withstand voltage of 400 V is obtained.

【0064】〈具体例8〉具体例7では、細幅部23お
よび23′の幅寸法を漸増させた例を示したが、第2の
不純物領域13上の細幅部23′を除く各細幅部23の
幅寸法を例えば2μmというような同一値とし、この幅
寸法に代えて、各細幅部23および23′間のスリット
幅sを第1の不純物領域12の側に位置するスリットS1
から第2の不純物領域13の側に位置するスリットS4へ
向けて、例えば5μm、4μm、3μm、2μmという
ように、順次その幅寸法を漸減する。
<Embodiment 8> In the embodiment 7, an example was shown in which the width of the narrow portions 23 and 23 'was gradually increased, but each narrow portion except the narrow portion 23' on the second impurity region 13 was shown. The width of the width portion 23 is set to the same value, for example, 2 μm. Instead of this width, the slit width s between the narrow portions 23 and 23 ′ is set to the slit S 1 located on the side of the first impurity region 12.
, The width dimension is gradually reduced, for example, 5 μm, 4 μm, 3 μm, and 2 μm from the second impurity region 13 toward the slit S4.

【0065】具体例8によれば、各細幅部23の幅寸法
を漸減することなく、前記したような点A1、A2、A3、A
4、A5間の間隔を漸増させることができる。従って、フ
ォトリソグラフィで細幅部23を形成するとき、具体例
7におけるような細幅の細幅部23を形成することな
く、そのため、微細な幅寸法の細幅部23を得るための
高精度の制御技術を不要として、空乏層17の先端位置
が移動する各点A1、A2、A3、A4、A5の間隔を高精度で漸
増させることができることから、具体例7におけるより
も容易に、これと同等の耐圧特性を示す半導体装置10
を製造することができる。
According to the eighth embodiment, the points A1, A2, A3, A3 as described above are obtained without gradually reducing the width of each narrow portion 23.
4, The interval between A5 can be gradually increased. Therefore, when the narrow portion 23 is formed by photolithography, the narrow portion 23 having a narrow width as in the specific example 7 is not formed, and therefore, high precision for obtaining the narrow portion 23 having a fine width dimension is obtained. Since the distance between the points A1, A2, A3, A4, and A5 at which the tip position of the depletion layer 17 moves can be gradually increased with high accuracy without the need for the control technique of Semiconductor device 10 having the same breakdown voltage characteristics as
Can be manufactured.

【0066】〈具体例9〉図13の具体例9に示されて
いるように、半導体基板11上の絶縁膜14の膜厚を導
電層18′の先端部近傍で減少させることができ、この
絶縁膜14の膜厚の低減により、空乏層17の伸長抑制
効果の低減を図り、これにより、導電層18′の細幅部
23の数を低減することができ、この細幅部23の数の
低減により、半導体装置10の寸法の縮小化を図ること
ができる。
<Embodiment 9> As shown in Embodiment 9 of FIG. 13, the thickness of the insulating film 14 on the semiconductor substrate 11 can be reduced near the tip of the conductive layer 18 '. By reducing the thickness of the insulating film 14, the effect of suppressing the extension of the depletion layer 17 is reduced, whereby the number of the narrow portions 23 of the conductive layer 18 'can be reduced. , The size of the semiconductor device 10 can be reduced.

【0067】〈具体例10〉図14に示す具体例10の
半導体装置10では、電界緩和手段として、導電層1
8′および第3の不純物領域19が組み合わせて用いら
れている。第3の不純物領域19の不純物濃度は、具体
例1および2で説明したとおり、半導体基板11の導電
型と同一の導電型を示し、その不純物濃度は半導体基板
11のそれより高くしかも第2の不純物領域13のそれ
より低く設定されている。また、導電層18′の先端、
すなわち、第1の不純物領域12に最も近接する位置に
ある細幅部23の第1の不純物領域12の側に位置する
縁部18a′は第2の不純物領域13の第1の不純物領
域12に近接する伸長端19aよりも第2の不純物領域
13の側にある。
<Embodiment 10> In the semiconductor device 10 of the embodiment 10 shown in FIG.
8 'and the third impurity region 19 are used in combination. As described in the specific examples 1 and 2, the impurity concentration of the third impurity region 19 indicates the same conductivity type as that of the semiconductor substrate 11, and the impurity concentration thereof is higher than that of the semiconductor substrate 11 and the second impurity concentration. It is set lower than that of impurity region 13. Also, the tip of the conductive layer 18 ',
That is, the edge 18 a ′ located on the side of the first impurity region 12 of the narrow portion 23 closest to the first impurity region 12 is connected to the first impurity region 12 of the second impurity region 13. It is closer to the second impurity region 13 than the adjacent extension end 19a.

【0068】具体例10の半導体装置10によれば、両
緩和手段である導電層18′および第3の不純物領域1
9の組み合わせにより、絶縁膜14の厚さ寸法のばらつ
きに拘わらず、安定した一層高い耐圧特性を得ることが
できる。
According to the semiconductor device 10 of the tenth embodiment, the conductive layer 18 ′ and the third impurity region 1 serving as both relaxation means are provided.
With the combination of 9, a stable and higher withstand voltage characteristic can be obtained irrespective of variation in the thickness dimension of the insulating film 14.

【0069】前記したところでは、本発明に係る半導体
装置として、ダイオードの例を示したが、本発明は、こ
れに限らず、例えばMOSトランジスタ、その他の半導
体素子に適宜採用することができる。
In the above description, a diode is shown as an example of the semiconductor device according to the present invention. However, the present invention is not limited to this, and can be suitably applied to, for example, a MOS transistor and other semiconductor elements.

【0070】[0070]

【発明の効果】本発明によれば、前記したように、導電
層における第1の不純物領域の側への伸長端を、第3の
不純物領域における第1の不純物領域の側への伸長端よ
りも第2の不純物領域の側に位置させることにより、空
乏層での降伏電圧値を著しく増大させることができ、こ
れにより、半導体基板上の電気絶縁膜の厚さ寸法の増大
を招くことなく、半導体装置に所定の耐圧特性を与える
ことができる。
According to the present invention, as described above, the extending end of the conductive layer toward the first impurity region is set to be longer than the extending end of the third impurity region toward the first impurity region. Is also located on the side of the second impurity region, the breakdown voltage value in the depletion layer can be significantly increased, whereby the thickness of the electrical insulating film on the semiconductor substrate does not increase, A predetermined withstand voltage characteristic can be given to the semiconductor device.

【0071】また、本発明によれば、前記したように、
スリットが規定されかつ半導体基板とほぼ同電位に保持
された導電層が第2の不純物領域からチャンネルストッ
パへ向けての空乏層の伸びを段階的に適正に規制するこ
とにより、空乏層での電界の集中が効果的に防止され、
空乏層の伸びが最終的に拘束されるチャンネルストッパ
に至ったときの逆方向電圧値の増大を図ることができる
ことから、空乏層での降伏電圧値の増大により、半導体
基板上の電気絶縁膜の厚さ寸法の増大を招くことなく、
該半導体装置の耐圧性の向上を図ることができる。
According to the present invention, as described above,
The conductive layer, in which the slit is defined and maintained at substantially the same potential as the semiconductor substrate, appropriately and gradually regulates the extension of the depletion layer from the second impurity region toward the channel stopper, so that the electric field in the depletion layer is reduced. Concentration is effectively prevented,
Since the reverse voltage value can be increased when the elongation of the depletion layer reaches the channel stopper that is finally constrained, the increase in the breakdown voltage value in the depletion layer causes Without increasing the thickness dimension,
The withstand voltage of the semiconductor device can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る具体例1の半導体装置を示す断面
図である。
FIG. 1 is a cross-sectional view showing a semiconductor device of Example 1 according to the present invention.

【図2】具体例1の半導体装置と従来の半導体装置との
比較をそれらの降伏電圧と絶縁膜の厚さとの関係で示す
グラフである。
FIG. 2 is a graph showing a comparison between the semiconductor device of Example 1 and a conventional semiconductor device in terms of the relationship between their breakdown voltage and the thickness of an insulating film.

【図3】本発明に係る具体例2の半導体装置を示す断面
図である。
FIG. 3 is a cross-sectional view showing a semiconductor device of Example 2 according to the present invention.

【図4】本発明に係る具体例3の半導体装置の一部を概
略的に平面図である。
FIG. 4 is a plan view schematically showing a part of a semiconductor device according to Embodiment 3 of the present invention;

【図5】図4に示した線V−Vに沿って得られた断面図
である。
5 is a cross-sectional view taken along line VV shown in FIG.

【図6】具体例3の半導体装置と従来の半導体装置との
比較をそれらの降伏電圧と絶縁膜の厚さとの関係で示す
グラフである。
FIG. 6 is a graph showing a comparison between the semiconductor device of Example 3 and a conventional semiconductor device in terms of the relationship between their breakdown voltage and the thickness of an insulating film.

【図7】本発明に係る具体例4の半導体装置を示す断面
図である。
FIG. 7 is a cross-sectional view illustrating a semiconductor device of Example 4 according to the present invention.

【図8】本発明に係る具体例5の半導体装置の一部を概
略的に示す平面図である。
FIG. 8 is a plan view schematically showing a part of a semiconductor device of Example 5 according to the present invention.

【図9】本発明に係る具体例6の半導体装置の一部を概
略的に示す平面図である。
FIG. 9 is a plan view schematically showing a part of a semiconductor device of Example 6 according to the present invention.

【図10】本発明に係る具体例7の半導体装置を示す断
面図である。
FIG. 10 is a sectional view showing a semiconductor device of Example 7 according to the present invention.

【図11】具体例7の半導体装置と従来の半導体装置と
の比較をそれらの降伏電圧と絶縁膜の厚さとの関係で示
すグラフである。
FIG. 11 is a graph showing a comparison between the semiconductor device of Example 7 and a conventional semiconductor device in terms of the relationship between their breakdown voltage and the thickness of an insulating film.

【図12】本発明に係る具体例8の半導体装置を示す断
面図である。
FIG. 12 is a sectional view showing a semiconductor device of Example 8 according to the present invention.

【図13】本発明に係る具体例9の半導体装置を示す断
面図である。
FIG. 13 is a sectional view showing a semiconductor device of Example 9 according to the present invention.

【図14】本発明に係る具体例10の半導体装置を示す
断面図である。
FIG. 14 is a cross-sectional view illustrating a semiconductor device of Example 10 according to the present invention.

【符号の説明】[Explanation of symbols]

10 半導体装置 11 半導体基板 12 第1の不純物領域 13 第2の不純物領域 14 絶縁膜 16 電路 17(17a、17b…) 空乏層 18、18′ 導電層 19 第3の不純物領域 23、23′ 導電層の細幅部 Reference Signs List 10 semiconductor device 11 semiconductor substrate 12 first impurity region 13 second impurity region 14 insulating film 16 electric path 17 (17a, 17b ...) depletion layer 18, 18 'conductive layer 19 third impurity region 23, 23' conductive layer Narrow part

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 p型またはn型のいずれか一方の導電型
を示す半導体基板と、p型またはn型の他方の導電型を
示し、前記半導体基板の表面に設けられた電気絶縁膜上
に伸びる電路を経て前記半導体基板との間に逆方向電位
が印加される第1の不純物領域と、該第1の不純物領域
から前記電路下を該電路に沿って伸長しようとする空乏
層の伸びを抑制すべく、前記第1の不純物領域から間隔
をおいて前記半導体基板の表面に形成され前記一方の導
電型を示しかつ前記半導体基板の不純物濃度よりも高い
不純物濃度を有する第2の不純物領域と、前記空乏層で
の電界の集中を防止する電界緩和手段とを含む半導体装
置であって、 前記電界緩和手段は、前記電気絶縁膜中で前記第2の不
純物領域に対応する領域から当該領域を越えて前記第1
の不純物領域の側へ伸長し、前記半導体基板とほぼ同電
位におかれる導電層と、前記半導体基板の前記表面で第
1および第2の不純物領域間に形成され、前記一方の導
電型を示し前記半導体基板の不純物濃度よりも高くかつ
前記第2の不純物領域の不純物濃度よりも低い不純物濃
度を有し、前記第2の不純物領域からまたはその近傍か
ら前記第1の不純物領域へ向けて伸長しかつ該第1の不
純物領域と間隔をおいて形成される第3の不純物領域と
を備え、前記第1の不純物領域の側への前記導電層の伸
長端は、前記第1の不純物領域の側への前記第3の不純
物領域の伸長端よりも第2の不純物領域の側に位置する
ことを特徴とする、半導体装置。
1. A semiconductor substrate showing either a p-type or n-type conductivity type and a p-type or n-type conductivity type on an electric insulating film provided on a surface of the semiconductor substrate. A first impurity region to which a reverse potential is applied between the semiconductor substrate and the semiconductor substrate via an extending electric path, and a depletion layer extending from the first impurity region below the electric circuit along the electric circuit. A second impurity region formed on the surface of the semiconductor substrate at a distance from the first impurity region, the second impurity region having one conductivity type and having an impurity concentration higher than the impurity concentration of the semiconductor substrate; An electric field relaxing means for preventing concentration of an electric field in the depletion layer, wherein the electric field relaxing means removes the region from a region corresponding to the second impurity region in the electric insulating film. Beyond the first
A conductive layer extending to the side of the impurity region and being substantially at the same potential as the semiconductor substrate; and a first conductive type formed between the first and second impurity regions on the surface of the semiconductor substrate. The semiconductor device has an impurity concentration higher than the impurity concentration of the semiconductor substrate and lower than the impurity concentration of the second impurity region, and extends from or near the second impurity region toward the first impurity region. And a third impurity region formed at a distance from the first impurity region, and an extended end of the conductive layer to the side of the first impurity region is located on the side of the first impurity region. A semiconductor device, which is located closer to the second impurity region than the extension end of the third impurity region.
【請求項2】 前記第3の不純物領域は前記第2の不純
物領域から間隔をおいて形成され、当該間隔に対応する
中間位置に前記導電層の前記伸長端が位置することを特
徴とする請求項1記載の半導体装置。
2. The semiconductor device according to claim 1, wherein the third impurity region is formed at a distance from the second impurity region, and the extended end of the conductive layer is located at an intermediate position corresponding to the distance. Item 2. The semiconductor device according to item 1.
【請求項3】 p型またはn型のいずれか一方の導電型
を示す半導体基板と、p型またはn型の他方の導電型を
示し、前記半導体基板の表面に設けられた電気絶縁膜上
に伸びる電路を経て前記半導体基板との間に逆方向電位
が印加される第1の不純物領域と、該第1の不純物領域
から前記電路下を該電路に沿って伸長しようとする空乏
層の伸びを抑制すべく、前記第1の不純物領域から間隔
をおいて前記半導体基板の表面に形成され前記一方の導
電型を示しかつ前記半導体基板の不純物濃度よりも高い
不純物濃度を有する第2の不純物領域と、前記空乏層で
の電界の集中を防止する電界緩和手段とを含む半導体装
置であって、 前記電界緩和手段は、前記電気絶縁膜中で前記第2の不
純物領域に対応する領域から当該領域を越えて前記第1
の不純物領域の側へ伸長し、前記半導体基板とほぼ同電
位におかれる導電層を含み、 該導電層は、前記電路の伸長方向に沿った縦断面でみ
て、該伸長方向へそれぞれの幅方向を沿わせかつ該伸長
方向へ相互に間隔をおいて整列的に配置される複数の細
幅部を備え、各細幅部間にスリットが規定されているこ
とを特徴とする半導体装置。
3. A semiconductor substrate having one of p-type or n-type conductivity and a p-type or n-type conductivity type, the semiconductor substrate being provided on an electric insulating film provided on a surface of the semiconductor substrate. A first impurity region to which a reverse potential is applied between the semiconductor substrate and the semiconductor substrate via an extending electric path, and a depletion layer extending from the first impurity region below the electric circuit along the electric circuit. A second impurity region formed on the surface of the semiconductor substrate at a distance from the first impurity region, the second impurity region having one conductivity type and having an impurity concentration higher than the impurity concentration of the semiconductor substrate; An electric field relaxing means for preventing concentration of an electric field in the depletion layer, wherein the electric field relaxing means removes the region from a region corresponding to the second impurity region in the electric insulating film. Beyond the first
A conductive layer extending to the side of the impurity region and being substantially at the same potential as the semiconductor substrate, wherein the conductive layer is viewed in a longitudinal section along the extending direction of the electric circuit, and has a width direction in each of the extending directions. A plurality of narrow portions which are arranged along with each other and are arranged at intervals in the extending direction, and a slit is defined between the narrow portions.
【請求項4】 前記導電層は、格子状の平面形状を有す
る請求項3記載の半導体装置。
4. The semiconductor device according to claim 3, wherein the conductive layer has a lattice-like planar shape.
【請求項5】 前記導電層の前記各細幅部は、前記第1
の不純物領域に対応する領域を取り巻く環状の平面形状
を有する請求項3記載の半導体装置。
5. Each of the narrow portions of the conductive layer has a first shape.
4. The semiconductor device according to claim 3, wherein said semiconductor device has an annular planar shape surrounding a region corresponding to said impurity region.
【請求項6】 前記第2の不純物領域の前記第1の不純
物領域に近接する縁部は、前記導電層の前記スリット位
置に対応することを特徴とする請求項3記載の半導体装
置。
6. The semiconductor device according to claim 3, wherein an edge portion of said second impurity region close to said first impurity region corresponds to said slit position of said conductive layer.
【請求項7】 前記導電層の前記細幅部の幅寸法は、前
記第2の不純物領域の側に配置された前記細幅部から前
記第1の不純物領域の側に配置された前記細幅部へ向け
て、順次、漸減することを特徴とする請求項3記載の半
導体装置。
7. The width dimension of the narrow portion of the conductive layer is different from the narrow portion disposed on the side of the second impurity region to the narrow portion disposed on the side of the first impurity region. 4. The semiconductor device according to claim 3, wherein the number gradually decreases toward the portion.
【請求項8】 前記導電層の前記スリットの幅寸法は、
前記第2の不純物領域の側に位置する前記スリットから
前記第1の不純物領域の側に位置する前記スリットへ向
けて、順次、漸増することを特徴とする請求項3記載の
半導体装置。
8. The width dimension of the slit of the conductive layer is:
4. The semiconductor device according to claim 3, wherein the number increases gradually from the slit located on the side of the second impurity region to the slit located on the side of the first impurity region.
【請求項9】 前記電気絶縁膜は前記第2の不純物領域
に対応する部分から前記第1の不純物領域に対応する部
分へ向けて、厚さ寸法を段階的に漸減することを特徴と
する請求項3記載の半導体装置。
9. The electrical insulating film according to claim 1, wherein a thickness dimension is gradually reduced from a portion corresponding to said second impurity region to a portion corresponding to said first impurity region. Item 4. The semiconductor device according to item 3.
【請求項10】 前記緩和手段は、さらに、前記半導体
基板の前記表面の前記導電層に対応する領域で第1およ
び第2の不純物領域間に形成され、前記一方の導電型を
示し前記半導体基板の不純物濃度よりも高くかつ前記第
2の不純物領域の不純物濃度よりも低い不純物濃度を有
し、前記第2の不純物領域から前記第1の不純物領域へ
向けて伸長しかつ該第1の不純物領域と間隔をおいて形
成される第3の不純物領域を備え、前記第1の不純物領
域の側への前記導電層の伸長端は、前記第1の不純物領
域の側への前記第3の不純物領域の伸長端よりも第2の
不純物領域の側に位置することを特徴とする、請求項3
記載の半導体装置。
10. The semiconductor device according to claim 1, wherein the relaxing means is further formed between a first impurity region and a second impurity region in a region corresponding to the conductive layer on the surface of the semiconductor substrate. Having an impurity concentration higher than that of the second impurity region and lower than the impurity concentration of the second impurity region, extending from the second impurity region toward the first impurity region, and A third impurity region formed at an interval from the first impurity region, and an extended end of the conductive layer toward the first impurity region is connected to the third impurity region toward the first impurity region. 4. The semiconductor device according to claim 3, wherein the second impurity region is located closer to the second impurity region than the extended end of the second impurity region.
13. The semiconductor device according to claim 1.
JP1784898A 1998-01-14 1998-01-14 Semiconductor device Expired - Fee Related JP3954184B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1784898A JP3954184B2 (en) 1998-01-14 1998-01-14 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1784898A JP3954184B2 (en) 1998-01-14 1998-01-14 Semiconductor device

Publications (2)

Publication Number Publication Date
JPH11204632A true JPH11204632A (en) 1999-07-30
JP3954184B2 JP3954184B2 (en) 2007-08-08

Family

ID=11955091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1784898A Expired - Fee Related JP3954184B2 (en) 1998-01-14 1998-01-14 Semiconductor device

Country Status (1)

Country Link
JP (1) JP3954184B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001094122A (en) * 1999-09-20 2001-04-06 Oki Electric Ind Co Ltd Semiconductor device
US6424014B2 (en) * 2000-02-25 2002-07-23 Oki Electric Industry Co,Ltd. Semiconductor element with electric field reducing device mounted therein for increasing dielectric strength
JP2005136116A (en) * 2003-10-30 2005-05-26 Sanken Electric Co Ltd Semiconductor element and its manufacturing method
JP2006310791A (en) * 2005-03-30 2006-11-09 Sanyo Electric Co Ltd Semiconductor device
JP2006351753A (en) * 2005-06-15 2006-12-28 Mitsubishi Electric Corp Field effect transistor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001094122A (en) * 1999-09-20 2001-04-06 Oki Electric Ind Co Ltd Semiconductor device
US6452245B1 (en) 1999-09-20 2002-09-17 Oki Electric Industry Co., Ltd. Semiconductor device
JP4587192B2 (en) * 1999-09-20 2010-11-24 Okiセミコンダクタ株式会社 Semiconductor device
US6424014B2 (en) * 2000-02-25 2002-07-23 Oki Electric Industry Co,Ltd. Semiconductor element with electric field reducing device mounted therein for increasing dielectric strength
JP2005136116A (en) * 2003-10-30 2005-05-26 Sanken Electric Co Ltd Semiconductor element and its manufacturing method
JP2006310791A (en) * 2005-03-30 2006-11-09 Sanyo Electric Co Ltd Semiconductor device
JP2006351753A (en) * 2005-06-15 2006-12-28 Mitsubishi Electric Corp Field effect transistor

Also Published As

Publication number Publication date
JP3954184B2 (en) 2007-08-08

Similar Documents

Publication Publication Date Title
JP5587535B2 (en) Semiconductor device
US6855970B2 (en) High-breakdown-voltage semiconductor device
JP3602751B2 (en) High voltage semiconductor device
WO2014163060A1 (en) Semiconductor device
US9660071B2 (en) Semiconductor device
JP5040240B2 (en) Insulated gate semiconductor device
KR100398164B1 (en) Insulated Gate Semiconductor Device
CN112582394A (en) Switching speed adjustable IGBT and super-junction MOSFET combined device
TW399337B (en) Semiconductor device
JPH11204632A (en) Semiconductor device
JP2006261376A (en) Diode and semiconductor device
WO2022045135A1 (en) Semiconductor device
WO2022045136A1 (en) Semiconductor device and method for manufacturing same
JP2830744B2 (en) Integrated device
JP3776666B2 (en) Semiconductor device
JP6177300B2 (en) Semiconductor device
US20200295179A1 (en) Semiconductor device
JP2005259953A (en) Semiconductor device
JP2006120952A (en) Mis type semiconductor device
EP1209752B1 (en) Semiconductor device
JP2004288873A (en) Semiconductor device
JP4400035B2 (en) Insulated gate semiconductor device and method for manufacturing insulated gate semiconductor device
JPH09246545A (en) Semiconductor element for power
JP3655143B2 (en) High voltage semiconductor device
JP4859753B2 (en) Manufacturing method of semiconductor device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070426

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140511

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees