JPH11204446A - Quartz glass furnace tube for semiconductor heat treatment furnace - Google Patents

Quartz glass furnace tube for semiconductor heat treatment furnace

Info

Publication number
JPH11204446A
JPH11204446A JP10021511A JP2151198A JPH11204446A JP H11204446 A JPH11204446 A JP H11204446A JP 10021511 A JP10021511 A JP 10021511A JP 2151198 A JP2151198 A JP 2151198A JP H11204446 A JPH11204446 A JP H11204446A
Authority
JP
Japan
Prior art keywords
quartz glass
tube
carbon material
furnace
core tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10021511A
Other languages
Japanese (ja)
Inventor
Shinichiro Aonuma
伸一朗 青沼
Hideyasu Matsuo
秀逸 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP10021511A priority Critical patent/JPH11204446A/en
Publication of JPH11204446A publication Critical patent/JPH11204446A/en
Pending legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase number of treatment objects that can be treated in one treatment, by constituting a tubular compact using an anisotropic carbon material such that ratio of thermal conductivity in the cylindrically longitudinal direction to the thermal conductivity in the direction of thickness of the compact is a specified ratio or higher, and thus enabling soaking of a furnace tube and extension of an effective thermal radiation range in the longitudinal direction. SOLUTION: A tubular compact 3 inserted between an inner tube 1 and an outer tube 2 which are made of quartz glass is constituted by using an anisotropic carbon material. As the anisotropic carbon material, a material having a graphite crystal structure such as graphite is preferred. Such an anisotropic carbon material is molded into a cylindrical tubular compact in which the a- and b-axis layer planes of its crystal are in parallel to the tube surface while the c-axis direction is matched toward the direction of thickness. In the compact in which the graphite crystal layer plane is thus oriented in parallel to the tubular surface, the thermal conductivity in the cylindrically longitudinal direction is approximately 100 W/m.K or higher and the anisotropic ratio of the thermal conductivity in the cylindrically longitudinal direction to that in the direction of thickness is approximately 30/1 or higher.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体熱処理炉に
用いられる、例えば拡散炉用石英ガラス炉芯管に関し、
より詳細には、石英ガラス製の内管と外管との間に異方
性を有する特定炭素材からなる層が挟入された複層構造
の半導体熱処理炉用石英ガラス炉芯管であって、ウエハ
等被処理物の有効処理域が広く、且つ炉内の均熱放射
性、特に炉芯管長手方向の均熱放射性に優れ、然も炉芯
管からのウエハ汚染物質の放散が回避された半導体熱処
理炉用石英ガラス炉芯管に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a quartz glass furnace core tube for use in a semiconductor heat treatment furnace, for example, for a diffusion furnace.
More specifically, a quartz glass furnace core tube for a semiconductor heat treatment furnace having a multilayer structure in which a layer made of a specific carbon material having anisotropy is sandwiched between an inner tube and an outer tube made of quartz glass, The effective processing area of the object to be processed, such as wafers, is wide, and the soaking radiation in the furnace, especially in the longitudinal direction of the furnace core tube, is excellent, so that the emission of wafer contaminants from the furnace core tube is avoided. The present invention relates to a quartz glass furnace core tube for a semiconductor heat treatment furnace.

【0002】[0002]

【従来の技術】コンピュ−タ−等の各種用途に使用され
る半導体を製造するには、その製造工程中において、例
えばウエハ等の熱処理を必要とし、この熱処理装置に
は、一般に石英ガラス炉芯管が使用される。この熱処理
装置(拡散炉)は、通常、例えば、図3に示すように、
サセプタ6上に載置されたウエハ等の被熱処理物7を内
部に収容する炉芯管4の外側に、例えばコイル状等の発
熱体5が配設された構造を有し、この発熱体から放射さ
れる熱線が炉芯管壁を透過して内部の被処理物に達し、
これを熱処理する。この炉芯管は、管自身から不純物が
放散されて、ウエハ等の被処理物がこれにより汚染され
るのを回避するため、一般にその材質として、セラミッ
クスの中でも最も純度の高い石英ガラスが使用される。
2. Description of the Related Art In order to manufacture semiconductors used for various applications such as computers, heat treatment of, for example, wafers is required during the manufacturing process. Tubes are used. This heat treatment apparatus (diffusion furnace) usually includes, for example, as shown in FIG.
It has a structure in which, for example, a coil-shaped heating element 5 is disposed outside a furnace core tube 4 that accommodates a heat-treated object 7 such as a wafer placed on a susceptor 6 therein. The radiated heat rays penetrate the furnace tube wall and reach the object to be treated inside,
This is heat-treated. In order to avoid impurities being diffused from the tube itself and contaminating an object to be treated such as a wafer, the furnace core tube is generally made of quartz glass having the highest purity among ceramics. You.

【0003】[0003]

【発明が解決しようとする課題】通常、工業規模の生産
に用いられる半導体熱処理炉では、ウエハ等の被処理物
は、炉芯管内に於いて、炉芯管の長手方向にサセプター
に保持されて等間隔に複数枚並べて載置され、一度に処
理される。従って、生産性向上の観点からは、できるだ
け多数枚のウエハ等を一度に処理できるように、なるべ
く炉芯管の長手方向有効長を長くすることが好ましい。
石英ガラス製炉芯管は透明で、従来、半導体熱処理炉で
は熱源である発熱体の輻射熱を該透明な炉芯管の管壁か
ら直接ウエハ等の被処理物に当てる方式が用いられてい
る。しかしながら、石英ガラスは熱伝導率が非常に小さ
いため、熱移動が迅速でなく、局所的な温度むらが発生
しやすく、特に炉芯管の長手方向全域を均一温度に保つ
ことは、非常に困難であった。このため、炉芯管の長手
方向の有効処理域の長さは、その全長に比べてかなり短
く、従来から、生産性向上、製造コストダウンの見地か
ら障害となっていた。従って、炉芯管の均熱化、特に長
手方向の有効熱放射域をできる限り延長し、一回に処理
できる被処理物の数を増加させることが強く望まれてい
た。
Generally, in a semiconductor heat treatment furnace used for industrial-scale production, an object to be processed such as a wafer is held in a furnace core tube by a susceptor in a longitudinal direction of the furnace core tube. A plurality of sheets are placed at equal intervals and processed at once. Therefore, from the viewpoint of improving productivity, it is preferable to increase the longitudinal effective length of the furnace core tube as much as possible so that as many wafers and the like as possible can be processed at once.
Quartz glass furnace core tubes are transparent, and in the past, semiconductor heat treatment furnaces employ a method in which radiant heat from a heating element, which is a heat source, is applied directly to a workpiece such as a wafer from the tube wall of the transparent furnace core tube. However, since quartz glass has a very low thermal conductivity, heat transfer is not rapid, and local temperature unevenness is likely to occur. In particular, it is extremely difficult to maintain a uniform temperature throughout the furnace core tube in the longitudinal direction. Met. For this reason, the length of the effective treatment area in the longitudinal direction of the furnace core tube is considerably shorter than the entire length thereof, which has conventionally been an obstacle from the viewpoint of improving productivity and reducing manufacturing costs. Therefore, it has been strongly desired to equalize the temperature of the furnace core tube, in particular, to extend the effective heat radiation area in the longitudinal direction as much as possible and to increase the number of objects to be treated at one time.

【0004】本発明者等は、上記熱処理工程での生産性
を向上させ、半導体製造コストをより低減させる目的
で、例え管長が長くても炉芯管内のほぼ全域にわたって
均一加熱が可能な炉芯管を開発すべく鋭意検討した結
果、石英ガラス製の内管と外管との間に異方性を有する
特定炭素材からなる層を挟入した複層構造に炉芯管壁を
構成することにより、この炉芯管均熱化問題が解決され
ることを見い出し本発明を完成した。
[0004] The inventors of the present invention aimed at improving the productivity in the above heat treatment step and further reducing the semiconductor manufacturing cost by using a furnace core capable of uniformly heating almost the entire area of a furnace core tube even if the tube length is long. As a result of diligent studies to develop a tube, the furnace core tube wall was constructed in a multi-layer structure in which a layer made of a specific carbon material having anisotropy was sandwiched between the inner and outer tubes made of quartz glass. As a result, the present inventors found that this problem of soaking the furnace core tube was solved, and completed the present invention.

【0005】従って、本発明の課題は、例え長手方向に
長い炉芯管であっても、その有効処理域が広く、炉内の
均熱放射性、特に炉心管長手方向の均熱放射性に優れ、
然も炉芯管からのウエハ汚染物質の放散が回避された半
導体熱処理炉用石英ガラス炉芯管を提供するにある。
[0005] Therefore, an object of the present invention is to provide a furnace core tube having a long effective processing area even in a longitudinally long furnace core tube, and excellent heat radiation uniformity in a furnace, particularly excellent heat radiation uniformity in the longitudinal direction of a furnace tube.
It is an object of the present invention to provide a quartz glass furnace core tube for a semiconductor heat treatment furnace in which emission of wafer contaminants from the furnace core tube is avoided.

【0006】[0006]

【課題を解決するための手段】本発明によれば、石英ガ
ラス製の内管と外管との間に炭素材からなる管状成形体
が挟入された複層構造の半導体熱処理炉用石英ガラス炉
芯管に於て、該管状成形体を構成する炭素材が、異方性
を有し、該成形体の円筒長手面方向と厚み方向の熱伝導
率の比が30/1以上であることを特徴とする半導体熱
処理炉用石英ガラス炉芯管が提供される。
According to the present invention, a quartz glass for a semiconductor heat treatment furnace having a multilayer structure in which a tubular molded body made of a carbon material is sandwiched between an inner tube and an outer tube made of quartz glass. In the furnace core tube, the carbon material constituting the tubular molded body has anisotropy, and the ratio of the thermal conductivity in the direction of the cylindrical longitudinal surface to the thickness direction of the molded body is 30/1 or more. A quartz glass furnace core tube for a semiconductor heat treatment furnace is provided.

【0007】本発明の半導体熱処理炉用石英ガラス炉芯
管は、その炉芯管壁が2重の石英ガラス層で構成され、
層間に特定の異方性炭素材料層が挿入されて成る点が顕
著な特徴である。異方性を有する炭素の代表的存在とし
て、黒鉛(グラファイト)を挙げることができる。黒鉛
(グラファイト)は、炭素原子の縮合六員環層面が平面
状に広がり、この層面が幾重にも積み重なった層構造を
なす、所謂、グラファイト型結晶構造を有する。この黒
鉛結晶構造の隣接する各層面間は、弱いファンデルワー
ルス力で結合されている。このグラファイト層構造に由
来して黒鉛は物性に強い異方性を有し、例えば、熱伝導
率は、完全なグラファイト結晶構造の黒鉛の場合、層面
(基底面)に平行方向の値は約2000W/mK、層面
に垂直方向の値は約10W/mKと著しい異方性を示
す。
A quartz glass furnace core tube for a semiconductor heat treatment furnace according to the present invention has a furnace tube wall made of a double quartz glass layer,
It is a remarkable feature that a specific anisotropic carbon material layer is inserted between the layers. Typical examples of carbon having anisotropy include graphite (graphite). Graphite (graphite) has a so-called graphite-type crystal structure in which a condensed six-membered ring layer of carbon atoms spreads in a plane, and this layer surface has a layer structure in which the layers are stacked in layers. Adjacent layers of the graphite crystal structure are connected by a weak van der Waals force. Due to this graphite layer structure, graphite has strong anisotropy in physical properties. For example, in the case of graphite having a complete graphite crystal structure, the value in the direction parallel to the layer surface (base surface) is about 2000 W / MK, the value in the direction perpendicular to the layer surface is about 10 W / mK, indicating a remarkable anisotropy.

【0008】本発明は、この黒鉛のように異方性を示す
炭素材を、その結晶層面(a,b軸面)が円筒表面に沿
ってほぼ並行に配列し、該層面に垂直な軸(c軸)方向
が厚み方向に向くように結晶配向させ、この配向状態で
円筒状に成形し、そして、該配向結晶状態に形成された
円管状成形体を石英ガラス製の内管と外管との間に挟入
して後、石英ガラス管端部を封止して、複層構造の石英
ガラス炉芯管を得るものである。従って、この異方性炭
素材より成る成形体が封入された本発明の複層構造石英
ガラス炉芯管は、面方向(円筒環長手方向)の熱伝導率
が非常に高く、長手方向を含めて円筒面全体に熱を伝え
やすい。これにより、図2を参照することにより明らか
なように、炉芯管のほぼ全域にわたる均熱加熱が達成で
き(有効処理域の拡張)、一回で処理できるウエハの数
が増加し、大幅なコストダウンが可能になった。
According to the present invention, a carbon material exhibiting anisotropy such as graphite is arranged such that its crystal layer planes (a and b axis planes) are substantially parallel along the cylindrical surface, and an axis perpendicular to the layer plane. Crystal orientation is performed such that the (c-axis) direction is oriented in the thickness direction, and a cylindrical shape is formed in this orientation state, and the cylindrical molded body formed in the oriented crystal state is formed into an inner tube and an outer tube made of quartz glass. After that, the end portion of the quartz glass tube is sealed to obtain a quartz glass furnace core tube having a multilayer structure. Therefore, the double-layered quartz glass furnace core tube of the present invention in which the molded body made of the anisotropic carbon material is sealed has a very high thermal conductivity in the plane direction (the longitudinal direction of the cylindrical ring), and includes the longitudinal direction. It is easy to transfer heat to the entire cylindrical surface. This makes it possible to achieve uniform heating over almost the entire area of the furnace core tube (expansion of the effective processing area), as shown in FIG. 2, and to increase the number of wafers that can be processed at one time. Cost reduction has become possible.

【0009】また、炭素材料を石英ガラス管外の炉芯管
内側に配設した場合、炭素材料からパーティクルが発生
してウエハに付着し、ウエハの歩留まり率を低下させる
という悪影響が起こることが考えられるのに対し、本発
明に於いては、該異方性炭素材は二重石英ガラス管内に
封入されているため、加熱時に発生する炭素材料からの
不純物が管壁内にトラップされ、該不純物の拡散及びそ
れによるウエハの汚染を完全に阻止できるという利点も
ある。
Further, when the carbon material is disposed inside the furnace core tube outside the quartz glass tube, it is considered that particles are generated from the carbon material and adhere to the wafer, which adversely affects the yield rate of the wafer. On the other hand, in the present invention, since the anisotropic carbon material is sealed in the double quartz glass tube, impurities from the carbon material generated at the time of heating are trapped in the tube wall and the impurities are trapped in the tube wall. Has the advantage of completely preventing the diffusion of silicon and the resulting contamination of the wafer.

【0010】[0010]

【発明の実施の形態】本発明の半導体熱処理炉用石英ガ
ラス炉芯管に於いて、石英ガラス製の内管と外管との間
に挟入される管状成形体の構成材である異方性炭素材と
しては、熱伝導性が全体として比較的良好で、且つ熱伝
導率に高い異方性を有し、円筒管状成形体に成形可能な
炭素質材料であれば良く、特に限定されるものではない
が、該炭素質成形体は、石英ガラス中に封入され、炉芯
管壁として該管の外側から照射される輻射熱を受け、1
000℃を越える高温に曝されるところから、高温下に
於いても劣化や変形、軟化を起こさず、然も揮発性物質
やガス等の不純物の放出のないものであることが好まし
い。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In a quartz glass furnace core tube for a semiconductor heat treatment furnace according to the present invention, an anisotropic material which is a constituent material of a tubular molded product inserted between an inner tube and an outer tube made of quartz glass. The conductive carbon material is not particularly limited as long as it has relatively good thermal conductivity as a whole, has high anisotropy in thermal conductivity, and can be formed into a cylindrical tubular molded body. Although not a thing, the carbonaceous molded body is sealed in quartz glass, and receives radiant heat irradiated from outside of the tube as a furnace core tube wall.
Since it is exposed to a high temperature exceeding 000 ° C., it is preferable that the material does not deteriorate, deform, or soften even at a high temperature and does not emit impurities such as volatile substances and gases.

【0011】上記の観点から本発明に於いては、黒鉛
等、グラファイト結晶構造を有する炭素材を成形素材と
して用いることが好ましく、上記グラファイト結晶構造
を有する炭素材の中でも、その層面間の面間隔(c軸方
向の層面間厚み:Lc)が800オングストローム以上
あるものが熱伝導異方性の観点から特に好ましい。本発
明では、このグラファイト型結晶構造を有する炭素材等
の異方性炭素材を、その結晶のa、b軸層面が管表面に
並行に、c軸方向が厚み方向に向けて揃えられた円筒管
形状の成形体に成形する。このように、グラファイト結
晶層面が管状表面に並行に配向した本発明の成形体は、
面方向(円筒環長手方向)の熱伝導率が100W/m・
K以上、面方向と厚み方向の熱伝導率の異方比が30/
1以上となる。
In view of the above, in the present invention, it is preferable to use a carbon material having a graphite crystal structure such as graphite as a molding material, and among the carbon materials having a graphite crystal structure, the plane spacing between the layers is preferable. Those having a thickness between layers in the c-axis direction (Lc) of 800 angstroms or more are particularly preferable from the viewpoint of heat conduction anisotropy. In the present invention, an anisotropic carbon material such as a carbon material having a graphite-type crystal structure is used as a cylinder in which the a- and b-axis layers of the crystal are parallel to the tube surface and the c-axis direction is aligned in the thickness direction. It is formed into a tubular shaped body. Thus, the molded article of the present invention in which the graphite crystal layer surface is oriented parallel to the tubular surface,
Thermal conductivity in the plane direction (longitudinal direction of the cylindrical ring) is 100 W / m
K or more, the anisotropic ratio of the thermal conductivity in the plane direction and the thickness direction is 30 /
It becomes 1 or more.

【0012】本発明に於いて、特に好適な異方性炭素材
成形体として、炭素材の中でも膨張黒鉛を用い、この膨
張黒鉛をシート状に成形したものから円筒管を製作する
か、又は粒状乃至粉末状等の膨張黒鉛素材を直接円管体
に成形したもを挙げることができる。この成形体は厚み
方向に黒鉛結晶のC軸が揃っているためこの方向の熱伝
導率は相対的に低く、一方、面方向(円筒環長手方向)
の熱伝導率は黒鉛結晶のa,b軸層面がその円筒表面に
沿って並行に配向しているため著しく高く、高度な伝熱
異方性を示す。しかも、その厚み方向のガス透過性は、
膨張黒鉛の特徴として開気孔が殆ど無いため、他の炭素
材に比較して格段に低く、従って、発塵及びガス放出が
格段に少ないという特性をも併せ持つ。この膨張黒鉛
は、粒状乃至粉末状の成形用素材としても、あるいはシ
ート状成型物としても市販品として容易に入手できる。
In the present invention, as a particularly preferable anisotropic carbon material molded product, expanded graphite is used among carbon materials, and a cylindrical tube is manufactured from a product obtained by molding this expanded graphite into a sheet shape, or a granular tube is produced. Also, there can be mentioned those in which an expanded graphite material such as a powder is directly formed into a tubular body. Since the C axis of the graphite crystal is aligned in the thickness direction of this molded body, the thermal conductivity in this direction is relatively low, while the surface direction (longitudinal direction of the cylindrical ring)
Has a remarkably high thermal conductivity because the a and b-axis layers of the graphite crystal are oriented in parallel along the cylindrical surface, and exhibits high heat transfer anisotropy. Moreover, its gas permeability in the thickness direction is
Since expanded graphite has almost no open pores, it has a characteristic that it is significantly lower than other carbon materials, and thus has a characteristic of significantly reducing dust generation and gas emission. This expanded graphite can be easily obtained as a commercial product as a granular or powdery molding material or as a sheet-like molded product.

【0013】このよう市販品膨張黒鉛シートの物性性状
の一例を挙げれば下記の通りである。 嵩密度:1.3g/cm3 比熱容量:0.6865J/gK 21℃ 熱拡散率:厚み方向 0.0319〜0.0391cm2 /s 面内方向 0.919〜1.030cm2 /s 熱伝導率:厚み方向 2.3〜2.6W/m・K 面内方向 62〜71W/m・K
An example of the physical properties of the commercially available expanded graphite sheet is as follows. Bulk density: 1.3 g / cm 3 Specific heat capacity: 0.6865 J / gK 21 ° C. Thermal diffusivity: thickness direction 0.0319 to 0.0391 cm 2 / s In-plane direction 0.919 to 1.030 cm 2 / s Heat conduction Ratio: thickness direction 2.3 to 2.6 W / m · K In-plane direction 62 to 71 W / m · K

【0014】本発明の管状成形体を得るには、例えば、
このような市販成形用素材からプレス及びCIP成形に
より一旦所定厚さの結晶配向状シートに成形するか、又
は所定厚さ、所定性状の市販品シートを用意するかし
て、これに針等を用いて所定ピッチで多数の貫通小孔を
穿ち、次いで該シートを円筒形マンドレル等に巻き付
け、該巻き付け端部を接合して管状成形体を作製する
か、又は前記素材から直接管状成形体を成形して作製す
る。該シート乃至管状成形体の厚みは、炉芯管のサイ
ズ、使用条件等により若干変動するが、前記異方性炭素
材は、厚み方向、即ちc結晶軸方向の熱伝導率が通常2
乃至4W/m・Kとそれほど高くないため、あまり厚い
層に形成することは得策でなく、炉芯管壁として均熱加
熱が達成される最低の厚さ、通常、1乃至5mm程度の
厚さに設定される。
In order to obtain the tubular molded article of the present invention, for example,
From such a material for commercial molding, press-forming and CIP molding are used to temporarily form a crystal-oriented sheet having a predetermined thickness, or a commercially available sheet having a predetermined thickness and a predetermined property is prepared, and a needle or the like is inserted into the sheet. A large number of small through holes are formed at a predetermined pitch using the sheet, and the sheet is wound around a cylindrical mandrel or the like, and the wound ends are joined to produce a tubular molded body, or a tubular molded body is directly molded from the material. To make. The thickness of the sheet or tubular molded body slightly varies depending on the size of the furnace core tube, use conditions, and the like. However, the anisotropic carbon material generally has a thermal conductivity of 2 in the thickness direction, that is, the c-crystal axis direction.
It is not advisable to form a very thick layer because it is not so high as about 4 W / m · K, and the minimum thickness at which uniform heating is achieved as a furnace core tube wall, usually about 1 to 5 mm Is set to

【0015】また、該シート乃至成形体は、真空中での
高温熱処理及びハロゲンガス中での熱処理等の方法によ
り純化されることが好ましく、これにより、成形体の異
方性炭素材中に吸蔵されているガスや揮発成分及び材料
中の金属不純物、その他の夾雑物等が除去されると共
に、このようにして純化された成形体は、面内方向の熱
伝導率が100W/m・K以上に更に向上する。
Preferably, the sheet or the compact is purified by a method such as a high-temperature heat treatment in a vacuum or a heat treatment in a halogen gas, so that the sheet or the compact is occluded in the anisotropic carbon material of the compact. The gas, volatile components, metal impurities in the material, and other contaminants are removed, and the molded body thus purified has an in-plane thermal conductivity of 100 W / m · K or more. It is further improved.

【0016】本発明の半導体熱処理炉用石英ガラス炉芯
管を製作するには、例えば、先ず石英ガラス製の外側管
と内側管を作製し、外側管に内側管を挿入して酸水素バ
ーナー等でその一端部を封じ、この二重管の隙間に前記
異方性炭素材から成る円管状成形体を挿入し、真空ポン
プで減圧に引きながらもう一方の管端末を封じて異方性
炭素材が内在する石英ガラス二重炉芯管を得る。すなわ
ち、図1に示すように石英ガラス二重炉芯管は、石英ガ
ラス内側管1と石英ガラス外側管2との間に円筒形異方
性炭素材成形体3が内在している。このようにして作製
された本発明の炉芯管は、例えば、図3に示すような熱
拡散炉の炉内に装着され、ウエハ等の熱処理に使用され
る。以下実施例によって本発明の石英ガラス炉芯管をよ
り具体的に説明すると共にその性能の評価結果を図2に
グラフとして示す。
To manufacture the quartz glass furnace core tube for a semiconductor heat treatment furnace of the present invention, for example, first, an outer tube and an inner tube made of quartz glass are prepared, and the inner tube is inserted into the outer tube to burn an oxyhydrogen burner or the like. One end of the tube is sealed, and a tubular molded body made of the anisotropic carbon material is inserted into a gap between the double pipes. To obtain a quartz glass double furnace core tube. That is, as shown in FIG. 1, the quartz glass double furnace core tube includes a cylindrical anisotropic carbon material molded body 3 between a quartz glass inner tube 1 and a quartz glass outer tube 2. The furnace core tube of the present invention thus manufactured is mounted in, for example, a furnace of a thermal diffusion furnace as shown in FIG. 3 and used for heat treatment of a wafer or the like. Hereinafter, the quartz glass furnace core tube of the present invention will be described in more detail with reference to examples, and the performance evaluation results will be shown as a graph in FIG.

【0017】[0017]

【実施例】「実施例1」膨張黒鉛(中央化成社製、99
60グレード)をシート状に成形し、厚み0.4mmの
シートを得た。粉末X線回折装置での測定に依り、この
配向性を検討したところ、面方向にa,b結晶軸、厚み
方向にc結晶軸が配向していることが確認された。この
シート状膨張黒鉛に直径0.4mmの針で2.5mmピ
ッチに貫通細孔を穿ち、次いでこのシートを円筒型金属
製マンドリルに、約10kg/cm2 の張力を加えなが
ら巻き付けた。
EXAMPLES Example 1 Expanded graphite (Chuo Kasei Co., Ltd., 99
60 grade) was formed into a sheet to obtain a sheet having a thickness of 0.4 mm. Examination of this orientation by measurement with a powder X-ray diffractometer confirmed that the a and b crystal axes were oriented in the plane direction and the c crystal axis was oriented in the thickness direction. The sheet-shaped expanded graphite was pierced with through holes at a pitch of 2.5 mm with a needle having a diameter of 0.4 mm, and then the sheet was wound around a cylindrical metal mandrill while applying a tension of about 10 kg / cm 2 .

【0018】なお、シート状膨張黒鉛に多数の貫通細孔
を設ける理由は、これを設けないで次工程で同筒形状に
成形するとシート間に空気が溜まり易く、また炭素化及
び純化工程において膨張黒鉛から発生するガスの抜けが
充分に行われず、その結果同筒体の強度が低くなった
り、表面にφ1mm程度の細かい膨れが生じてしまうか
らである。本研究においては、上記問題が生ずることの
ない貫通細孔の形成方法としてはφ1mm以上でピッチ
5mm以下で形成することが最も効果的であることが確
認されている。また、半導体熱処理炉用炉芯管として特
にその長さ方向の熱伝導性、ひいては、炉芯管内の均熱
性を考慮した場合、上記貫通細孔の径はφ3mmが上限
であることが確認されている。
The reason why a large number of through-holes are provided in the sheet-like expanded graphite is that if the same is formed in the next step without providing the through-holes, air easily accumulates between the sheets, and expansion occurs in the carbonization and purification steps. This is because the gas generated from the graphite is not sufficiently released, and as a result, the strength of the cylindrical body is reduced, and fine swelling of about φ1 mm is generated on the surface. In this study, it has been confirmed that the most effective method for forming through-holes without the above-mentioned problems is to form the through-holes at a pitch of 1 mm or more and a pitch of 5 mm or less. In addition, it has been confirmed that the diameter of the above-mentioned through-hole is φ3 mm at the upper limit when considering the thermal conductivity in the longitudinal direction of the furnace core tube for a semiconductor heat treatment furnace, and in particular, the uniformity in the furnace core tube. I have.

【0019】そして、巻き付け時、シート間を接合させ
るために、巻き付けたシートの外表面に、フェノール樹
脂をメタノール溶媒で希釈し粘度を200〜400ポイ
ズに調整した溶液を刷毛に依り塗布した。
At the time of winding, in order to bond the sheets, a solution in which a phenol resin was diluted with a methanol solvent and the viscosity was adjusted to 200 to 400 poise was applied to the outer surface of the wound sheet using a brush.

【0020】次いで、円筒形状の厚み1mmのゴム製型
で、該マンドリルに巻き付けたシートごと覆い、静水圧
プレスに依り1ton/cm2 の加圧下に成形した。得
られた成形体を、真空中で、100℃/hrの昇温速度
で加熱し、2000℃で熱処理して前記フェノール樹脂
を炭素化した。その後ハロゲンガス中で熱処理を行い金
属不純物を除去し、外径100mm、内径90mm、長
さ500mmの円筒管型異方性炭素材成形体を得た。
Next, the sheet wound around the mandrel was covered with a cylindrical rubber mold having a thickness of 1 mm, and was molded under a pressure of 1 ton / cm 2 by a hydrostatic press. The obtained molded body was heated in a vacuum at a heating rate of 100 ° C./hr, and heat-treated at 2000 ° C. to carbonize the phenol resin. Thereafter, heat treatment was performed in a halogen gas to remove metal impurities, thereby obtaining a cylindrical tubular anisotropic carbon material molded body having an outer diameter of 100 mm, an inner diameter of 90 mm, and a length of 500 mm.

【0021】別に、外径110mm、内径100mm、
長さ1000mmの外側用石英ガラス管と外径90m
m、内径80mm、長さ1000mmの内側用石英ガラ
ス管を用意し、内側用ガラス管を外側用ガラス管内に挿
入し、酸水素バーナーで一端を封じた。この二重管の隙
間に前記異方性炭素材成形体を挿入し、真空ポンプで減
圧に引きながらもう一端を封じ、図1に断面層構造図と
して示したような、異方性炭素材料が内在する複層構造
の石英ガラス炉芯管を得た。この炉芯管の長手方向中央
を中心に500mmの長さにセラミックス発熱体をコイ
ル状に巻き、1000℃に加熱し、減圧にした炉芯管内
に熱電対を挿入し、これを移動させながら20mm毎に
炉芯管内の温度分布を測定した。この測定結果を図2に
炉内温度分布線図として示す。
Separately, outer diameter 110 mm, inner diameter 100 mm,
Quartz glass tube for outside with a length of 1000mm and outer diameter 90m
An inner quartz glass tube having an inner diameter of 80 mm, an inner diameter of 80 mm and a length of 1000 mm was prepared, the inner glass tube was inserted into the outer glass tube, and one end was sealed with an oxyhydrogen burner. The anisotropic carbon material compact was inserted into the gap between the double tubes, and the other end was sealed while reducing the pressure with a vacuum pump, and the anisotropic carbon material as shown in the sectional layer structure diagram in FIG. A quartz glass furnace core tube with an internal multilayer structure was obtained. A ceramic heating element is wound in a coil shape around the center of the furnace core tube in the longitudinal direction at a length of 500 mm, heated to 1000 ° C., a thermocouple is inserted into the reduced pressure furnace core tube, and the thermocouple is moved for 20 mm. Each time, the temperature distribution in the furnace core tube was measured. The measurement result is shown in FIG. 2 as a furnace temperature distribution diagram.

【0022】「比較例1」外径110mm、内径100
mm、長さ1000mmの石英ガラス管(外側管)と外
径90mm、内径80mm、長さ1000mmの石英ガ
ラス管(外側管)を用意し、内側管を外側管内に挿入し
て酸水素バーナーでその一端を封じた。その後、真空ポ
ンプで減圧に引きながら、他の一端を封じ、内部が真空
中空の石英ガラス二重炉芯管を作製した。この炉芯管
に、実施例1と同様にセラミックス発熱体を配設し、実
施例1と同様にして炉内部の温度分布を測定した。この
測定結果を図2に示す。
Comparative Example 1 Outer diameter 110 mm, inner diameter 100
A quartz glass tube (outer tube) with a length of 1000 mm and a length of 1000 mm and a quartz glass tube (outer tube) with an outer diameter of 90 mm, an inner diameter of 80 mm, and a length of 1000 mm are prepared. One end was sealed. Then, while reducing the pressure with a vacuum pump, the other end was sealed to produce a quartz glass double furnace core tube having a vacuum inside. A ceramic heating element was provided on this furnace core tube as in Example 1, and the temperature distribution inside the furnace was measured as in Example 1. FIG. 2 shows the measurement results.

【0023】図2から明らかなように、本発明の異方性
炭素材料が内在する複層構造の炉芯管は石英ガラスのみ
から成る比較例1の炉芯管に比較してその有効処理領域
の長手方向の長さが、約1.5倍と長く、同一形状の従
来品に比較して一回の被処理物処理数を大幅に向上させ
ることが認められた。
As is apparent from FIG. 2, the furnace core tube of the present invention having a multi-layer structure in which the anisotropic carbon material is present has a more effective treatment area than the furnace core tube of Comparative Example 1 made of only quartz glass. Has a length of about 1.5 times as long as that of the conventional product having the same shape, and it has been recognized that the number of processed objects at one time is greatly improved.

【0024】[0024]

【発明の効果】以上述べたように、本発明の半導体熱処
理炉用石英ガラス炉芯管は、2重の石英ガラス層の層間
に特定の異方性炭素材料層が挿入さた複層構造の管壁か
ら成るため、炉内の均熱放射性、特に炉芯管長手方向の
均熱放射性に優れ、その有効処理域が広く、同一形状の
従来品に比較して一回の被処理物処理数を大幅に向上さ
せることができる。然も、異方性炭素材料層が石英ガラ
ス層内に封入されているため、炉芯管からのウエハへの
汚染物質の放散も回避され半導体熱処理炉用炉芯管とし
て極めて好適に使用できる。
As described above, the quartz glass furnace core tube for a semiconductor heat treatment furnace according to the present invention has a multilayer structure in which a specific anisotropic carbon material layer is inserted between layers of a double quartz glass layer. Since it consists of a tube wall, it has excellent soaking radiation in the furnace, especially in the longitudinal direction of the furnace core tube. Can be greatly improved. Of course, since the anisotropic carbon material layer is sealed in the quartz glass layer, the emission of contaminants from the furnace core tube to the wafer is also avoided, so that it can be used very suitably as a furnace core tube for a semiconductor heat treatment furnace.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、本発明の石英ガラス炉芯管の壁面断面
構造を示す図である。
FIG. 1 is a diagram showing a sectional structure of a wall surface of a quartz glass furnace core tube of the present invention.

【図2】図2は、実施例1と比較例1の各炉芯管の炉内
温度分布測定値を比較した線図であって、縦軸に炉内温
度を、また横軸に炉の中央からの距離を示し、横軸の右
側を炉の上方向、左側を炉の下方向を示している。
FIG. 2 is a diagram comparing the furnace temperature distribution measurement values of each furnace core tube of Example 1 and Comparative Example 1, with the vertical axis representing the furnace temperature and the horizontal axis representing the furnace temperature. The distance from the center is shown. The right side of the horizontal axis indicates the upward direction of the furnace, and the left side indicates the downward direction of the furnace.

【図3】図3は、半導体熱処理装置(拡散炉)の構成を
説明するための概略の断面図である。
FIG. 3 is a schematic cross-sectional view for explaining a configuration of a semiconductor heat treatment apparatus (diffusion furnace).

【符号の説明】 1 石英ガラス内側管 2 石英ガラス外側管 3 円筒形異方性炭素材成形体 4 炉芯管 5 発熱体 6 サセプター 7 被処理物(ウエハ)[Description of Signs] 1 quartz glass inner tube 2 quartz glass outer tube 3 cylindrical anisotropic carbon material molded product 4 furnace core tube 5 heating element 6 susceptor 7 workpiece (wafer)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 石英ガラス製の内管と外管との間に炭素
材からなる管状成形体が挟入された複層構造の半導体熱
処理炉用石英ガラス炉芯管に於て、 該管状成形体を構成する炭素材が、異方性を有し、該成
形体の円筒長手方向と厚み方向の熱伝導率の比が30/
1以上であることを特徴とする半導体熱処理炉用石英ガ
ラス炉芯管。
1. A quartz glass furnace core tube for a semiconductor heat treatment furnace having a multilayer structure in which a tubular molded body made of a carbon material is sandwiched between an inner tube and an outer tube made of quartz glass. The carbon material constituting the body has anisotropy, and the ratio of the thermal conductivity in the cylindrical longitudinal direction and the thermal conductivity in the thickness direction of the formed body is 30 /
A quartz glass furnace core tube for a semiconductor heat treatment furnace, which is at least one.
【請求項2】 前記管状成形体を構成する異方性炭素材
が、黒鉛型結晶構造を有し、且つ該黒鉛型結晶のa、b
軸層面が成形体の管表面に並行に、c軸方向が厚み方向
に向けて揃えられ、該成形体の円筒長手方向熱伝導率が
100W/m・K以上であることを特徴とする請求項1
に記載された半導体熱処理炉用石英ガラス炉芯管。
2. An anisotropic carbon material constituting said tubular molded body has a graphite type crystal structure, and a, b of said graphite type crystal.
The cylindrical layer has a thermal conductivity of 100 W / m · K or more, wherein the axial layer surface is parallel to the tube surface of the molded body, and the c-axis direction is aligned in the thickness direction. 1
4. A quartz glass furnace core tube for a semiconductor heat treatment furnace described in 1.
【請求項3】 前記異方性炭素材に於ける黒鉛型結晶構
造のc軸方向の層間厚み(Lc)が800オングストロ
−ム以上であることを特徴とする請求項2に記載された
半導体熱処理炉用石英ガラス炉芯管。
3. The heat treatment of a semiconductor according to claim 2, wherein the interlayer thickness (Lc) in the c-axis direction of the graphite type crystal structure in the anisotropic carbon material is 800 Å or more. Quartz glass furnace core tube for furnace.
【請求項4】 前記管状成形体を構成する異方性炭素材
が膨張黒鉛であることを特徴とする請求項1乃至請求項
3のいずれかに記載された半導体熱処理炉用石英ガラス
炉芯管。
4. A quartz glass furnace core tube for a semiconductor heat treatment furnace according to claim 1, wherein the anisotropic carbon material constituting said tubular molded body is expanded graphite. .
JP10021511A 1998-01-19 1998-01-19 Quartz glass furnace tube for semiconductor heat treatment furnace Pending JPH11204446A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10021511A JPH11204446A (en) 1998-01-19 1998-01-19 Quartz glass furnace tube for semiconductor heat treatment furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10021511A JPH11204446A (en) 1998-01-19 1998-01-19 Quartz glass furnace tube for semiconductor heat treatment furnace

Publications (1)

Publication Number Publication Date
JPH11204446A true JPH11204446A (en) 1999-07-30

Family

ID=12057006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10021511A Pending JPH11204446A (en) 1998-01-19 1998-01-19 Quartz glass furnace tube for semiconductor heat treatment furnace

Country Status (1)

Country Link
JP (1) JPH11204446A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10538691B2 (en) 2004-08-27 2020-01-21 Toyo Tanso Co., Ltd. Expanded-graphite sheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10538691B2 (en) 2004-08-27 2020-01-21 Toyo Tanso Co., Ltd. Expanded-graphite sheet

Similar Documents

Publication Publication Date Title
US3549847A (en) Graphite susceptor
US4040849A (en) Polycrystalline silicon articles by sintering
CN109811175A (en) A kind of graphene-method of manufacturing carbon/carbon-copper composite material
JPH05166741A (en) Substrate supporting tool for heat treating apparatus
TWI221397B (en) CVD system
JP2000169125A (en) Graphite material and its production
EP0340802B1 (en) Silicon carbide diffusion tube for semi-conductor
CN108545733A (en) A kind of preparation method of graphite film and products thereof and purposes
US3686378A (en) Improved separation of the deposition mandrel from a vapor phase deposited semiconductor body
JPH02283015A (en) Quarts glass body for semiconductor manufacturing equipment or jig
JPH11204446A (en) Quartz glass furnace tube for semiconductor heat treatment furnace
JPH062637B2 (en) Single crystal pulling device
JP2533679B2 (en) Plate-shaped ceramic heater and method for manufacturing the same
JPH107488A (en) High-purity graphite material for single-crystal pulling apparatus, and its production
JP2016190767A (en) Carbon nanotube assembly and production method for the same
JP2010064929A (en) Method for producing carbonaceous film
JP3848584B2 (en) Method for producing carbon nanotube
JP2904346B1 (en) Method for forming heterojunction of carbon nanotube
JPH11310492A (en) Apparatus for pulling up single crystal and high-purity graphite material
US20060210465A1 (en) Anisotropic material treatment heater tubes
JP2002003229A (en) Quartz glass product used for semiconductor producing device
JPS5917242A (en) Quartz glass for manufacturing semiconductor
JPH0465361A (en) Silicon carbide heater and manufacture thereof
JP2002231649A (en) Heat-treating apparatus and wafer-supporting ring
JPH0413837B2 (en)