JPH11200913A - Arrangement structure for exhaust gas sensor of internal combustion engine - Google Patents

Arrangement structure for exhaust gas sensor of internal combustion engine

Info

Publication number
JPH11200913A
JPH11200913A JP515998A JP515998A JPH11200913A JP H11200913 A JPH11200913 A JP H11200913A JP 515998 A JP515998 A JP 515998A JP 515998 A JP515998 A JP 515998A JP H11200913 A JPH11200913 A JP H11200913A
Authority
JP
Japan
Prior art keywords
exhaust gas
sensor
internal combustion
combustion engine
main body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP515998A
Other languages
Japanese (ja)
Inventor
Koichi Shimamura
幸一 嶋村
Koji Kano
宏司 狩野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP515998A priority Critical patent/JPH11200913A/en
Publication of JPH11200913A publication Critical patent/JPH11200913A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Silencers (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

PROBLEM TO BE SOLVED: To stably sense oxygen concentration and control an air-fuel ratio inside of a range for a short period from the starting time by heating an element part to be in high temperature for a short period from the starting time, by the use of high temperature exhaust gas immediately after combustion. SOLUTION: An oxygen concentration sensor 9 is composed of an element part 23 in direct contact with exhaust gas 49, and a main body part 23 for supporting the element part 23. The main body part 24 is a closed type sensor which has no air introduction port. The element part 23 is arranged inside an exhaust port 8, while the main body part 24 is arranged outside the exhaust port 8 and in cooling water 13.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は内燃機関の排気ガス
センサの配置構造に関する。
The present invention relates to an arrangement structure of an exhaust gas sensor of an internal combustion engine.

【0002】[0002]

【従来の技術】図7は代表的な三元触媒浄化システムの
原理図であり、この浄化システム100は、酸素濃度を
検知する酸素センサ101と、フィードバック制御をす
るコントロールユニット102と、燃料噴射弁103
と、排気ガスを浄化する三元触媒104とからなる。ま
た、吸気管105にスロットルセンサ106及びエアク
リーナ107を取付け、本体部108に水温センサ10
9、冷却水111、点火プラグ112及びサーモスタッ
ト113を備えたことを示す。114は排気管、115
はラジェータである。
2. Description of the Related Art FIG. 7 is a principle diagram of a typical three-way catalyst purifying system. This purifying system 100 includes an oxygen sensor 101 for detecting an oxygen concentration, a control unit 102 for performing feedback control, and a fuel injection valve. 103
And a three-way catalyst 104 for purifying exhaust gas. A throttle sensor 106 and an air cleaner 107 are attached to the intake pipe 105, and a water temperature sensor 10 is attached to the main body 108.
9, the cooling water 111, the spark plug 112 and the thermostat 113 are shown. 114 is an exhaust pipe, 115
Is the radiator.

【0003】三元触媒104は、酸化及び還元反応で排
気ガスの有害な3成分(一酸化炭素(CO)、炭化水素
(HC)、窒素酸化物(NOX))を同時に清浄にし、
無害な排気ガスを大気に排出するものである。高い効率
で浄化するためには、3成分のバランスをとらなければ
ならず、空燃比が重要になる。
[0003] three-way catalyst 104 is harmful 3 component in the exhaust gas in the oxidation and reduction reactions were cleaned (carbon monoxide (CO), hydrocarbons (HC), nitrogen oxides (NO X)) at the same time,
It emits harmless exhaust gas to the atmosphere. In order to purify with high efficiency, the three components must be balanced, and the air-fuel ratio becomes important.

【0004】コントロールユニット102は、空燃比を
所定範囲内に保つよう制御するものである。酸素センサ
101により排気ガス中の酸素濃度を検知するととも
に、スロットルセンサ106で吸入空気量を検知し、水
温センサ108で水温を検知し、その他の情報とともに
コントロールユニット102によって総合的に処理す
る。出力信号を燃料噴射弁103に送り、吸入空気量に
合った燃料量を供給することで、空燃比を範囲内に保
つ。
[0004] The control unit 102 controls the air-fuel ratio to be kept within a predetermined range. The oxygen concentration in the exhaust gas is detected by the oxygen sensor 101, the intake air amount is detected by the throttle sensor 106, the water temperature is detected by the water temperature sensor 108, and the control unit 102 performs comprehensive processing together with other information. The output signal is sent to the fuel injection valve 103 to supply a fuel amount corresponding to the intake air amount, thereby keeping the air-fuel ratio within the range.

【0005】図8(a),(b)は従来の代表的な酸素
センサの断面図であり、(a)は酸素センサ全体の部分
断面図、(b)は要部拡大図である。酸素センサ101
は、試験管状のジルコニア素子121の内側に白金電極
122及び外側に白金電極123を設け、さらに外側の
白金電極123に多孔質層のセラミック124をコーテ
ィングしたものである。このジルコニア素子121を支
持する本体125に、大気を導入するための通気孔12
6…(…は複数を示す。以下同様。)を設け、この通気
孔126…を通してジルコニア素子121の内側(白金
電極122側)へ大気を導入してこの大気を酸素濃度の
基準とする。一方、ジルコニア素子121を囲うカバー
126に、排気ガスを通すための孔127…を設け、こ
の孔127…を通して排気ガスをジルコニア素子121
の外側(白金電極123側)へ導入する。128はリー
ド線である。
FIGS. 8A and 8B are cross-sectional views of a conventional typical oxygen sensor, FIG. 8A is a partial cross-sectional view of the entire oxygen sensor, and FIG. 8B is an enlarged view of a main part. Oxygen sensor 101
Has a platinum electrode 122 provided inside a test tubular zirconia element 121 and a platinum electrode 123 provided outside, and the outer platinum electrode 123 is further coated with a ceramic 124 as a porous layer. A ventilation hole 12 for introducing air into a main body 125 supporting the zirconia element 121 is provided.
6 (... indicates a plurality; the same applies hereinafter). Air is introduced into the inside of the zirconia element 121 (toward the platinum electrode 122) through the ventilation holes 126, and the air is used as a reference for the oxygen concentration. On the other hand, holes 127 for passing exhaust gas are provided in a cover 126 surrounding the zirconia element 121, and exhaust gas is passed through the holes 127.
(To the platinum electrode 123 side). 128 is a lead wire.

【0006】ジルコニア素子121の片面に大気、他面
に酸素濃度の低い排気ガスを接触させる。この結果、酸
素分圧の高い大気側から排気ガス側に向って酸素イオン
が移動し、起電力が発生する。濃度差が大きほど起電力
は大きくなる。
[0006] One side of the zirconia element 121 is brought into contact with the atmosphere, and the other side is brought into contact with exhaust gas having a low oxygen concentration. As a result, oxygen ions move from the atmosphere side having a high oxygen partial pressure toward the exhaust gas side, and an electromotive force is generated. The electromotive force increases as the concentration difference increases.

【0007】しかし、上記のジルコニア素子121は、
低温では内部抵抗が非常に大きくなるため、酸素イオン
の移動が妨げられ、起電力の発生が不十分となる。従っ
て、前記のジルコニア素子121は、比較的高温の条件
で使用する必要がある。
However, the above zirconia element 121 is
At low temperatures, the internal resistance becomes very large, so that the movement of oxygen ions is hindered and the generation of electromotive force becomes insufficient. Therefore, the zirconia element 121 needs to be used under relatively high temperature conditions.

【0008】このため、排気ガス温度があまり低下しな
いうちに酸素センサに触れるようにする技術として、例
えば実公昭59−13308号公報「多気筒エンジンの
排気ガス浄化装置」がある。
For this reason, as a technique for touching the oxygen sensor before the exhaust gas temperature decreases so much, there is, for example, Japanese Utility Model Publication No. Sho 59-13308 "Exhaust Gas Purification System for Multi-Cylinder Engine".

【0009】上記公報の図面によれば、第1排気管群2
5の集合部32に排気ガス成分検出装置33を配置した
ことを特徴とする。第1・第2連結管27,28の集合
部29に排気ガス成分検出装置を配置した場合に比べ、
比較的高い温度の排気ガスが排気ガス成分検出装置33
に触れるため、排気ガス成分検出装置33をより正確に
作動させることができるというものである。
According to the drawings in the above publication, the first exhaust pipe group 2
5 is characterized in that an exhaust gas component detecting device 33 is disposed in the collecting section 32. Compared to the case where an exhaust gas component detection device is arranged in the collecting portion 29 of the first and second connecting pipes 27 and 28,
The exhaust gas having a relatively high temperature is detected by the exhaust gas component detection device 33.
Therefore, the exhaust gas component detection device 33 can be operated more accurately.

【0010】[0010]

【発明が解決しようとする課題】上記公報の技術によっ
ても、センサ自体の熱容量等によって温度上昇に時間が
かかる課題がのこる。これに対し、熱容量自体を単純に
小さくすると、内燃機関の運転状態の変動に伴なって排
気温度が変動することによる影響や、走行風等による冷
却によってセンサ温度が変動するという影響をうけてし
まう。また、センサをより排気管上流側に移した場合、
より高温の排気ガスにセンサの素子が触れることとなる
ため温度上昇が早くなることが期待できるが、今度はセ
ンサ本体の他のリード線等が過熱する虞れが生じてしま
う。
However, the technique disclosed in the above publication also has a problem that it takes time to raise the temperature due to the heat capacity of the sensor itself. On the other hand, if the heat capacity itself is simply reduced, the influence of the fluctuation of the exhaust gas temperature due to the fluctuation of the operation state of the internal combustion engine and the influence of the fluctuation of the sensor temperature by the cooling due to the running wind or the like are received. . Also, if the sensor is moved further upstream of the exhaust pipe,
Since the sensor element comes into contact with the hotter exhaust gas, the temperature rise can be expected to be faster, but this time, there is a risk that other lead wires of the sensor body may be overheated.

【0011】[0011]

【課題を解決するための手段】上記課題を解決するため
に請求項1は、燃焼室、この燃焼室に連なる吸気通路及
び排気通路を備えた内燃機関であって、内燃機関自身を
冷却する冷媒通路を備え、燃焼室より排出側に排気ガス
センサを備えたものにおいて、排気ガスセンサは、排気
ガスに直接接触する素子部とこの素子部を支える本体部
とからなるとともに、この本体部に空気導入孔を有さな
い密閉型センサであり、素子部を排気通路内に配置する
とともに、本体部を排気通路外で且つ冷媒中に配置した
ことを特徴とする。排気ガスセンサを燃焼室に連なる排
気通路に配置し、高温の排気ガスに素子部を直接接触さ
せたので、素子部を素速く高温にすることができる。ま
た、密閉型センサを採用することで、本体部を冷媒で強
制冷却することができ、内燃機関の燃焼室近傍の排気通
路に排気ガスセンサを配置したにもかかわらず、本体部
の過熱を防ぐことができる。
According to one aspect of the present invention, there is provided an internal combustion engine having a combustion chamber, an intake passage and an exhaust passage connected to the combustion chamber, wherein the refrigerant cools the internal combustion engine itself. In a device having a passage and an exhaust gas sensor on the discharge side from the combustion chamber, the exhaust gas sensor includes an element portion directly in contact with the exhaust gas and a main body portion supporting the element portion, and an air introduction hole is provided in the main body portion. , Wherein the element portion is arranged in the exhaust passage, and the main body portion is arranged outside the exhaust passage and in the refrigerant. Since the exhaust gas sensor is disposed in the exhaust passage connected to the combustion chamber and the element section is brought into direct contact with the high-temperature exhaust gas, the temperature of the element section can be quickly raised. In addition, the adoption of the sealed sensor allows the main body to be forcibly cooled by the refrigerant, thereby preventing overheating of the main body despite the arrangement of the exhaust gas sensor in the exhaust passage near the combustion chamber of the internal combustion engine. Can be.

【0012】請求項2の冷媒は、内燃機関の冷却水であ
ることを特徴とする。内燃機関の冷却水は、水温が管理
されているので、排気ガスセンサの本体部を所定の温度
に保つことができ、排気ガスセンサの性能を良好に維持
することができる。
[0012] The refrigerant according to claim 2 is characterized in that it is cooling water for an internal combustion engine. Since the temperature of the cooling water of the internal combustion engine is controlled, the main body of the exhaust gas sensor can be maintained at a predetermined temperature, and the performance of the exhaust gas sensor can be maintained well.

【0013】請求項3の排気ガスセンサは、酸素濃度セ
ンサであることを特徴とする。センサの素子部はより高
温に、逆にセンサの本体部は常温に近く、という二律背
反することが要求される酸素濃度センサに特に好適であ
り、酸素濃度センサの性能を良好に発揮、維持すること
ができる。
According to a third aspect of the present invention, the exhaust gas sensor is an oxygen concentration sensor. It is particularly suitable for an oxygen concentration sensor that requires a trade-off that the element part of the sensor is at a higher temperature and the body part of the sensor is near normal temperature, and that the performance of the oxygen concentration sensor is exhibited and maintained well. Can be.

【0014】[0014]

【発明の実施の形態】本発明の実施の形態を添付図に基
づいて以下に説明する。なお、図面は符号の向きに見る
ものとする。図1は本発明に係る内燃機関の斜視図であ
り、内燃機関1は、シリンダブロック2と、このシリン
ダブロック2の下に取付けたクランクケース3と、シリ
ンダブロック2の上に取付けたシリンダヘッド4と、こ
のシリンダヘッド4の側面に設けた酸素センサ配置部5
と、シリンダヘッド4の上に取付けたシリンダヘッドカ
バー6とからなる。7…は吸気ポートである。
Embodiments of the present invention will be described below with reference to the accompanying drawings. The drawings should be viewed in the direction of reference numerals. FIG. 1 is a perspective view of an internal combustion engine according to the present invention. The internal combustion engine 1 includes a cylinder block 2, a crankcase 3 mounted below the cylinder block 2, and a cylinder head 4 mounted on the cylinder block 2. And an oxygen sensor arrangement portion 5 provided on a side surface of the cylinder head 4.
And a cylinder head cover 6 mounted on the cylinder head 4. 7 are intake ports.

【0015】図2は図1の2−2線断面図であり、酸素
濃度センサ9の取付け状態を示す。具体的には、収納部
12側から酸素濃度センサ9を差込み、酸素濃度センサ
9の素子部23を排気ポート8に臨ませ、本体部24を
収納部12に残し、その後にカバー14で盲をすること
で、収納部12に冷却水13を流せるようにしたもので
ある。15はグロメット、16は点火プラグ取付ねじで
ある。
FIG. 2 is a sectional view taken along line 2-2 of FIG. Specifically, the oxygen concentration sensor 9 is inserted from the storage section 12 side, the element section 23 of the oxygen concentration sensor 9 faces the exhaust port 8, the main body section 24 is left in the storage section 12, and thereafter the blind portion is covered by the cover 14. By doing so, the cooling water 13 can be made to flow into the storage section 12. Reference numeral 15 denotes a grommet, and reference numeral 16 denotes a spark plug mounting screw.

【0016】図3は図1の3−3線断面図であり、吸気
バルブ18、排気バルブ19、カム22a,22bの配
置例を示すとともに、酸素濃度センサ9の取付け位置を
示す。即ち、酸素濃度センサ9は排気バルブ19のごく
近い所に取付けたことを示す。
FIG. 3 is a sectional view taken along line 3-3 of FIG. 1, showing an example of the arrangement of the intake valve 18, the exhaust valve 19, the cams 22a and 22b, and also shows the mounting position of the oxygen concentration sensor 9. That is, this indicates that the oxygen concentration sensor 9 is mounted very close to the exhaust valve 19.

【0017】図4(a),(b)は本発明に係る酸素濃
度センサの断面図であり、(a)は全体の断面図、
(b)は(a)のb部を拡大した断面図である。酸素濃
度センサ9は、排気ガスに直接接触する素子部23と、
この素子部23を支える本体部24とからなる。素子部
23は、多層からなるベース層25と、第1の白金(P
t)電極26と、薄膜のジルコニア層27と、第2の白
金電極28と、これらを囲う保護キャップ29と、ヒー
ター25cに結線するための端子圧着部35と、第1・
第2の白金電極26,28に結線するための端子圧着部
36と、これら端子圧着部35,36に圧着したリード
線37,37とからなる。38…は排気ガスを通すため
の通気孔である。ベース層25は、薄膜のジルコニア層
25aと、絶縁層25bと、ヒーター25cと、絶縁層
25dと、薄膜のジルコニア層25eとからなる。な
お、ジルコニア層27はイットリア(Y23−酸化イッ
トリウム)で安定化したジルコニア(ZR2−酸化ジル
コニウム)を薄膜化して固体電解質としたが、安定化剤
及び固体電解質はこれに限らない。
FIGS. 4A and 4B are cross-sectional views of an oxygen concentration sensor according to the present invention, wherein FIG.
(B) is sectional drawing which expanded the b part of (a). The oxygen concentration sensor 9 includes an element unit 23 that directly contacts the exhaust gas,
The main body 24 supports the element portion 23. The element section 23 includes a base layer 25 composed of multiple layers and a first platinum (P
t) an electrode 26, a thin-film zirconia layer 27, a second platinum electrode 28, a protective cap 29 surrounding these, a terminal crimping portion 35 for connecting to the heater 25c,
It comprises a terminal crimping portion 36 for connecting to the second platinum electrodes 26, 28, and lead wires 37, 37 crimped to the terminal crimping portions 35, 36. 38 are ventilation holes for passing exhaust gas. The base layer 25 includes a thin zirconia layer 25a, an insulating layer 25b, a heater 25c, an insulating layer 25d, and a thin zirconia layer 25e. Note that the zirconia layer 27 is yttria - stabilized zirconia with (Y 2 O 3 yttrium oxide) - was the the (Z R O 2 zirconium oxide) is thinned solid electrolyte, stabilizers and solid electrolyte limited to Absent.

【0018】また、本体部24は、本体41と、この本
体41の長手方向の孔に嵌合しかつ前記ベース25を保
持するシール42と、本体41の端部に溶接したパイプ
43と、このパイプ43の開口部を封じるゴム栓44と
からなる。45はガスケットである。
The main body 24 includes a main body 41, a seal 42 fitted into a longitudinal hole of the main body 41 and holding the base 25, a pipe 43 welded to an end of the main body 41, And a rubber stopper 44 for closing the opening of the pipe 43. 45 is a gasket.

【0019】以上に述べた内燃機関の排気ガスセンサ配
置構造の作用を図2〜図4で説明する。図3において、
ピストン21の吸気工程、並びにカム22aによって吸
気バルブ18が開くと、混合気48は吸気ポート7を通
過し、シリンダ17の燃焼室に至る。圧縮、膨張工程
後、ピストン21の排気工程、並びにカム22bによっ
て排気バルブ19が開くと、排気ガス49は押出され排
気ポート8を抜ける。その際、この高温の排気ガス49
が酸素濃度センサ9と接触するので、酸素濃度センサ9
は短時間のうちに所定の温度になる。
The operation of the exhaust gas sensor arrangement structure of the internal combustion engine described above will be described with reference to FIGS. In FIG.
When the intake valve 18 is opened by the intake process of the piston 21 and the cam 22a, the air-fuel mixture 48 passes through the intake port 7 and reaches the combustion chamber of the cylinder 17. After the compression and expansion steps, when the exhaust valve 19 is opened by the exhaust step of the piston 21 and the cam 22b, the exhaust gas 49 is pushed out and passes through the exhaust port 8. At this time, the high-temperature exhaust gas 49
Comes into contact with the oxygen concentration sensor 9,
Reaches a predetermined temperature in a short time.

【0020】図2に戻って、素子部23は高温になる。
一方、本体部24はシリンダヘッド4を冷却する冷却水
13で囲まれているので、高温になる心配はない。この
結果、リード線37及びゴム栓44が耐熱温度以上にな
る心配はない。
Returning to FIG. 2, the temperature of the element section 23 becomes high.
On the other hand, since the main body 24 is surrounded by the cooling water 13 for cooling the cylinder head 4, there is no need to worry about high temperatures. As a result, there is no fear that the temperature of the lead wire 37 and the rubber stopper 44 becomes higher than the heat resistant temperature.

【0021】図4において、検出抵抗(不図示)を介し
て第1の白金電極26に正、第2の白金電極28に負の
電圧をかけると、第2の白金電極28側では排気ガス中
に含まれる酸素が電子を受取り酸素イオンとなり、この
酸素イオンがジルコニア層27中を透過して第1の白金
電極26側で電子を放出し酸素となって滞留する。酸素
の酸化還元反応の発生具合により電極間に電流が生じる
こととなるので、排気ガス中の酸素濃度の変動を検出抵
抗の両端に電圧変動として検出する。酸素発生のための
電源印加制御及び電圧変動の測定は、制御装置で制御す
る。酸素濃度センサ9は、ジルコニア層27を固体電解
質として排気ガス中の酸素濃度をその酸化還元反応とし
て検出するものなので、大気の酸素を必要としないか
ら、本体部24は空気導入孔を必要とせず、密閉型にで
きる。
Referring to FIG. 4, when a positive voltage is applied to the first platinum electrode 26 and a negative voltage is applied to the second platinum electrode 28 via a detection resistor (not shown), the second platinum electrode 28 is exposed to exhaust gas. Contained in the zirconia layer 27 receives the electrons and becomes oxygen ions, and the oxygen ions pass through the zirconia layer 27 and release electrons on the first platinum electrode 26 side to remain as oxygen. Since a current is generated between the electrodes depending on the occurrence of the oxidation-reduction reaction of oxygen, a change in the oxygen concentration in the exhaust gas is detected as a voltage change across the detection resistor. Power supply control and measurement of voltage fluctuation for oxygen generation are controlled by a controller. Since the oxygen concentration sensor 9 uses the zirconia layer 27 as a solid electrolyte to detect the oxygen concentration in the exhaust gas as its redox reaction, it does not need oxygen in the atmosphere, so the main body 24 does not need an air introduction hole. , Can be sealed.

【0022】図8に示した従来の酸素センサ101に比
較して、図4に示した本実施例での酸素濃度センサ9は
次の点で相違する。 大気を導入する必要がないので、本体部24を小径に
小型にすることができる。 大気を導入する必要がないので、試験管状のジルコニ
ア素子121が不要となり、先端部の保護キャップ29
を小径に小型にすることができる。この結果、本実施例
の酸素濃度センサ9では、熱容量が極く小さなものとな
り、短時間で所定の温度に到達する。しかし、従来は大
気で本体125を冷却していたが、本実施例ではこれを
止めたために、本体部24を別の手段で冷却する必要が
ある。この冷却を本実施例では冷却水などの冷媒で行う
ようにしたことを特徴とする。
Compared to the conventional oxygen sensor 101 shown in FIG. 8, the oxygen concentration sensor 9 of this embodiment shown in FIG. 4 is different in the following points. Since there is no need to introduce air, the main body 24 can be reduced in size to a small diameter. Since there is no need to introduce air, the test tubular zirconia element 121 is not required, and the protective cap 29 at the distal end is not required.
Can be reduced to a small diameter. As a result, in the oxygen concentration sensor 9 of the present embodiment, the heat capacity becomes extremely small, and reaches the predetermined temperature in a short time. However, conventionally, the main body 125 was cooled by the atmosphere, but in the present embodiment, since this is stopped, the main body portion 24 needs to be cooled by another means. This embodiment is characterized in that this cooling is performed by a coolant such as cooling water.

【0023】図5は本発明の排気ガスセンサ配置構造の
別実施例に係る断面図であり、この実施例は潤滑油を冷
媒としたことを特徴とする。上記図1〜図4と同様の構
成については、同一符号を付し、その説明を省略する。
内燃機関60では、フィン付きのシリンダブロック61
と、このシリンダブロック61の上に取付けたシリンダ
ヘッド62と、このシリンダヘッド62に配置したカム
シャフト63,63と、シリンダヘッド62の排気側に
設けた酸素濃度センサ配置部64とで構成したことを示
す。この実施例では、収納部65側から酸素濃度センサ
9を差込み、酸素濃度センサ9の素子部23を排気ポー
ト8に臨ませ、本体部24を収納部65に残し、その後
にカバー66で盲をすることで、収納部65に潤滑油6
7を流せるようにしたものである。68は収納部65の
底に開けた戻し油路である。
FIG. 5 is a cross-sectional view of another embodiment of the exhaust gas sensor arrangement structure of the present invention. This embodiment is characterized in that lubricating oil is used as a refrigerant. The same components as those in FIGS. 1 to 4 are denoted by the same reference numerals, and description thereof will be omitted.
In the internal combustion engine 60, a finned cylinder block 61
And a cylinder head 62 mounted on the cylinder block 61, camshafts 63, 63 disposed on the cylinder head 62, and an oxygen concentration sensor disposed portion 64 disposed on the exhaust side of the cylinder head 62. Is shown. In this embodiment, the oxygen concentration sensor 9 is inserted from the storage portion 65 side, the element portion 23 of the oxygen concentration sensor 9 faces the exhaust port 8, the main body portion 24 remains in the storage portion 65, and thereafter the blind portion is blinded by the cover 66. By doing so, the lubricating oil 6
7 is made to flow. 68 is a return oil passage opened at the bottom of the storage section 65.

【0024】潤滑油67で吸気・排気バルブ18,19
やカムシャフト63,63を潤滑し、更に潤滑油67の
飛沫で酸素濃度センサ9の本体部24を冷却する。潤滑
油67で冷却するので、リード線37及びゴム栓44が
耐熱温度以上になる心配はない。従って、空冷式内燃機
関60でも高温の排気ポート8に酸素濃度センサ9を配
置することができる。
The lubricating oil 67 uses the intake and exhaust valves 18, 19
And the lubrication of the camshafts 63 and 63, and further cools the main body 24 of the oxygen concentration sensor 9 with the splash of the lubricating oil 67. Since cooling is performed by the lubricating oil 67, there is no fear that the temperature of the lead wire 37 and the rubber stopper 44 becomes higher than the heat resistant temperature. Therefore, even in the air-cooled internal combustion engine 60, the oxygen concentration sensor 9 can be disposed in the high-temperature exhaust port 8.

【0025】図6(a)(b)は本発明の排気ガスセン
サ配置構造の更なる別実施例図であり、内燃機関70は
2サイクル・水冷エンジンであり、シリンダブロックに
掃気孔及び排気ポートを設けたものである。(a)は内
燃機関70の斜視図であり、内燃機関70は、シリンダ
ブロック72と、このシリンダブロック72の下に取付
けたクランクケース73と、シリンダブロック72の上
に取付けたシリンダヘッド74と、シリンダブロック7
2の側面に設けた酸素センサ配置部75とからなる。7
6は排気タイミング制御バルブカバー、77はサーモス
タットキャップである。
FIGS. 6 (a) and 6 (b) show still another embodiment of the exhaust gas sensor arrangement structure of the present invention. The internal combustion engine 70 is a two-cycle water-cooled engine, and a scavenging hole and an exhaust port are provided in a cylinder block. It is provided. FIG. 3A is a perspective view of an internal combustion engine 70, which includes a cylinder block 72, a crankcase 73 mounted below the cylinder block 72, a cylinder head 74 mounted on the cylinder block 72, Cylinder block 7
And an oxygen sensor arrangement portion 75 provided on the side surface of the second sensor. 7
6 is an exhaust timing control valve cover, and 77 is a thermostat cap.

【0026】(b)は(a)のb−b線断面図であり、
シリンダブロック72は主に、掃気孔78と、シリンダ
79と、排気タイミング制御バルブ81と、排気ポート
82とからなる。この実施例では、収納部83側から酸
素濃度センサ9を差込み、酸素濃度センサ9の素子部2
3を排気ポート82に臨ませ、本体部24を収納部83
に残し、その後にカバー84で盲をすることで、収納部
83に冷却水85を流せるようにしたものである。
(B) is a sectional view taken along the line bb of (a),
The cylinder block 72 mainly includes a scavenging hole 78, a cylinder 79, an exhaust timing control valve 81, and an exhaust port 82. In this embodiment, the oxygen concentration sensor 9 is inserted from the storage unit 83 side, and the element unit 2 of the oxygen concentration sensor 9 is inserted.
3 to the exhaust port 82, and
, And then blind by a cover 84 so that the cooling water 85 can flow into the storage portion 83.

【0027】(b)において、混合気86は掃気孔78
からシリンダ79に入り、排気ガス87を押し出す。こ
の燃焼直後の排気ガス87が当る排気ポート82に素子
部23を配置すると、排気ガス87が酸素濃度センサ9
を急速に加熱するため、素子部21は短時間のうちに所
定の温度になる。一方、冷却水85が循環する収納部8
3に酸素濃度センサ9の本体部24を配置すると、冷却
水85が本体部24を冷却するので、リード線37及び
ゴム栓44が耐熱温度以上になる心配はない。
In (b), the mixture 86 is supplied to the scavenging holes 78.
From the cylinder 79, and pushes out the exhaust gas 87. When the element portion 23 is disposed at the exhaust port 82 to which the exhaust gas 87 immediately after the combustion is applied, the exhaust gas 87
Is rapidly heated, the element section 21 reaches a predetermined temperature in a short time. On the other hand, the storage section 8 in which the cooling water 85 circulates
When the main body 24 of the oxygen concentration sensor 9 is disposed at 3, the cooling water 85 cools the main body 24, so that there is no concern that the lead wire 37 and the rubber plug 44 become higher than the heat resistant temperature.

【0028】尚、本実施例の内燃機関は4サイクル4気
筒エンジン及び2サイクル単気筒エンジンであるが、こ
れに限らず、例えば、V型3気筒エンジンでもよく、エ
ンジン型式は限定しない。
The internal combustion engine of this embodiment is a four-cycle four-cylinder engine and a two-cycle single-cylinder engine, but is not limited thereto. For example, a V-type three-cylinder engine may be used, and the engine type is not limited.

【0029】[0029]

【発明の効果】本発明は上記構成により次の効果を発揮
する。請求項1では、排気ガスセンサを燃焼室に連なる
排気通路に配置し、高温の排気ガスに素子部を直接接触
させたので、素子部を素速く高温にすることができる。
また、密閉型センサを採用することで、本体部を冷媒で
強制冷却することができ、内燃機関の燃焼室近傍の排気
通路に排気ガスセンサを配置したにもかかわらず、本体
部の過熱を防ぐことができる。その結果、導線の被覆材
及びシール材が耐熱温度以上になる心配はない。
According to the present invention, the following effects are exhibited by the above configuration. In the first aspect, the exhaust gas sensor is disposed in the exhaust passage connected to the combustion chamber, and the element portion is brought into direct contact with the high-temperature exhaust gas. Therefore, the temperature of the element portion can be quickly raised.
In addition, the adoption of the sealed sensor allows the main body to be forcibly cooled by the refrigerant, thereby preventing overheating of the main body despite the arrangement of the exhaust gas sensor in the exhaust passage near the combustion chamber of the internal combustion engine. Can be. As a result, there is no fear that the covering material and the sealing material of the conductive wire become higher than the heat resistant temperature.

【0030】請求項2では、冷媒は内燃機関を冷却する
管理された冷却水なので、排気ガスセンサの本体部を効
率良く冷却ができるとともに安定した冷却ができ、性能
を良好に維持することができる。
According to the second aspect of the present invention, since the refrigerant is controlled cooling water for cooling the internal combustion engine, the main body of the exhaust gas sensor can be efficiently cooled, can be cooled stably, and good performance can be maintained.

【0031】請求項3では、排気ガスセンサを酸素濃度
センサにすることで、素子部はより高温に、逆に本体部
は高温を避けるという酸素濃度センサに特に好適であ
り、酸素濃度センサの性能を良好に発揮、維持すること
ができる。また、排気ガスが短時間でジルコニア層を所
定の温度にするので、酸素濃度の検知開始が早くなり、
始動から短時間で空燃比を所定の範囲に制御できる。従
って、始動後短時間で排気ガスの3成分を浄化できる。
According to the third aspect of the present invention, since the exhaust gas sensor is an oxygen concentration sensor, the element section is particularly suitable for an oxygen concentration sensor in which the temperature of the element section is higher, and conversely, the main body section is kept at a high temperature. It can be exhibited and maintained well. In addition, since the exhaust gas brings the zirconia layer to a predetermined temperature in a short time, the detection of the oxygen concentration starts earlier,
The air-fuel ratio can be controlled within a predetermined range in a short time after starting. Therefore, the three components of the exhaust gas can be purified in a short time after the start.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は本発明に係る内燃機関の斜視図FIG. 1 is a perspective view of an internal combustion engine according to the present invention.

【図2】図1の2−2線断面図FIG. 2 is a sectional view taken along line 2-2 of FIG.

【図3】図1の3−3線断面図FIG. 3 is a sectional view taken along line 3-3 in FIG. 1;

【図4】本発明に係る酸素濃度センサの断面図FIG. 4 is a sectional view of an oxygen concentration sensor according to the present invention.

【図5】本発明の排気ガスセンサ配置構造の別実施例に
係る断面図
FIG. 5 is a cross-sectional view according to another embodiment of the exhaust gas sensor arrangement structure of the present invention.

【図6】本発明の排気ガスセンサ配置構造の更なる別実
施例図
FIG. 6 is a view showing still another embodiment of the exhaust gas sensor arrangement structure of the present invention.

【図7】代表的な三元触媒浄化システムの原理図FIG. 7 is a principle diagram of a typical three-way catalyst purification system.

【図8】従来の代表的な酸素センサの断面図FIG. 8 is a cross-sectional view of a typical conventional oxygen sensor.

【符号の説明】[Explanation of symbols]

1,60,70…内燃機関、4…シリンダヘッド、7…
吸気ポート、5,64,75…酸素濃度センサ配置部、
8…排気ポート、9…酸素濃度センサ、13…冷媒(冷
却水)、23…素子部、24…本体部、37…リード
線、49,87…排気ガス、67…冷媒(潤滑油)、7
2…シリンダブロック。
1, 60, 70 ... internal combustion engine, 4 ... cylinder head, 7 ...
Intake port, 5, 64, 75 ... oxygen concentration sensor arrangement part,
8 Exhaust port, 9 Oxygen concentration sensor, 13 Refrigerant (cooling water), 23 Element part, 24 Body part, 37 Lead wire, 49, 87 Exhaust gas, 67 Refrigerant (lubricating oil), 7
2 ... Cylinder block.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 燃焼室、この燃焼室に連なる吸気通路及
び排気通路を備えた内燃機関であって、内燃機関自身を
冷却する冷媒通路を備え、燃焼室より排出側に排気ガス
センサを備えたものにおいて、 前記排気ガスセンサは、排気ガスに直接接触する素子部
とこの素子部を支える本体部とからなるとともに、この
本体部に空気導入孔を有さない密閉型センサであり、前
記素子部を排気通路内に配置するとともに、前記本体部
を排気通路外で且つ冷媒中に配置したことを特徴とした
内燃機関の排気ガスセンサ配置構造。
1. An internal combustion engine having a combustion chamber, an intake passage and an exhaust passage connected to the combustion chamber, comprising a refrigerant passage for cooling the internal combustion engine itself, and an exhaust gas sensor on the discharge side of the combustion chamber. In the exhaust gas sensor, the exhaust gas sensor is a hermetically sealed sensor having an element portion directly in contact with exhaust gas and a main body portion supporting the element portion, and having no air introduction hole in the main body portion. An exhaust gas sensor arrangement structure for an internal combustion engine, wherein the exhaust gas sensor is arranged in a passage and the main body is arranged outside the exhaust passage and in a refrigerant.
【請求項2】 前記冷媒は、内燃機関の冷却水であるこ
とを特徴とする請求項1記載の内燃機関の排気ガスセン
サ配置構造。
2. The exhaust gas sensor arrangement structure for an internal combustion engine according to claim 1, wherein the refrigerant is cooling water for an internal combustion engine.
【請求項3】 前記排気ガスセンサは、酸素濃度センサ
であることを特徴とする請求項1記載の内燃機関の排気
ガスセンサ配置構造。
3. The exhaust gas sensor arrangement structure for an internal combustion engine according to claim 1, wherein said exhaust gas sensor is an oxygen concentration sensor.
JP515998A 1998-01-13 1998-01-13 Arrangement structure for exhaust gas sensor of internal combustion engine Pending JPH11200913A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP515998A JPH11200913A (en) 1998-01-13 1998-01-13 Arrangement structure for exhaust gas sensor of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP515998A JPH11200913A (en) 1998-01-13 1998-01-13 Arrangement structure for exhaust gas sensor of internal combustion engine

Publications (1)

Publication Number Publication Date
JPH11200913A true JPH11200913A (en) 1999-07-27

Family

ID=11603484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP515998A Pending JPH11200913A (en) 1998-01-13 1998-01-13 Arrangement structure for exhaust gas sensor of internal combustion engine

Country Status (1)

Country Link
JP (1) JPH11200913A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007080654A1 (en) * 2006-01-13 2007-07-19 Honda Motor Co., Ltd. Internal combustion engine
JP2008223728A (en) * 2007-03-15 2008-09-25 Honda Motor Co Ltd Installation structure for exhaust gas sensor for four cycle engine
EP2295762A1 (en) * 2009-08-21 2011-03-16 Yamaha Hatsudoki Kabushiki Kaisha Engine and saddle-riding type vehicle including the same
AU2011239341B2 (en) * 2010-11-10 2013-03-28 Honda Motor Co., Ltd. Structure for attaching exhaust gas sensor
US8938961B2 (en) 2011-12-30 2015-01-27 Caterpillar Inc. EGR flow sensor for an engine
JP2016070160A (en) * 2014-09-30 2016-05-09 本田技研工業株式会社 Arrangement structure of exhaust gas sensor of internal combustion engine
EP3048286A1 (en) * 2013-09-19 2016-07-27 Honda Motor Co., Ltd. Structure for attaching exhaust gas sensor of internal combustion engine
WO2018179673A1 (en) * 2017-03-30 2018-10-04 本田技研工業株式会社 Structure for installing exhaust gas sensor in internal combustion engine for saddle riding-type vehicle
US10914246B2 (en) 2017-03-14 2021-02-09 General Electric Company Air-fuel ratio regulation for internal combustion engines

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007080654A1 (en) * 2006-01-13 2007-07-19 Honda Motor Co., Ltd. Internal combustion engine
JP2008223728A (en) * 2007-03-15 2008-09-25 Honda Motor Co Ltd Installation structure for exhaust gas sensor for four cycle engine
AU2008201204B2 (en) * 2007-03-15 2010-02-25 Honda Motor Co., Ltd. Exhaust gas sensor installation structure for four-cycle engine
EP2295762A1 (en) * 2009-08-21 2011-03-16 Yamaha Hatsudoki Kabushiki Kaisha Engine and saddle-riding type vehicle including the same
CN102022217A (en) * 2009-08-21 2011-04-20 雅马哈发动机株式会社 Engine and saddle-riding type vehicle including the same
EP2453121A3 (en) * 2010-11-10 2015-03-04 Honda Motor Co., Ltd. Structure for attaching exhaust gas sensor
AU2011239341B2 (en) * 2010-11-10 2013-03-28 Honda Motor Co., Ltd. Structure for attaching exhaust gas sensor
US8938961B2 (en) 2011-12-30 2015-01-27 Caterpillar Inc. EGR flow sensor for an engine
EP3048286A1 (en) * 2013-09-19 2016-07-27 Honda Motor Co., Ltd. Structure for attaching exhaust gas sensor of internal combustion engine
EP3048286A4 (en) * 2013-09-19 2017-05-10 Honda Motor Co., Ltd. Structure for attaching exhaust gas sensor of internal combustion engine
US9890703B2 (en) 2013-09-19 2018-02-13 Honda Motor Co., Ltd. Fixing structure for exhaust gas sensor of internal combustion engine
JP2016070160A (en) * 2014-09-30 2016-05-09 本田技研工業株式会社 Arrangement structure of exhaust gas sensor of internal combustion engine
US10914246B2 (en) 2017-03-14 2021-02-09 General Electric Company Air-fuel ratio regulation for internal combustion engines
WO2018179673A1 (en) * 2017-03-30 2018-10-04 本田技研工業株式会社 Structure for installing exhaust gas sensor in internal combustion engine for saddle riding-type vehicle
JP2018167797A (en) * 2017-03-30 2018-11-01 本田技研工業株式会社 Exhaust gas sensor arrangement structure of internal combustion engine for saddle-riding type vehicle

Similar Documents

Publication Publication Date Title
JP4172497B2 (en) Exhaust particulate measurement device
JP4270286B2 (en) Control device for gas sensor
US9297292B2 (en) Engine cooling device
JP2007224877A (en) Installation structure of exhaust sensor to exhaust pipe of internal combustion engine
EP1365137A4 (en) Exhaust gas purifier for internal combustion engines
JP2003083152A (en) Air-fuel ratio sensor
JPH11200913A (en) Arrangement structure for exhaust gas sensor of internal combustion engine
JP3562030B2 (en) Oxygen sensor abnormality diagnosis device
JP2004068608A (en) Exhaust gas recirculating device of internal combustion engine
US4915815A (en) Sensor incorporating a heater
EP1431539A2 (en) Adsorbent degradation-determining system
JP2008138569A (en) Air-fuel ratio control device of internal combustion engine
JP6562047B2 (en) Exhaust gas purification device for internal combustion engine
JP4135563B2 (en) Air-fuel ratio sensor abnormality detection device
JP5981256B2 (en) Gas sensor heater control device
JP2007046462A (en) Sensor control device and sensor mounting passage structure
JP3771018B2 (en) Gas concentration detection element
JPH0686067U (en) Air-fuel ratio sensor for internal combustion engine
CN113389625B (en) Control device for exhaust gas sensor
JP4719129B2 (en) Failure diagnosis device for exhaust gas purification system
JP2015075082A (en) Air-fuel ratio sensor control device
JPH06159217A (en) Ignition plug device
JP2008180613A (en) Gas sensor
JP3587137B2 (en) Exhaust gas purification equipment
JP2023118441A (en) Failure detection device for air-fuel ratio sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070426

A131 Notification of reasons for refusal

Effective date: 20070501

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20070625

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

A521 Written amendment

Effective date: 20071001

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20071128

Free format text: JAPANESE INTERMEDIATE CODE: A02