JPH11199354A - Oxidation-resistant c/c composite material and its production - Google Patents

Oxidation-resistant c/c composite material and its production

Info

Publication number
JPH11199354A
JPH11199354A JP10018033A JP1803398A JPH11199354A JP H11199354 A JPH11199354 A JP H11199354A JP 10018033 A JP10018033 A JP 10018033A JP 1803398 A JP1803398 A JP 1803398A JP H11199354 A JPH11199354 A JP H11199354A
Authority
JP
Japan
Prior art keywords
composite
coating layer
sic
composite material
metal impurity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10018033A
Other languages
Japanese (ja)
Other versions
JP3853058B2 (en
Inventor
Toshitaka Ohashi
敏孝 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP01803398A priority Critical patent/JP3853058B2/en
Publication of JPH11199354A publication Critical patent/JPH11199354A/en
Application granted granted Critical
Publication of JP3853058B2 publication Critical patent/JP3853058B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce an oxidation-resistant C/C composite material having an SiC coating layer excellent in thermal shock resistance, durability and material strength formed on the surface layer part of a C/C composite substrate and to provide a method for producing the C/C composite material. SOLUTION: This oxidation-resistant C/C composite material having an SiC coating layer formed on the surface layer part of a C/C composite substrate prepared by compounding and molding carbon fibers with a matrix resin and carrying out the curing, baking and carbonizing according to a conversion method and having <=50 ppm metal impurity content and >=300 cPs intensity of an SiC (111) plane according to an X-ray diffraction. The maximum film thickness of the SiC coating layer locally silicidized in the surface layer part is 1.0-1.2 times based on the average film thickness. The method for producing the C/C composite material comprises preparing a C/C composite material having 1.55-1.75 g/cm<3> bulk density, 0.1-10 μm maximum mode diameter of voids and <=20 ppm metal impurity content and bringing the resultant C/C composite material into contact with SiO2 gas produced by thermally reacting a mixed powder of a silicon source having <=100 ppm metal impurity content and <=300 μm particle diameter with a carbon source having <=10 ppm metal impurity content and <=100 μm particle diameter in a temperature region of 1,600-2,000 deg.C in a nonoxidizing atmosphere and forming the SiC coating layer.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、C/C複合基材の
表層部をコンバージョン法により珪化して、基材表層部
に耐熱衝撃性及び耐久性に優れ、高い材質強度を備えた
SiC被覆層が安定強固に形成された耐酸化性C/C複
合材(炭素繊維強化炭素複合材)及びその製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a SiC coating having excellent thermal shock resistance and durability and high material strength on the surface layer of a C / C composite substrate by silicifying the surface layer by a conversion method. The present invention relates to an oxidation-resistant C / C composite (carbon fiber reinforced carbon composite) in which a layer is formed stably and firmly, and a method for producing the same.

【0002】[0002]

【従来の技術】C/C複合材は、軽量、高強度であるこ
とに加えて、1000℃を越える高温域において優れた
耐熱性及び化学的安定性を備えているので、航空宇宙用
をはじめ高温過酷な条件で使用される構造材料として有
用されている。しかしながら、C/C複合材には大気中
において500℃付近から材質酸化を受けるという炭素
材固有の欠点があり、これが応用途を制限する最大の障
害となっている。このため、C/C複合材の表面に酸化
抵抗性の大きな被覆層を形成して耐酸化性を改善する試
みが古くから行われており、例えば炭化珪素、窒化珪
素、ジルコニヤ、アルミナ等の耐熱セラミックス系物質
を被覆処理する方法が開発されている。このうち、炭化
珪素の被覆処理が技術性および経済性の面で優れてお
り、最も好適な工業化手段として実用されている。
2. Description of the Related Art A C / C composite material has excellent heat resistance and chemical stability in a high temperature range exceeding 1000 ° C. in addition to being lightweight and high strength. It is useful as a structural material used under severe conditions at high temperatures. However, the C / C composite material has a disadvantage inherent in carbon material that it is oxidized at about 500 ° C. in the atmosphere, and this is the biggest obstacle to restricting the application. For this reason, attempts to improve the oxidation resistance by forming a coating layer having high oxidation resistance on the surface of the C / C composite material have been made for a long time. For example, heat-resistant materials such as silicon carbide, silicon nitride, zirconia, and alumina have been used. A method for coating a ceramic material has been developed. Among them, the coating treatment with silicon carbide is excellent in technical and economical aspects, and is practically used as the most suitable industrialization means.

【0003】C/C複合材の表面に炭化珪素の被覆層を
形成する代表的な方法として、気相反応により生成する
SiCを直接沈着させるCVD法(化学的気相蒸着法)
と、C/C複合材の表層部の炭素を反応源に利用してS
iOガスと反応させることによりSiCに転化させるコ
ンバージョン法が知られている。しかしながら、これら
の方法によって形成される炭化珪素被覆層にはそれぞれ
に長所と短所がある。すなわち、前者のCVD法により
形成されるSiC被覆層は、緻密性には優れているもの
の、基材との界面が明確に分離している関係で熱衝撃が
加えられると相互の熱膨張差によって層間剥離現象が起
こり易い欠点がある。この層間剥離現象は、主にC/C
複合基材とSiC被覆層との熱膨張係数差が大きく、最
大歪みが追随できないことに起因して発生するためC/
C複合基材面をSiCの熱膨張係数に近似するように改
質すれば軽減化することができる。このような観点か
ら、C/C複合基材面に気相熱分解法により熱分解炭素
層を形成し、ついでCVDまたはCVI法でSiCを被
覆する方法(特開平2−111681号公報)が提案されてい
るが、操作の煩雑性に見合う程の十分な高温酸化抵抗性
は期待できない。
As a typical method of forming a coating layer of silicon carbide on the surface of a C / C composite material, a CVD method (chemical vapor deposition method) in which SiC generated by a gas phase reaction is directly deposited.
And carbon utilizing the carbon in the surface layer of the C / C composite material as a reaction source.
There is known a conversion method of converting SiC by reacting with iO gas. However, each of the silicon carbide coating layers formed by these methods has advantages and disadvantages. That is, although the SiC coating layer formed by the former CVD method is excellent in denseness, when a thermal shock is applied because the interface with the base material is clearly separated, a difference in thermal expansion between the two occurs. There is a disadvantage that the delamination phenomenon easily occurs. This delamination phenomenon is mainly caused by C / C
Since the difference in thermal expansion coefficient between the composite substrate and the SiC coating layer is large and the maximum strain cannot follow,
If the surface of the C composite base material is modified so as to approximate the thermal expansion coefficient of SiC, it can be reduced. From such a viewpoint, a method is proposed in which a pyrolytic carbon layer is formed on the surface of a C / C composite base material by a vapor phase pyrolysis method and then coated with SiC by a CVD or CVI method (Japanese Patent Laid-Open No. 2-111681). However, sufficient high-temperature oxidation resistance that is commensurate with the complexity of the operation cannot be expected.

【0004】これに対し、後者のコンバージョン法は珪
素源と炭素源を加熱反応させて生成するSiOガスとC
/C複合材を構成する炭素組織を反応させ、C/C複合
材の表層部の表面から内部にかけて漸次SiC化する機
構に基づくものであるため、形成されるSiC被覆層は
SiC化の度合が材質内部に向うに従って漸次減少する
連続的な傾斜機能組織を呈する。したがって、CVD法
により形成されるSiC被覆層のような層間がなく、熱
衝撃を受けても層間界面剥離が生じ難い利点がある。そ
の反面、表層部におけるSiC被覆層の緻密度合が低下
して、十分な耐酸化性を付与できない欠点がある。更
に、コンバージョン法はC/C複合材表層部の炭素組織
の一部が珪化されてSiCに転化するため、材質強度が
低下する難点もあり、特にC/C複合基材の内部組織が
部分的に珪化された場合には強度低下が大きくなる。
On the other hand, in the latter conversion method, SiO gas and C gas generated by heating and reacting a silicon source and a carbon source are used.
/ C composite material is formed based on a mechanism of reacting the carbon structure constituting the C / C composite material and gradually forming SiC from the surface to the inside of the surface layer portion of the C / C composite material. It exhibits a continuous functionally graded tissue that gradually decreases as it goes into the interior of the material. Therefore, there is no interlayer such as the SiC coating layer formed by the CVD method, and there is an advantage that the interlayer delamination hardly occurs even when subjected to thermal shock. On the other hand, there is a disadvantage that the denseness of the SiC coating layer in the surface layer portion is reduced and sufficient oxidation resistance cannot be provided. Further, in the conversion method, since a part of the carbon structure of the surface layer of the C / C composite material is silicified and converted into SiC, there is a disadvantage that the material strength is reduced. In particular, the internal structure of the C / C composite substrate is partially reduced. In the case where the silicon is silicified, the strength decreases greatly.

【0005】そのため、強度の低下を来さないと共に耐
熱衝撃性に優れたSiC被覆C/C複合材として、C/
C複合基材にSiC被膜を形成してなるSiC被覆C/
C複合材において、該C/C複合基材の表層部に表面か
ら内部方向へ雨垂れ状に突出した多数の突出部を有する
少なくとも未反応のカーボン繊維を含むけい化層が存在
することを特徴とするSiC被覆C/C複合材が提案
(特開平4−149081号公報)されている。この特開平4
−149081号公報のSiC被覆C/C複合材は、C
/C複合基材の表面にCVD法により多孔性のSiC被
膜を形成した後、その表層部にけい化処理を施し、更に
CVD法によるSiC被膜を形成する方法によって製造
される。したがって、上記したCVD法の欠点であるC
/C複合基材とSiC被膜との界面分離の問題が解消さ
れず、耐熱衝撃性の改善も充分なものではない。
[0005] Therefore, as a SiC-coated C / C composite material which does not decrease in strength and has excellent thermal shock resistance, C / C
SiC coating C / C
In the C composite material, a silicide layer containing at least unreacted carbon fibers having a large number of protrusions protruding from the surface in an inward direction from the surface is present on a surface layer of the C / C composite base material. An SiC-coated C / C composite material has been proposed (Japanese Patent Laid-Open No. 4-19081). This Japanese Patent Laid-Open No. 4
The SiC coated C / C composite disclosed in -149081
After forming a porous SiC film on the surface of the / C composite base material by a CVD method, the surface layer is subjected to a silicidation treatment, and the SiC film is further formed by a CVD method. Therefore, the disadvantage of the above-mentioned CVD method, C,
The problem of interface separation between the / C composite substrate and the SiC coating is not solved, and the improvement in thermal shock resistance is not sufficient.

【0006】一方、コンバージョン法によるSiC化に
は本質的にC/C複合基材そのものの材質強度を損ねる
問題がある。すなわち、コンバージョン法によるSiC
被覆層の形成過程においては、SiOガスはC/C複合
基材の表面から組織内部に浸透拡散しながらC/C基材
組織をSiCに転化していくが、C/C基材に存在する
気孔や亀裂などの空隙部に沿ってSiOガスは比較的深
い基材組織にまで浸透拡散し易い。そのためC/C複合
材の表面ばかりではなく、比較的深い内部組織にまでS
iC化が進行して、基材組織、特にSiC化され易いマ
トリックス炭素部分が優先的に珪化されて鋸状や島状に
SiC生成物が形成され易く、その結果基材組織全体の
脆弱化を招くこととなる。
On the other hand, conversion to SiC by the conversion method has a problem of essentially impairing the material strength of the C / C composite base material itself. That is, SiC by the conversion method
In the process of forming the coating layer, the SiO gas converts the C / C base structure into SiC while penetrating and diffusing from the surface of the C / C composite base into the inside of the structure, but exists in the C / C base. Along the voids such as pores and cracks, the SiO gas easily permeates and diffuses to a relatively deep substrate structure. Therefore, not only the surface of the C / C composite, but also the deep internal structure
As the formation of iC proceeds, the matrix structure, particularly the matrix carbon portion that is easily converted to SiC, is preferentially silicided to easily form a SiC product in a saw-like or island-like shape. Will be invited.

【0007】そこで、コンバージョン法によりSiC被
覆層を形成する場合に、生成するSiC被覆層を均一、
緻密化してC/C複合基材の内部組織がSiC化する現
象を抑制することが材質強度を確保する上で必要である
との観点から、本出願人は、炭素繊維をマトリックス樹
脂とともに複合成形し硬化した炭素繊維複合樹脂成形体
の外周面に、ポリイミド系樹脂フィルムを展着した状態
で焼成炭化して得られたC/C複合基材の表面にコンバ
ージョン法によりSiC被覆層を形成する方法(特開平
8−169786号公報)、あるいはC/C複合基材の表層部
に易黒鉛化性炭素の被膜層を形成したのち、コンバージ
ョン法によりSiC被覆層を形成する方法(特願平8−
346730号)を開発した。
Therefore, when the SiC coating layer is formed by the conversion method, the generated SiC coating layer is made uniform,
In view of the fact that it is necessary to suppress the phenomenon that the internal structure of the C / C composite base material is densified and converted into SiC, in order to ensure the material strength, the applicant of the present invention has proposed that the carbon fiber and the matrix resin be composite-molded. Forming a SiC coating layer by a conversion method on the surface of a C / C composite substrate obtained by calcining and carbonizing a polyimide resin film spread on the outer peripheral surface of a cured and cured carbon fiber composite resin molded body (Japanese Patent Application Laid-Open No. 8-169786) or a method of forming a graphitizable carbon coating layer on the surface of a C / C composite base material and then forming a SiC coating layer by a conversion method (Japanese Patent Application No. 8-169786).
No. 346730).

【0008】これらの方法は、C/C複合基材の表層部
に形成した緻密な炭素被覆層や易黒鉛化性炭素の被膜層
が、C/C複合基材の内部組織にSiOガスが浸透拡散
する現象を抑制するバリアとして機能することにより、
材質強度の低下を抑止するものである。
In these methods, a dense carbon coating layer or a graphitizable carbon coating layer formed on a surface layer of a C / C composite base material allows a SiO gas to penetrate into the internal structure of the C / C composite base material. By acting as a barrier to suppress the phenomenon of diffusion,
It is intended to suppress a decrease in material strength.

【0009】[0009]

【発明が解決しようとする課題】本発明者は、C/C複
合基材の表層部をコンバージョン法により珪化してSi
C被覆層を形成した耐酸化性C/C複合材について、S
iC被覆層の耐久性や耐熱衝撃性の向上、あるいは材質
強度の低下防止などを図るために、SiC被覆層の性状
について更に研究を進めた結果、SiCの結晶性や純
度、更にC/C複合基材表層部の空隙中に侵入したSi
Oガスにより局所的に形成されたSiC被覆層の最大膜
厚などが関係することを確認した。
SUMMARY OF THE INVENTION The present inventor has proposed that a surface layer of a C / C composite base material is silicified by a conversion method to obtain Si.
Regarding the oxidation-resistant C / C composite material having the C coating layer formed thereon, S
In order to improve the durability and thermal shock resistance of the iC coating layer, or to prevent the material strength from decreasing, further studies were conducted on the properties of the SiC coating layer. As a result, the crystallinity and purity of the SiC, and the C / C composite Si penetrated into the voids in the surface layer of the base material
It was confirmed that the maximum thickness of the SiC coating layer locally formed by the O gas was related.

【0010】本発明は、上記の知見に基づいて開発され
たもので、その目的とする解決課題は、C/C複合基材
の表層部に耐熱衝撃性及び耐久性に優れ、高い材質強度
を備えたSiC被覆層が安定強固に形成された耐酸化性
C/C複合材及びその製造方法を提供することにある。
The present invention has been developed on the basis of the above findings, and the object of the present invention is to provide a C / C composite base material having excellent thermal shock resistance and durability, and high material strength. An object of the present invention is to provide an oxidation-resistant C / C composite material in which a provided SiC coating layer is formed stably and firmly, and a method for producing the same.

【0011】[0011]

【課題を解決するための手段】上記の目的を達成するた
めの本発明の耐酸化性C/C複合材は、炭素繊維をマト
リックス樹脂とともに複合成形し、硬化および焼成炭化
したC/C複合基材の表層部をコンバージョン法により
珪化して形成されたSiC被覆層が、金属不純物含有量
が50ppm 以下、X線回折によるSiC(111) 面の強度
が300 cps以上であり、かつC/C複合基材表層部の
局所的に珪化されたSiC被覆層の最大膜厚が、SiC
被覆層の平均膜厚の1.01〜1.2倍であることを構
成上の特徴とする。
In order to achieve the above object, an oxidation-resistant C / C composite material according to the present invention comprises a C / C composite material obtained by molding a carbon fiber together with a matrix resin, and curing and calcining and carbonizing. The SiC coating layer formed by silicidizing the surface layer portion of the material by the conversion method has a metal impurity content of 50 ppm or less, a strength of the SiC (111) surface by X-ray diffraction of 300 cps or more, and a C / C composite. The maximum thickness of the locally silicified SiC coating layer on the surface layer of the base material is SiC
It is a structural feature that the average thickness of the coating layer is 1.01 to 1.2 times.

【0012】また、本発明の耐酸化性C/C複合材の製
造方法は、炭素繊維をマトリックス樹脂とともに複合成
形、硬化および焼成炭化し、更に高純度化処理と黒鉛化
処理を行って、嵩密度が1.55〜1.75 g/cm3、空
隙の最大モード径が0.1〜10μm 、金属不純物含有
量が20 ppm以下のC/C複合基材を作製し、該C/C
複合基材を、金属不純物量が100 ppm以下、粒子径が
300μm 以下の珪素源と、金属不純物量が10 ppm以
下、粒子径が100μm 以下の炭素源との混合粉末を加
熱反応させて生成するSiOガスと非酸化性雰囲気中1
600〜2000℃の温度域で接触させてC/C複合基
材の表層部をコンバージョン法により珪化して、SiC
被覆層を形成することを構成上の特徴とする。
The method for producing an oxidation-resistant C / C composite material according to the present invention is characterized in that carbon fiber is composite-molded together with a matrix resin, cured and calcined, and further subjected to a high-purification treatment and a graphitization treatment to obtain a bulk. A C / C composite base material having a density of 1.55 to 1.75 g / cm 3 , a maximum mode diameter of voids of 0.1 to 10 μm, and a metal impurity content of 20 ppm or less was prepared.
A composite substrate is produced by heating and reacting a mixed powder of a silicon source having a metal impurity content of 100 ppm or less and a particle size of 300 μm or less and a carbon source having a metal impurity content of 10 ppm or less and a particle size of 100 μm or less. In SiO gas and non-oxidizing atmosphere 1
The surface layer of the C / C composite base material is silicified by a conversion method by contacting in a temperature range of
Forming the coating layer is a structural feature.

【0013】[0013]

【発明の実施の形態】C/C複合材の強化材となる炭素
繊維には、ポリアクリロニトリル系、レーヨン系、ピッ
チ系など各種原料から製造された繊維を二次元あるいは
三次元方向に織り込まれた繊維体やフェルト、トウなど
が用いられ、マトリックス樹脂としてはフェノール系、
フラン系など高炭化性の液状熱硬化性樹脂、タールピッ
チのような熱可塑性物質が用いられる。炭素繊維は、浸
漬、塗布などの手段によりマトリックス樹脂を充分に充
填したのち半硬化してプリプレグを形成し、次いでプリ
プレグを積層加圧して複合成形したのち加熱して樹脂成
分を完全に硬化し、常法に従って非酸化性雰囲気下で1
000〜2000℃の温度に加熱して焼成炭化すること
によりC/C複合基材が作製される。なお、C/C複合
基材は必要に応じて、更にマトリックス樹脂を含浸、硬
化、焼成炭化の処理を繰り返し行って緻密化を図り、高
純度化処理と黒鉛化処理を行って基材の高純度化を図
る。
BEST MODE FOR CARRYING OUT THE INVENTION Fibers made from various raw materials such as polyacrylonitrile, rayon, pitch, etc. are woven in two-dimensional or three-dimensional directions into carbon fibers as reinforcing materials for C / C composites. A fibrous body, felt, tow, etc. are used.
A highly carbonized liquid thermosetting resin such as furan or a thermoplastic substance such as tar pitch is used. The carbon fiber is immersed, fully filled with the matrix resin by means such as coating, and then semi-cured to form a prepreg, then the prepreg is laminated and pressed to form a composite, and then heated to completely cure the resin component, 1 in a non-oxidizing atmosphere according to the usual method
A C / C composite base material is produced by heating and carbonizing at a temperature of 000 to 2000 ° C. If necessary, the C / C composite substrate is further densified by repeatedly impregnating, curing and calcining with a matrix resin, and is then subjected to a high-purification treatment and a graphitization treatment to improve the base material. Purify.

【0014】このC/C複合基材の表層部をコンバージ
ョン法によって珪化して、形成されたSiC被覆層に高
い耐久性を保持させるためには、SiCの純度と結晶性
の向上が重要となる。すなわち、SiC被覆層中に金属
不純物が存在するとSiCの材質劣化が進行するため、
例えば、鉄、ニッケル、硼素、カルシウムなどの金属不
純物の含有量は50ppm 以下であることが必要である。
In order to silicify the surface layer of the C / C composite base material by the conversion method and to maintain the formed SiC coating layer with high durability, it is important to improve the purity and crystallinity of SiC. . That is, if metal impurities exist in the SiC coating layer, the material deterioration of the SiC proceeds,
For example, the content of metal impurities such as iron, nickel, boron, and calcium needs to be 50 ppm or less.

【0015】また、SiC被覆層のSiCの結晶性が低
く、結晶欠陥があるとSiC被覆層の耐久性が低下す
る。特に、SiC被覆層に存在する金属不純物と結晶欠
陥とが相乗的に作用してSiCの劣化が促進されること
となる。そのために、SiC被覆層の耐蝕性を向上させ
るためには、X線回折によるSiC(111) 面の強度は3
00 cps以上に設定される。300 cpsを下回るとSi
Cの結晶性が低く、結晶欠陥があるため耐蝕性が低下す
るためである。
Further, the crystallinity of SiC of the SiC coating layer is low, and if there is a crystal defect, the durability of the SiC coating layer is reduced. In particular, metal impurities and crystal defects existing in the SiC coating layer act synergistically to promote the deterioration of SiC. Therefore, in order to improve the corrosion resistance of the SiC coating layer, the strength of the SiC (111) plane by X-ray diffraction must be 3
Set to 00 cps or more. Si below 300 cps
This is because the crystallinity of C is low and the corrosion resistance is reduced due to the presence of crystal defects.

【0016】本発明の耐酸化性C/C複合材は、SiC
被覆層が上記の金属不純物含有量が50ppm 以下、X線
回折によるSiC(111) 面の強度が300 cps以上の純
度及び結晶性を備えるとともに、C/C複合基材表層部
の局所的に珪化されたSiC被覆層の最大膜厚が、Si
C被覆層の平均膜厚の1.01〜1.2倍であることが
必要である。コンバージョン法によりC/C複合基材の
表層部にSiC被覆層が形成されるプロセスは、SiO
ガスがC/C複合基材の表面から内部に浸透拡散しなが
ら炭素組織を珪化してSiCに転化していくものであ
り、このプロセスにおいてSiOガスの一部はC/C複
合基材に存在する気孔や亀裂などの空隙部に沿って、基
材の内部組織に浸透拡散される。したがって、C/C複
合基材の内部に侵入したSiOガスは逐次炭素組織と反
応してSiCに転化するとともに、空隙部に沿って鋸刃
状のSiC層が生成されることとなる。
The oxidation-resistant C / C composite of the present invention comprises SiC
The coating layer has the above-mentioned metal impurity content of 50 ppm or less, the purity and crystallinity of the SiC (111) plane by X-ray diffraction of 300 cps or more, and locally silicide the surface layer of the C / C composite base material. The maximum thickness of the SiC coating layer
It is necessary to be 1.01 to 1.2 times the average thickness of the C coating layer. The process of forming the SiC coating layer on the surface layer of the C / C composite base material by the conversion method is SiO
While the gas permeates and diffuses from the surface of the C / C composite base material into the interior, the carbon structure is silicified and converted into SiC. In this process, part of the SiO gas is present in the C / C composite base material Along the voids such as pores and cracks, which penetrate and diffuse into the internal structure of the base material. Therefore, the SiO gas that has entered the inside of the C / C composite substrate sequentially reacts with the carbon structure and is converted into SiC, and a saw-toothed SiC layer is generated along the void.

【0017】すなわち、C/C複合基材表層部に形成さ
れたSiC被覆層は図1の模式図に示したように、C/
C複合基材1の表層部に局所的に珪化された局所的珪化
部3が形成されている。図1において、1はC/C複合
基材、2はSiC被覆層、3は局所的珪化部、4は最大
膜厚、5は平均膜厚である。このように、C/C複合材
の内部組織が部分的にSiC化されると材質強度の低下
はより著しくなる。そこで、本発明の耐酸化性C/C複
合材は、C/C複合基材の空隙部に沿って浸透拡散した
SiOガスによって、C/C複合基材の表層部が局所的
に珪化されて形成したSiC被覆層の最大膜厚4が、S
iC被覆層の平均膜厚5の1.01〜1.2倍に制御す
ることによって、材質強度の低下を抑制するとともに、
急熱、急冷時に発生する内部組織に作用する熱応力を緩
和して耐熱衝撃性も高位に保持することが可能となる。
That is, as shown in the schematic diagram of FIG. 1, the SiC coating layer formed on the surface layer of the C / C composite base material has a C / C
A locally silicified portion 3 which is locally silicified is formed on a surface layer portion of the C composite base material 1. In FIG. 1, 1 is a C / C composite substrate, 2 is a SiC coating layer, 3 is a locally silicified portion, 4 is a maximum film thickness, and 5 is an average film thickness. As described above, when the internal structure of the C / C composite material is partially converted to SiC, the material strength is significantly reduced. Therefore, in the oxidation-resistant C / C composite material of the present invention, the surface layer of the C / C composite substrate is locally silicified by the SiO gas that has permeated and diffused along the voids of the C / C composite substrate. The maximum thickness 4 of the formed SiC coating layer is S
By controlling the average thickness 5 of the iC coating layer to 1.01 to 1.2 times, it is possible to suppress a decrease in material strength,
The thermal stress acting on the internal structure generated during rapid heating and rapid cooling can be relaxed, and the thermal shock resistance can be maintained at a high level.

【0018】この耐酸化性C/C複合材は、嵩密度が
1.55〜1.75 g/cm3、空隙の最大モード径が0.
1〜10μm 、金属不純物含有量が20 ppm以下のC/
C複合基材を作製し、該C/C複合基材を、金属不純物
量が100 ppm以下、粒子径が300μm 以下の珪素源
と、金属不純物量が10 ppm以下、粒子径が100μm
以下の炭素源との混合粉末を加熱反応させて生成するS
iOガスと非酸化性雰囲気中1600〜2000℃の温
度域で接触させることにより製造される。
This oxidation-resistant C / C composite material has a bulk density of 1.55 to 1.75 g / cm 3 and a maximum mode diameter of voids of 0.5.
1 to 10 μm, C /
A C composite substrate is prepared, and the C / C composite substrate is mixed with a silicon source having a metal impurity amount of 100 ppm or less and a particle diameter of 300 μm or less, a metal impurity amount of 10 ppm or less and a particle diameter of 100 μm
S generated by heating and reacting a mixed powder with the following carbon source
It is manufactured by contacting with iO gas in a non-oxidizing atmosphere in a temperature range of 1600 to 2000 ° C.

【0019】C/C複合基材は炭素繊維をマトリックス
樹脂とともに複合成形し、硬化及び焼成炭化することに
より作製されるが、C/C複合基材は必要に応じてマト
リックス樹脂を含浸、硬化、焼成炭化する処理を繰り返
し行って嵩密度が1.55〜1.75 g/cm3の範囲に調
整制御する。嵩密度が1.55 g/cm3を下回ると内部組
織に存在する空隙が多く、C/C複合基材の内部組織が
珪化される割合が高くなり強度低下が大きくなるためで
ある。しかしながら、1.75 g/cm3を超える嵩密度に
緻密化しても強度低下の抑制効果は殆ど変わらない。
The C / C composite substrate is produced by compound-molding a carbon fiber with a matrix resin, curing and firing and carbonizing. The C / C composite substrate is impregnated with the matrix resin, cured, The process of firing and carbonizing is repeatedly performed to adjust and control the bulk density to be in the range of 1.55 to 1.75 g / cm 3 . If the bulk density is less than 1.55 g / cm 3 , there are many voids in the internal structure, and the ratio of silicification of the internal structure of the C / C composite base material increases, resulting in a large decrease in strength. However, even if the bulk density is increased to more than 1.75 g / cm 3 , the effect of suppressing the strength decrease hardly changes.

【0020】C/C複合基材の緻密化により基材に存在
する気孔や亀裂などの空隙の大きさを、最大モード径が
0.1〜10μm の範囲に調整したものが用いられる。
最大モード径が10μm を超える大きな空隙が存在する
とSiOガスが基材組織内部に侵入し易くなり、C/C
複合基材の表層部が局所的に珪化されて内部組織に生じ
るSiC化が著しくなるためである。なお、最大モード
径が0.1μm 未満に空隙部を緻密化してもSiOガス
の侵入防止効果の増大はあまり認められない。また、C
/C複合基材は可及的に高純度のものが好ましく鉄、ニ
ッケル、硼素、カルシウムなどの金属不純物含有量は2
0ppm 以下のものが用いられる。金属不純物含有量が2
0ppm を越えると成膜したSiC被覆層中にも不純物が
移行し金属触媒的に働いて耐蝕性を低下させる。C/C
複合基材の金属不純物含有量を減少させるためには、作
製したC/C複合基材をフッ素、塩素などのハロゲン含
有ガスにより高温加熱処理して、高純度化処理すること
により行うことができる。
The C / C composite base material used is one in which the size of voids such as pores and cracks existing in the base material is adjusted to a maximum mode diameter of 0.1 to 10 μm by densification.
If there is a large void having a maximum mode diameter exceeding 10 μm, the SiO gas easily penetrates into the inside of the substrate structure, and C / C
This is because the surface layer portion of the composite base material is locally silicified, and SiC formation in the internal structure becomes remarkable. It should be noted that even if the void portion is densified so that the maximum mode diameter is less than 0.1 μm, the effect of preventing the invasion of the SiO gas is not significantly increased. Also, C
The / C composite substrate preferably has a purity as high as possible, and the content of metal impurities such as iron, nickel, boron and calcium is 2
Less than 0 ppm is used. 2 metal impurity content
If it exceeds 0 ppm, impurities migrate into the formed SiC coating layer and act as a metal catalyst to lower the corrosion resistance. C / C
In order to reduce the content of metal impurities in the composite substrate, the produced C / C composite substrate can be heat-treated with a halogen-containing gas such as fluorine or chlorine at a high temperature and then subjected to a high-purity treatment. .

【0021】このようにして作製した嵩密度が1.55
〜1.75 g/cm3、空隙の最大モード径が0.1〜10
μm 、金属不純物含有量が20 ppm以下のC/C複合基
材を用いて、コンバージョン法により表層部を珪化して
SiC被覆層を形成する。珪化反応するSiOガスを発
生させる珪素源としては、金属不純物含有量100ppm
以下、粒子径300μm 以下の石英、珪石、珪砂などの
SiO2 含有物質が用いられる。また、炭素源としては
金属不純物含有量10ppm 以下、粒子径100μm 以下
のコークス、ピッチ、黒鉛、カーボンブラック等の炭素
質粉末が使用される。珪素源と炭素源との配合組成は、
各材料粉末の表面積を考慮して決定されるが、通常、S
iO2 :Cの重量比率が1:1〜5:1の範囲になるよ
うに配合される。配合物はV型ブレンダーなどの混合装
置で十分に混合し、均一な混合物としたのち、黒鉛のよ
うな高耐熱性材料で構成された反応容器に入れる。
The bulk density thus produced is 1.55
11.75 g / cm 3 , maximum mode diameter of air gap is 0.1〜1010
Using a C / C composite substrate having a metal impurity content of 20 ppm or less, the surface layer is silicified by a conversion method to form a SiC coating layer. As a silicon source for generating a SiO gas that undergoes a silicidation reaction, a metal impurity content of 100 ppm
Hereinafter, an SiO 2 -containing substance such as quartz, silica stone, silica sand or the like having a particle diameter of 300 μm or less is used. As the carbon source, a carbonaceous powder having a metal impurity content of 10 ppm or less and a particle diameter of 100 μm or less, such as coke, pitch, graphite, and carbon black, is used. The composition of the silicon source and the carbon source is
It is determined in consideration of the surface area of each material powder.
It is blended so that the weight ratio of iO 2 : C is in the range of 1: 1 to 5: 1. The mixture is sufficiently mixed by a mixing device such as a V-type blender to form a uniform mixture, and then placed in a reaction vessel made of a highly heat-resistant material such as graphite.

【0022】上記の反応容器を密閉加熱炉内に設置し、
C/C複合基材を反応容器内の混合粉末中に埋没するか
反応容器の近傍にセットした状態で系内を還元または中
性の非酸化性雰囲気に保持しながら1600〜2000
℃の温度に加熱処理する。処理過程で、珪素源と炭素源
の加熱還元反応により発生したSiOガスは、C/C複
合基材の表層面と接触しながらC/C基材の炭素組織を
珪化してSiC被覆層が形成される。この珪化プロセス
において、嵩密度、空隙の最大モード径及び金属不純物
含有量などの性状が特定範囲にあるC/C複合基材を用
いることによりSiOガスがC/C複合基材の内部組織
に浸透拡散する現象が抑制されるので、内部組織におけ
るSiC化を低減することができ、また金属不純物含有
量の低減化を図ることができる。したがって、金属不純
物含有量50ppm 以下、X線回折によるSiC(111) 面
の強度300cps 以上、表層部の局所的に珪化されたS
iC被覆層の最大膜厚が平均膜厚の1.01〜1.2倍
のSiC被覆層が形成された耐酸化性C/C複合材の製
造が可能となる。
The above reaction vessel is placed in a closed heating furnace,
While the C / C composite base material is buried in the mixed powder in the reaction vessel or set in the vicinity of the reaction vessel, the inside of the system is maintained in a reducing or neutral non-oxidizing atmosphere while being 1600 to 2000.
Heat to a temperature of ° C. In the process, the SiO gas generated by the heat-reduction reaction between the silicon source and the carbon source silicifies the carbon structure of the C / C substrate while contacting the surface layer of the C / C composite substrate to form a SiC coating layer. Is done. In this silicidation process, the SiO gas penetrates into the internal structure of the C / C composite substrate by using a C / C composite substrate having properties such as bulk density, maximum mode diameter of voids, and metal impurity content within a specific range. Since the diffusion phenomenon is suppressed, SiC conversion in the internal structure can be reduced, and the content of metal impurities can be reduced. Therefore, the metal impurity content is 50 ppm or less, the intensity of the SiC (111) plane is 300 cps or more by X-ray diffraction, and the locally silicified S
It is possible to manufacture an oxidation-resistant C / C composite material having an SiC coating layer in which the maximum thickness of the iC coating layer is 1.01 to 1.2 times the average thickness.

【0023】[0023]

【実施例】以下、本発明の実施例を比較例と対比して説
明する。
Hereinafter, examples of the present invention will be described in comparison with comparative examples.

【0024】実施例1〜5、比較例1〜5 ポリアクリロニトリル系の平織炭素繊維織布〔東邦レー
ヨン(株)製 W6101〕にフェノール樹脂初期縮合物〔住
友デュレズ(株)製 PR940〕をマトリックス樹脂として
炭素繊維の体積含有率が60%となるように塗布し、4
8時間風乾してプリプレグシートを作製した。このプリ
プレグシート20枚を積層してモールドに入れ、20kg
/cm2の圧力を掛けながら温度170℃で3時間加熱加圧
処理して複合化した。この複合体を窒素ガス雰囲気に保
持した焼成炉に入れ、20℃/hrの昇温速度で1000
℃に加熱して炭化した。更に、フルフリルアルコール初
期縮合物を含浸し、再び焼成炉に移して50℃/hr の昇
温速度で1000℃まで加熱するという緻密化処理を所
望の嵩密度が得られるまで複数回繰り返した。次いで、
70℃/hr の昇温速度で2000℃まで加熱処理した
後、電気炉中で塩素ガスを導入した雰囲気下で2000
℃の温度に加熱して高純度化処理した。このようにし
て、嵩密度、空隙最大モード径、金属不純物含有量の異
なるC/C複合基材(縦横250mm 、厚さ4mm)を作製し
た。
Examples 1 to 5 and Comparative Examples 1 to 5 A polyacrylonitrile-based plain-woven carbon fiber woven fabric [W6101 manufactured by Toho Rayon Co., Ltd.] was mixed with a phenol resin precondensate [PR940 manufactured by Sumitomo Durez Co., Ltd.] as a matrix resin. And applied so that the volume content of carbon fiber becomes 60%.
It was air-dried for 8 hours to prepare a prepreg sheet. 20 sheets of this prepreg sheet are stacked and put in a mold,
The mixture was heated and pressurized at a temperature of 170 ° C. for 3 hours while applying a pressure of / cm 2 to form a composite. This complex was placed in a firing furnace maintained in a nitrogen gas atmosphere, and was heated at a rate of 20 ° C./hr to 1000
C. and carbonized. Further, a densification treatment of impregnating a furfuryl alcohol initial condensate, transferring the mixture again to a baking furnace, and heating it to 1000 ° C. at a heating rate of 50 ° C./hr was repeated several times until a desired bulk density was obtained. Then
After heat-treating to 2000 ° C. at a heating rate of 70 ° C./hr, in an electric furnace under an atmosphere introduced with chlorine gas,
It was heated to a temperature of ° C. to perform a high purification treatment. In this way, C / C composite substrates (250 mm in length and 4 mm in thickness) having different bulk densities, maximum void mode diameters, and metal impurity contents were produced.

【0025】このC/C複合基材を気孔率90%、気孔
径10μm 、厚さ10mmの黒鉛繊維フェルトで被包し、
珪素源として金属不純物量及び粒子径が異なる石英粉
末、炭素源として金属不純物量及び粒子径が異なるコー
クス粉末を用い、重量比で3:1の割合で混合した混合
粉末を黒鉛繊維フェルトの上下に配置した状態で黒鉛容
器に入れた。黒鉛容器を窒素ガス雰囲気に保持された加
熱炉に移し50℃/hr の昇温速度で所定温度に加熱して
コンバージョン反応を生起させ、C/C複合基材の表層
部にSiC被覆層を形成した。このようにしてSiC被
覆層を形成した耐酸化性C/C複合材について、その製
造条件を対比して表1に示した。
The C / C composite substrate is covered with a graphite fiber felt having a porosity of 90%, a pore diameter of 10 μm, and a thickness of 10 mm.
Using quartz powder with different amounts of metal impurities and particle diameter as the silicon source and coke powder with different amounts of metal impurities and particle size as the carbon source, mixed powders mixed at a weight ratio of 3: 1 are placed above and below the graphite fiber felt. Placed in a graphite container. The graphite container is transferred to a heating furnace maintained in a nitrogen gas atmosphere and heated to a predetermined temperature at a heating rate of 50 ° C./hr to cause a conversion reaction to form a SiC coating layer on the surface of the C / C composite base material. did. Table 1 shows the production conditions of the oxidation-resistant C / C composite material having the SiC coating layer formed thereon.

【0026】[0026]

【表1】 [Table 1]

【0027】このようにして形成されたSiC被覆層に
ついて、下記の方法により金属不純物含有量、SiC(1
11) 面のX線回折強度、膜厚などのSiC被覆層の性状
を測定した。また、これらのSiC被覆層を形成した耐
酸化性C/C複合材について、次の方法により引張強
度、耐酸化性試験、耐熱衝撃性試験を行って、その耐酸
化性能を評価した。得られた結果を表2に示した。
With respect to the SiC coating layer thus formed, the metal impurity content and the SiC (1
11) The properties of the SiC coating layer such as the X-ray diffraction intensity and the film thickness of the surface were measured. Further, the oxidation-resistant C / C composite material having the SiC coating layer formed thereon was subjected to a tensile strength test, an oxidation resistance test, and a thermal shock resistance test by the following methods to evaluate its oxidation resistance performance. Table 2 shows the obtained results.

【0028】(1)SiC被覆層の性状 金属不純物含有量;空気中800℃で灰化処理して得
られた残留物をプラズマ発光分析により測定。 SiC(111) 面のX線回折強度;X線回折法によりS
iCの(111) 面のピーク強度を測定。 膜厚;渦電流測定法によりSiCの膜厚を測定。
(1) Properties of SiC Coating Layer Content of metal impurities: The residue obtained by incineration at 800 ° C. in air was measured by plasma emission analysis. X-ray diffraction intensity of SiC (111) surface;
The peak intensity of the (111) plane of iC was measured. Film thickness: The film thickness of SiC was measured by an eddy current measurement method.

【0029】(2)耐酸化性能の評価 引張強度;厚さ4mm、長さ160mmに切り出した試料
より、掴み部分を長さ40mm、幅25.4mmとし、ゲー
ジ部を長さ40mm、幅12.7mmのダンベル形状に加工
して引張強度測定用試験片とした。この試験片にクロス
ヘッド速度1.3mm/minで引張荷重を加え破壊荷重を測
定した。 耐酸化性試験;SiC被覆層を形成したC/C複合材
を電気炉に入れて、大気雰囲気下に1400℃の温度に
30分間保持した時の重量減少率を測定した。 耐熱衝撃性試験;SiC被覆層を形成したC/C複合
材を電気炉に入れて、大気雰囲気下に1550℃の温度
に5分間保持した後、室温中に取り出し急冷する操作を
5回繰り返して行い、その時の被覆層の剥離状況を観察
した。
(2) Evaluation of oxidation resistance Tensile strength: From a sample cut out to a thickness of 4 mm and a length of 160 mm, the gripping portion was set to a length of 40 mm and a width of 25.4 mm, and the gauge portion was 40 mm in length and 12 in width. It was processed into a dumbbell shape of 7 mm to obtain a tensile strength test specimen. A tensile load was applied to this test piece at a crosshead speed of 1.3 mm / min, and the breaking load was measured. Oxidation resistance test: The C / C composite material on which the SiC coating layer was formed was placed in an electric furnace, and the weight loss rate when the temperature was maintained at 1400 ° C. for 30 minutes in an air atmosphere was measured. Thermal shock resistance test: A C / C composite material having a SiC coating layer formed thereon was placed in an electric furnace, kept at a temperature of 1550 ° C. for 5 minutes in an air atmosphere, taken out to room temperature, and rapidly cooled, repeated 5 times. Then, the state of peeling of the coating layer at that time was observed.

【0030】[0030]

【表2】 [Table 2]

【0031】表1、2の結果から、SiC被覆層の性状
が本発明の特性要件を満たす実施例のC/C複合材は、
比較例のC/C複合材に比べて引張強度が高く、高温の
大気中においても酸化による重量減少率も少ないことが
判る。また、大気雰囲気中における急速な加熱と冷却に
よる熱ショックを与えた場合の耐熱衝撃性にも優れてい
ることが認められる。このような優れた耐酸化性能を備
えたC/C複合材は、嵩密度や空隙などの特性を制御し
たC/C複合基材を用いて、特定の条件下でコンバージ
ョン反応を行って、SiC被覆層の性状を制御すること
により製造することができる。
From the results shown in Tables 1 and 2, the C / C composite material of the example in which the properties of the SiC coating layer satisfy the characteristic requirements of the present invention is as follows:
It can be seen that the tensile strength is higher than that of the C / C composite material of the comparative example, and the weight loss rate due to oxidation is small even in a high-temperature atmosphere. Also, it is recognized that it is excellent in thermal shock resistance when a thermal shock due to rapid heating and cooling in the air atmosphere is given. A C / C composite material having such excellent oxidation resistance is obtained by performing a conversion reaction under specific conditions using a C / C composite base material whose properties such as bulk density and voids are controlled to obtain a SiC composite material. It can be produced by controlling the properties of the coating layer.

【0032】[0032]

【発明の効果】以上のとおり、本発明によればコンバー
ジョン法により珪化してC/C複合基材の表層部に形成
したSiC被覆層の性状を特定することにより、耐熱衝
撃性、耐久性及び材質強度に優れたSiC被覆層が安定
強固に形成された耐酸化性C/C複合材とすることがで
きる。また、この耐酸化性C/C複合材はC/C複合基
材の作製条件ならびにコンバージョン法による珪化条件
を特定することにより製造することが可能である。した
がって、高温苛酷な雰囲気下で使用されるC/C複合材
及びその製造方法として極めて有用である。
As described above, according to the present invention, the properties of the SiC coating layer formed on the surface layer of the C / C composite substrate by silicification by the conversion method are specified, whereby the thermal shock resistance, durability and heat resistance are improved. An oxidation-resistant C / C composite material in which a SiC coating layer having excellent material strength is formed stably and firmly can be obtained. Further, the oxidation-resistant C / C composite material can be manufactured by specifying the conditions for producing the C / C composite substrate and the conditions for silicidation by the conversion method. Therefore, it is extremely useful as a C / C composite material used under high temperature and severe atmosphere and a method for producing the same.

【図面の簡単な説明】[Brief description of the drawings]

【図1】C/C複合基材表層部に形成されたSiC被覆
層の模式図である。
FIG. 1 is a schematic view of a SiC coating layer formed on a surface layer portion of a C / C composite base material.

【符号の説明】[Explanation of symbols]

1 C/C複合基材 2 SiC被覆層 3 局所的珪化部 4 最大膜厚 5 平均膜厚 DESCRIPTION OF SYMBOLS 1 C / C composite base material 2 SiC coating layer 3 Local silicide part 4 Maximum film thickness 5 Average film thickness

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 炭素繊維をマトリックス樹脂とともに複
合成形し、硬化および焼成炭化したC/C複合基材の表
層部をコンバージョン法により珪化して形成されたSi
C被覆層が、金属不純物含有量が50ppm 以下、X線回
折によるSiC(111) 面の強度が300 cps以上であ
り、かつC/C複合基材表層部の局所的に珪化されたS
iC被覆層の最大膜厚が、SiC被覆層の平均膜厚の
1.01〜1.2倍であることを特徴とする耐酸化性C
/C複合材。
1. A Si layer formed by subjecting a carbon fiber to composite molding with a matrix resin and silicifying a surface layer of a C / C composite base material cured and calcined by a conversion method.
The C coating layer has a metal impurity content of 50 ppm or less, a strength of the SiC (111) plane by X-ray diffraction of 300 cps or more, and a locally silicified S on the surface layer of the C / C composite base material.
The oxidation resistant C, wherein the maximum thickness of the iC coating layer is 1.01 to 1.2 times the average thickness of the SiC coating layer.
/ C composite.
【請求項2】 炭素繊維をマトリックス樹脂とともに複
合成形、硬化および焼成炭化し、更に高純度化処理なら
びに黒鉛化処理を行って嵩密度が1.55〜1.75 g
/cm3、空隙の最大モード径が0.1〜10μm 、金属不
純物含有量が20 ppm以下のC/C複合基材を作製し、
該C/C複合基材を、金属不純物量が100 ppm以下、
粒子径が300μm 以下の珪素源と、金属不純物量が1
0 ppm以下、粒子径が100μm 以下の炭素源との混合
粉末を加熱反応させて生成するSiOガスと非酸化性雰
囲気中1600〜2000℃の温度域で接触させてC/
C複合基材の表層部をコンバージョン法により珪化し
て、SiC被覆層を形成することを特徴とする耐酸化性
C/C複合材の製造方法。
2. Carbon fiber is composite-molded with a matrix resin, cured and calcined, and then subjected to a high-purification treatment and a graphitization treatment to obtain a bulk density of 1.55 to 1.75 g.
/ cm 3, the maximum mode diameter voids 0.1 to 10 [mu] m, the metal impurity content is prepared following C / C composite base material 20 ppm,
The C / C composite substrate has a metal impurity content of 100 ppm or less,
A silicon source having a particle diameter of 300 μm or less, and a metal impurity amount of 1
0 ppm or less, a mixed powder with a carbon source having a particle diameter of 100 μm or less is brought into contact with SiO gas generated by heating and reacting in a non-oxidizing atmosphere in a temperature range of 1600 to 2000 ° C.
A method for producing an oxidation-resistant C / C composite material, comprising forming a SiC coating layer by silicifying a surface layer portion of a C composite base material by a conversion method.
JP01803398A 1998-01-14 1998-01-14 Oxidation resistant C / C composite and method for producing the same Expired - Lifetime JP3853058B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01803398A JP3853058B2 (en) 1998-01-14 1998-01-14 Oxidation resistant C / C composite and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01803398A JP3853058B2 (en) 1998-01-14 1998-01-14 Oxidation resistant C / C composite and method for producing the same

Publications (2)

Publication Number Publication Date
JPH11199354A true JPH11199354A (en) 1999-07-27
JP3853058B2 JP3853058B2 (en) 2006-12-06

Family

ID=11960367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01803398A Expired - Lifetime JP3853058B2 (en) 1998-01-14 1998-01-14 Oxidation resistant C / C composite and method for producing the same

Country Status (1)

Country Link
JP (1) JP3853058B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011051866A (en) * 2009-09-04 2011-03-17 Toyo Tanso Kk Method for producing silicon carbide-coated carbon substrate, silicon carbide-coated carbon substrate, silicon carbide-carbon composite sintered compact, ceramic-coated silicon carbide-carbon composite sintered compact, and method for producing silicon carbide-carbon composite sintered compact
CN113045339A (en) * 2020-10-30 2021-06-29 南京航空航天大学 Anti-oxidation ZrB on surface of C-C composite material2-SiC-Y2O3-SiC coating and method for producing the same
CN115536440A (en) * 2022-09-29 2022-12-30 兰州空间技术物理研究所 Preparation method of high-temperature oxidation-resistant coating for thermal protection of composite material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011051866A (en) * 2009-09-04 2011-03-17 Toyo Tanso Kk Method for producing silicon carbide-coated carbon substrate, silicon carbide-coated carbon substrate, silicon carbide-carbon composite sintered compact, ceramic-coated silicon carbide-carbon composite sintered compact, and method for producing silicon carbide-carbon composite sintered compact
CN113045339A (en) * 2020-10-30 2021-06-29 南京航空航天大学 Anti-oxidation ZrB on surface of C-C composite material2-SiC-Y2O3-SiC coating and method for producing the same
CN115536440A (en) * 2022-09-29 2022-12-30 兰州空间技术物理研究所 Preparation method of high-temperature oxidation-resistant coating for thermal protection of composite material
CN115536440B (en) * 2022-09-29 2023-10-10 兰州空间技术物理研究所 Preparation method of high-temperature antioxidant coating for thermal protection of composite material

Also Published As

Publication number Publication date
JP3853058B2 (en) 2006-12-06

Similar Documents

Publication Publication Date Title
EP0891956B2 (en) Silicon-silicon carbide material and silicon carbide fiber-reinforced silicon-silicon carbide composite material
US20100015332A1 (en) Method of fabricating a friction part out of carbon/carbon composite material
WO1991002705A1 (en) Fiber reinforced composite having an aluminum phosphate bonded matrix
Aleshkevich et al. High performance carbon–carbon composites obtained by a two-step process from phthalonitrile matrix composites
JP4539014B2 (en) Oxidation resistant C / C composite and method for producing the same
Rocha et al. Formation of carbon fiber-reinforced ceramic matrix composites with polysiloxane/silicon derived matrix
JP3853058B2 (en) Oxidation resistant C / C composite and method for producing the same
JP3829964B2 (en) Method for producing carbon fiber reinforced carbon composite
JP3853035B2 (en) Oxidation resistant C / C composite and method for producing the same
JP3461424B2 (en) Method for producing oxidation resistant C / C composite
JP2607409B2 (en) Oxidation-resistant treatment of carbon fiber reinforced carbon composites.
JP2579563B2 (en) Oxidation-resistant treatment of carbon fiber reinforced carbon composites.
JP3562989B2 (en) Composite having thermal sprayed layer and method for producing the same
JP3494533B2 (en) Method for producing oxidation resistant C / C composite
Ghanem et al. Oxidation behavior of silicon carbide based biomorphic ceramics prepared by chemical vapor infiltration and reaction technique
JPH08169786A (en) Production of oxidation resistant carbon fiber reinforced carbon composite material
JP3548597B2 (en) Oxidation-resistant treatment method of carbon fiber reinforced carbon composite
JP2001289226A (en) Screw made of carbon fiber reinforced carbon composite material
JPH06345571A (en) Production of high-temperature oxidation resistant c/c composite material
JPH0952777A (en) Production of oxidation resistant c/c composite material
JP2002173392A (en) C/c member for single crystal pulling device
JP3599791B2 (en) Oxidation-resistant treatment of carbon fiber reinforced carbon composites
JP4218853B2 (en) Carbonaceous crucible for pulling single crystal and method for producing the same
JPH0798703B2 (en) Method for producing heat resistant oxidation resistant carbon fiber reinforced carbon composite material
JPH05170537A (en) Carbon fiber-reinforced composite carbon material and its production

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060905

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100915

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110915

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120915

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120915

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130915

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term