JPH1119780A - Hip joining method of beryllium - Google Patents

Hip joining method of beryllium

Info

Publication number
JPH1119780A
JPH1119780A JP17378797A JP17378797A JPH1119780A JP H1119780 A JPH1119780 A JP H1119780A JP 17378797 A JP17378797 A JP 17378797A JP 17378797 A JP17378797 A JP 17378797A JP H1119780 A JPH1119780 A JP H1119780A
Authority
JP
Japan
Prior art keywords
beryllium
hip
pieces
mpa
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17378797A
Other languages
Japanese (ja)
Other versions
JP3621559B2 (en
Inventor
Koji Iwatate
孝治 岩立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP17378797A priority Critical patent/JP3621559B2/en
Publication of JPH1119780A publication Critical patent/JPH1119780A/en
Application granted granted Critical
Publication of JP3621559B2 publication Critical patent/JP3621559B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent peeling due to difference in a thermal expansion coefficient of materials in use by covering the surface of different kinds of material with tile- shaped beryllium pieces, whose sides are in contact with each other in the bottom only, with the parts other than the bottom forming a space of a specific width between the adjacent pieces, and making an HIP joined body under specific conditions. SOLUTION: On the surface of a stainless steel plate, copper plate or their composite material 1, tile-shaped beryllium pieces are laid, whose sides are in contact with each other, with the parts other than the bottom forming a space g of 0.2-2.5 mm between the adjacent pieces. This entirety, after being covered with a sheath material, is given an HIP processing under the conditions, a temperature of 430-650 deg.C and a pressure of 80-130 MPa, joined and made a beryllium joined body. Consequently, it enables, in the case of a neutron reflector for example, omission of the grooving on a joined body beryllium plate face which is performed for the purpose of relaxing a thermal stress by the difference in a thermal expansion coefficient between the top and bottom materials used. Incidentally, at the time of the HIP processing, the thickness of the sheath material is made larger in the side face than in the top/bottom faces, reducing pressure transmission from the side face.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、ベリリウムを、
銅合金やステンレス鋼などの異種合金と効果的に接合す
ることができる、ベリリウムのHIP接合法に関するも
のである。
TECHNICAL FIELD The present invention relates to a beryllium,
The present invention relates to a beryllium HIP bonding method capable of effectively bonding with a dissimilar alloy such as a copper alloy or stainless steel.

【0002】[0002]

【従来の技術】最近、ベリリウムが、材料試験炉の中性
子反射体や大型中性子加速器向けの反射体などの用途に
用いられている。このような用途では、通常、ベリリウ
ムペブルを大型の構造部材中に充填する形で使用に供さ
れているが、その構造をシンプルにするため、ベリリウ
ム板を、SUS 304 等のステンレス鋼やアルミナ分散強化
銅(DSCu)等の銅合金さらには両者の積層体と接合した
複合材が検討されている。また、その接合方法としては
HIP接合法が注目を浴びている。
2. Description of the Related Art Recently, beryllium has been used for applications such as neutron reflectors for material testing furnaces and reflectors for large neutron accelerators. In such applications, beryllium pebbles are usually used in large-sized structural members, but in order to simplify the structure, beryllium plates are dispersed in stainless steel such as SUS 304 or alumina dispersion. A copper alloy such as reinforced copper (DSCu) and a composite material joined to a laminate of both are being studied. Also, as the bonding method, the HIP bonding method is receiving attention.

【0003】かようなベリリウム接合体において、その
使用に際し、温度の上昇、下降を伴う場合には、ベリリ
ウムとステンレス鋼または銅合金との熱膨張率の差に起
因して接合界面ではく離が生じるおそれがあることか
ら、かかる熱膨張率の違いに由来する異種金属間の熱応
力を緩和する目的で、ベリリウム板にスリットが入れら
れる。
In the case of using such a beryllium joined body, if the temperature rises or falls during its use, separation occurs at the joint interface due to the difference in the coefficient of thermal expansion between beryllium and stainless steel or a copper alloy. Because of the possibility, a slit is formed in the beryllium plate for the purpose of relieving the thermal stress between dissimilar metals resulting from the difference in the coefficient of thermal expansion.

【0004】[0004]

【発明が解決しようとする課題】従来、かようなスリッ
ト加工は、HIP処理を施した後に、機械加工や放電加
工等により実施されてきた。しかしながら、上記の方法
では、細溝の深溝加工を必要とし、しかもBeが難削材で
あることも相まって、工作上の難度が高く、また多大な
時間を必要とするところにも問題を残していた。
Conventionally, such slit processing has been performed by machining, electric discharge machining or the like after HIP processing. However, in the above method, deep groove processing of a narrow groove is required, and in addition to the fact that Be is a difficult-to-cut material, the difficulty in working is high, and a problem remains where a great amount of time is required. Was.

【0005】この発明は、上記の問題を有利に解決する
もので、接合材としてのBe片の形状に工夫を加えると共
に、HIP処理条件の最適化を図ることによって、後工
程でのスリット加工を不要ならしめた、新しいベリリウ
ムのHIP接合法を提案することを目的とする。
[0005] The present invention advantageously solves the above-mentioned problems. In addition to devising the shape of a Be piece as a bonding material and optimizing HIP processing conditions, slit processing in a post-process can be performed. An object of the present invention is to propose a new beryllium HIP bonding method which is unnecessary.

【0006】[0006]

【課題を解決するための手段】すなわち、この発明は、
ベリリウムと異種材料とをHIP接合するに際し、異種
材料の表面に、各辺が相互に底部でのみ接触し、底部以
外は隣接相互間で0.2 〜2.5 mmのギャップを形成する辺
形状になるタイル状のベリリウム片を敷きつめ、全体を
シース材で被覆した後、温度:430 〜650 ℃、圧力:80
〜130 MPaの条件下でHIP処理を行うことを特徴とす
るベリリウムのHIP接合法である。
That is, the present invention provides:
When beryllium and dissimilar materials are HIP-bonded, the sides of the dissimilar materials are in contact with each other only at the bottom at the bottom, and the sides other than the bottom have a side shape that forms a gap of 0.2-2.5 mm between adjacent sides. After covering with a piece of beryllium and covering the whole with a sheath material, temperature: 430 to 650 ° C, pressure: 80
This is a beryllium HIP bonding method, characterized in that HIP processing is performed under conditions of up to 130 MPa.

【0007】この発明において、代表的な異種材料とし
ては、ステンレス鋼や銅合金さらにはそれらの複合体が
挙げられる。
In the present invention, typical dissimilar materials include stainless steel, copper alloys, and composites thereof.

【0008】また、この発明では、シース材の厚みを、
被処理材の上下面側よりも側面側で厚くすることによっ
て、側面からの圧力伝達を軽減することが有利である。
ここに、被処理材の側面側におけるシース材の厚みとし
ては、上下面側のそれの 1.5〜3.0 倍とすることが好ま
しく、かかる肉厚差をつけることによって、HIP処理
時における付加圧力の上限を 180 MPaまで高めることが
できる。
In the present invention, the thickness of the sheath material is
It is advantageous to reduce pressure transmission from the side surface by making the material to be processed thicker on the side surface than on the upper and lower surfaces.
Here, the thickness of the sheath material on the side surface side of the material to be treated is preferably 1.5 to 3.0 times that of the upper and lower surface sides. Can be increased to 180 MPa.

【0009】[0009]

【発明の実施の形態】以下、この発明を具体的に説明す
る。さて、HIP処理後のスリット加工を省略しようと
する場合、図1(a) に示すように、ステンレス鋼や銅合
金等の異種材料1の表面にBe片2を隙間をあけて並べる
ことが考えられるが、通常の場合には、HIP時の圧力
により、同図(b) に示すように、Be片間の隙間はなくな
ってしまう。なお、図中番号3はシース材である。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be specifically described below. Now, in order to omit the slit processing after the HIP processing, as shown in FIG. 1A, it is conceivable to arrange Be pieces 2 on the surface of a dissimilar material 1 such as stainless steel or a copper alloy with a gap. However, in the normal case, due to the pressure during the HIP, the gap between the Be pieces disappears as shown in FIG. In addition, number 3 in the figure is a sheath material.

【0010】そこで、この発明では、Be片2の形状とく
に辺の形状を、図2に示すような形に加工する。すなわ
ち、各辺が相互に底部でのみ接触し、底部以外は隣接相
互間で適当なギャップgが形成される辺形状になるタイ
ル状に加工するのである。ここに、各Be片2の接触域と
しての底部厚みtは 0.5〜5.0 mm程度とするのが好まし
い。というのは、底部厚みtが 0.5mmに満たないと、加
圧時における横方向の圧力によって、せっかく形成した
上記ギャップgが消失するおそれがあり、一方 5.0mmを
超えると熱膨張差に起因した異種金属間の熱応力を十分
に緩和することができないからである。なお、Be片の厚
みは、通常、10〜100 mm程度である。また、ギャップg
の大きさは、 0.2〜2.5 mm程度とするのが好ましい。と
いうのは、ギャップgが 0.2mmに満たないと、やはり異
種金属間の熱応力を十分に緩和することができず、一方
2.5mmを超えると中性子反射体としての機能が低下する
からである。
Therefore, in the present invention, the shape of the Be piece 2, particularly the shape of the side, is processed into a shape as shown in FIG. That is, each side contacts each other only at the bottom, and other than the bottom is processed into a tile shape having a side shape in which an appropriate gap g is formed between adjacent ones. Here, the bottom thickness t as a contact area of each Be piece 2 is preferably about 0.5 to 5.0 mm. That is, if the bottom thickness t is less than 0.5 mm, the above-mentioned gap g formed by the lateral pressure at the time of pressurization may disappear, while if it exceeds 5.0 mm, it may be caused by a difference in thermal expansion. This is because thermal stress between dissimilar metals cannot be sufficiently reduced. The thickness of the Be piece is usually about 10 to 100 mm. Also, the gap g
Is preferably about 0.2 to 2.5 mm. This is because if the gap g is less than 0.2 mm, the thermal stress between dissimilar metals cannot be sufficiently alleviated.
If the thickness exceeds 2.5 mm, the function as a neutron reflector deteriorates.

【0011】さらに、Be片2の平面形状としては、図3
(a), (b), (c) に示すような、四角形、三角形および平
行四辺形などが特に有利に適合するが、これだけに限定
されるものではなく、要は各Be片が相互に密接できる形
状のものであれば良い。
Further, the planar shape of the Be piece 2 is shown in FIG.
Squares, triangles, and parallelograms, as shown in (a), (b), and (c), are particularly advantageous, but are not limited thereto. Any shape can be used as long as it can be formed.

【0012】上記したようなBe片形状にしておけば、H
IP処理時に横方向の圧力が作用しても、従来のように
Be片がずれることはない。とはいえ、このような構造と
しても、HIP時における処理条件があまりに高温、高
圧だと、やはりBeの塑性変形が生じ、図4に示すよう
に、ギャップが埋まってしまうおそれがある。
If the above-mentioned Be piece shape is used, H
Even if lateral pressure acts during IP processing,
Be pieces do not shift. Nevertheless, even with such a structure, if the processing conditions during HIP are too high and high pressure, plastic deformation of Be also occurs, and the gap may be filled as shown in FIG.

【0013】しかしながら、この点については、HIP
処理時における温度と圧力を、Beの応力−ひずみ曲線か
ら、ひずみとして許容される範囲内に抑制することによ
って、有利に解決することができる。図5に、BeOを約
1wt%含むBeの応力−ひずみ曲線を示すが、同図によれ
ば、処理後に許容されるBeのひずみを0.01とした場合、
温度が 427℃の条件下では、19.2 KSI以下すなわち 13
2.2 MPa以下の圧力であれば、これ以上Beは歪むことが
なく、従って細溝を残存させることができる。
However, in this regard, HIP
This can be advantageously solved by suppressing the temperature and pressure during the processing from the stress-strain curve of Be within a range allowable as strain. FIG. 5 shows a stress-strain curve of Be containing about 1 wt% of BeO. According to FIG. 5, when the allowable strain of Be after the treatment is 0.01.
Under conditions of a temperature of 427 ° C, 19.2 KSI or less, ie 13
If the pressure is 2.2 MPa or less, Be does not warp any more, so that a narrow groove can be left.

【0014】ここに、HIP温度が 430℃に満たない
と、Beとステンレス鋼、銅合金との接合は、たとえ中間
インサート層を利用したとしても極めて難しく、一方 6
50℃を超えると、圧力を 79.2 MPa 以下に抑える必要が
生じるが、このような低い圧力では、十分な接合信頼性
を確保することができない。
Here, if the HIP temperature is lower than 430 ° C., the joining of Be to stainless steel and copper alloy is extremely difficult even if the intermediate insert layer is used, while 6
If the temperature exceeds 50 ° C, the pressure must be reduced to 79.2 MPa or less, but at such a low pressure, sufficient bonding reliability cannot be ensured.

【0015】そこで、この発明では、HIPの処理条件
として、温度:430 〜650 ℃、圧力:80〜130 MPa の範
囲に限定したのである。なお、従来のBeとステンレス
鋼、銅合金との接合に際しては、接合能率の面から、よ
り高温かつ高圧条件が採用され、通常は 750〜850 ℃、
180〜220 MPa というかなり高い温度−圧力条件下で接
合が実施されており、これまで、この発明のような比較
的低温かつ低圧での接合が検討された試しはない。
Therefore, in the present invention, the HIP processing conditions are limited to the range of temperature: 430 to 650 ° C. and pressure: 80 to 130 MPa. In addition, when joining conventional Be with stainless steel and copper alloy, higher temperature and higher pressure conditions are adopted from the viewpoint of joining efficiency, usually 750 to 850 ° C,
Joining has been performed under a considerably high temperature-pressure condition of 180 to 220 MPa, and there has been no trial of joining at relatively low temperature and low pressure as in the present invention.

【0016】また、上記したような比較的低温で、Be片
と異種材料たとえばDSCuを接合する場合、Be片とDSCuと
の間に、純Cu、Al−Ti、Ti−CuおよびAl−Ti−Cuなどの
軟質の中間層(2μm 〜2mm程度)を設けることが好ま
しい。また、必要に応じて、Beの拡散過剰による金属間
化合物の成長を抑制する目的でTiやNi−Tiなどのバリア
層(数Å〜0.2 mm)を設けても良い。なお、中間層の形
成方法は、箔を挿入する方法、PVDによる膜形成方法
等、従来公知の方法いずれもが適合する。
When a Be piece and a different material such as DSCu are joined at a relatively low temperature as described above, pure Cu, Al—Ti, Ti—Cu, and Al—Ti— It is preferable to provide a soft intermediate layer (about 2 μm to 2 mm) of Cu or the like. If necessary, a barrier layer (several Å to 0.2 mm) of Ti or Ni—Ti may be provided in order to suppress the growth of the intermetallic compound due to excessive diffusion of Be. In addition, as a method for forming the intermediate layer, any conventionally known method such as a method for inserting a foil and a method for forming a film by PVD is suitable.

【0017】ところで、上記したところからも明らかな
ように、Be片の形状と、HIP処理条件との組み合わせ
によって、Beの細溝スリットを初期状態から形成させる
場合、横方向のBeの塑性変形を最低限に抑える必要があ
るため、十分な接合を達成するためのHIP処理条件は
比較的狭い。しかしながら、この点については、側面側
のシース材の肉厚を上下面側よりも増加させることによ
って、圧力許容範囲を拡げることができる。
By the way, as is apparent from the above description, when the narrow groove slit of Be is formed from the initial state by a combination of the shape of the Be piece and the HIP processing conditions, the plastic deformation of Be in the lateral direction is reduced. Due to the need to minimize it, the HIP processing conditions for achieving sufficient bonding are relatively narrow. However, in this regard, the allowable pressure range can be increased by increasing the thickness of the sheath material on the side surface side compared to the upper and lower surface sides.

【0018】すなわち、図6に、その概念を示したとお
り、上下面に対し、側面のシース材肉厚を増加させるの
である。ここで、シース材として一般的な SUS 304を例
にとって説明すると、上面シース材を通常厚みの2〜3
mmとした場合、側面側を4〜6mm程度に厚くすることに
よって、側面からの加圧を効果的に軽減することがで
き、従って、かような異厚シース材を用いた場合には、
付加圧力を 180 MPaまで上昇させることができるのであ
る。
That is, as shown in FIG. 6, the thickness of the sheath material on the side surface is increased with respect to the upper and lower surfaces. Here, a description will be given by taking a typical SUS 304 as an example of the sheath material.
In the case of mm, by increasing the thickness of the side surface to about 4 to 6 mm, the pressure from the side surface can be effectively reduced. Therefore, when such a different thickness sheath material is used,
The additional pressure can be raised to 180 MPa.

【0019】[0019]

【実施例】実施例1 DSCuの片面に、Be(グレードS65C)をHIP接合するに
当たり、図7に示す形状のタイル状Be片を用意した。な
お、各Be片の底面には、予めAl−Ti−Cuの複合膜(厚
み:40μm)をPVD法により形成させておいた。このよ
うなBe片を、DSCuの上に縦、横それぞれ5列に並べ、全
体を厚み:2mmの SUS 304でシースしたのち、温度:55
0 ℃、圧力:110 MPa の条件下に2時間HIP処理し
た。
Example 1 In order to HIP-bond Be (grade S65C) to one surface of DSCu, a tile-shaped Be piece having the shape shown in FIG. 7 was prepared. An Al-Ti-Cu composite film (thickness: 40 µm) was previously formed on the bottom surface of each Be piece by a PVD method. After arranging such Be pieces in 5 rows each on the length and width on the DSCu and sheathing the whole with SUS 304 having a thickness of 2 mm, the temperature is 55
HIP treatment was performed for 2 hours under the conditions of 0 ° C. and a pressure of 110 MPa.

【0020】HIP処理後、シース材を剥がして外観を
観察したところ、初期と同様な外観が得られていた。す
なわち、接合前に形成しておいたスリット溝は、ほとん
どそのままのスリット幅で残っており、スリット幅の変
化は 0.1mm以下に抑えられていた。また、Be片とDSCuと
の接合強度はせん断強度で 220 MPaであり、実用上、十
分に満足できる接合強度を得ることができた。
After the HIP treatment, the sheath material was peeled off and the appearance was observed. As a result, the same appearance as the initial stage was obtained. That is, the slit groove formed before the bonding remains with almost the same slit width, and the change in the slit width was suppressed to 0.1 mm or less. The joining strength between the Be piece and DSCu was 220 MPa in shear strength, and a sufficiently satisfactory joining strength could be obtained in practical use.

【0021】実施例2 実施例1と同様に、一辺が25mmの正方形で、底部厚みt
が 1.0mm、ギャップgが 1.0mmを構成するタイル状のBe
片を用意した。このBe片の底面には、予めCuの薄膜(厚
み:20μm)をPVD法により形成させておいた。このよ
うなBe片を、DSCuの上に縦、横それぞれ4列に並べ、全
体を SUS 304でシースしたのち、温度:540 ℃、圧力:
120 MPa の条件下に2時間HIP処理した。この時、シ
ース材の厚みは、上下面:3mm、側面:5mmとした。
Example 2 As in Example 1, a square having a side of 25 mm and a bottom thickness t was used.
Is 1.0mm and the gap g is 1.0mm.
A piece was prepared. On the bottom surface of the Be piece, a Cu thin film (thickness: 20 μm) was previously formed by a PVD method. After arranging such Be pieces in four rows vertically and horizontally on DSCu and sheathing the whole with SUS 304, temperature: 540 ° C, pressure:
HIP treatment was performed for 2 hours under the condition of 120 MPa. At this time, the thickness of the sheath material was 3 mm for the upper and lower surfaces and 5 mm for the side surfaces.

【0022】HIP処理後、シース材を剥がして外観を
観察したところ、スリット幅の変化は 0.1mm以下であ
り、またBe片とDSCuとの接合状態もせん断強度:200 MP
a と良好であった。
After the HIP treatment, the sheath material was peeled off and the appearance was observed. The change in the slit width was 0.1 mm or less, and the joint strength between the Be piece and DSCu was 200 MPa in shear strength.
a was good.

【0023】[0023]

【発明の効果】かくして、この発明によれば、ベリリウ
ムを異種材料に対してHIP接合するに際し、ベリリウ
ムに予め設けたスリットを消失させることなく効果的に
HIP処理を行うことができ、従来、不可避とされた後
工程でのスリット加工を必要としなくなるので、省工程
および低コスト化の面で偉効を奏する。
As described above, according to the present invention, when HIP bonding of beryllium to a dissimilar material is performed, the HIP process can be performed effectively without losing the slits provided in the beryllium. This eliminates the need for slit processing in the post-process, which is advantageous in terms of process saving and cost reduction.

【図面の簡単な説明】[Brief description of the drawings]

【図1】異種材料の表面にBe片を単に隙間をあけて並べ
た状態でHIP処理を施した場合の、HIP処理前(a)
および処理後(b) におけるBe片の配置状態の違いを比較
して示した図である。
FIG. 1 shows a state before HIP processing when HIP processing is performed in a state in which Be pieces are arranged on a surface of a dissimilar material simply with a gap therebetween (a).
FIG. 9 is a diagram showing a comparison of differences in the arrangement of Be pieces after processing and (b).

【図2】この発明に従う、タイル状Be片の好適辺形状を
示した図である。
FIG. 2 is a diagram showing a preferred side shape of a tile-shaped Be piece according to the present invention.

【図3】この発明に従う、タイル状Be片の好適平面形状
を示した図である。
FIG. 3 is a diagram showing a preferred planar shape of a tile-shaped Be piece according to the present invention.

【図4】高温、高圧下でHIP処理した場合のBe片の凝
集状態を示した図である。
FIG. 4 is a diagram showing an aggregation state of Be pieces when HIP processing is performed under high temperature and high pressure.

【図5】Beの応力−ひずみ曲線図である。FIG. 5 is a stress-strain curve diagram of Be.

【図6】シース材の厚みを、被処理材の上下面側よりも
側面側で厚くした場合を示す模式図である。
FIG. 6 is a schematic diagram showing a case where the thickness of a sheath material is larger on the side surface than on the upper and lower surfaces of the material to be processed.

【図7】実施例1におけるタイル状Be片の好適辺形状を
示した図である。
FIG. 7 is a diagram illustrating a preferred side shape of the tile-shaped Be piece in the first embodiment.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI B23K 103:18 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI B23K 103: 18

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ベリリウムと異種材料とをHIP接合す
るに際し、 異種材料の表面に、各辺が相互に底部でのみ接触し、底
部以外は隣接相互間で0.2 〜2.5 mmのギャップを形成す
る辺形状になるタイル状のベリリウム片を敷きつめ、全
体をシース材で被覆した後、温度:430 〜650 ℃、圧
力:80〜130 MPaの条件下でHIP処理を行うことを特
徴とするベリリウムのHIP接合法。
When a beryllium and a dissimilar material are HIP-bonded to each other, the sides of the dissimilar material are in contact with each other only at the bottom, and the sides other than the bottom form a gap of 0.2 to 2.5 mm between adjacent parts. The beryllium HIP contact is characterized in that a tile-shaped beryllium piece to be shaped is laid, and the whole is covered with a sheath material, and then subjected to HIP treatment under the conditions of temperature: 430 to 650 ° C and pressure: 80 to 130 MPa. legal.
【請求項2】 請求項1において、異種材料が、ステン
レス鋼、銅合金またはそれらの複合体のいずれかである
ベリリウムのHIP接合法。
2. The method of claim 1, wherein the dissimilar material is one of stainless steel, a copper alloy, and a composite thereof.
【請求項3】 請求項1または2において、シース材の
厚みを、被処理材の上下面側よりも側面側で厚くし、側
面からの圧力伝達を軽減することを特徴とするベリリウ
ムのHIP接合法。
3. The HIP contact of beryllium according to claim 1, wherein the thickness of the sheath material is made thicker on the side surface than on the upper and lower surfaces of the material to be processed to reduce pressure transmission from the side surface. legal.
【請求項4】 請求項3において、HIP処理時におけ
る付加圧力の上限を180 MPa まで高めたことを特徴とす
るベリリウムのHIP接合法。
4. The method of claim 3, wherein the upper limit of the additional pressure during the HIP process is increased to 180 MPa.
JP17378797A 1997-06-30 1997-06-30 HIP joining method of beryllium Expired - Lifetime JP3621559B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17378797A JP3621559B2 (en) 1997-06-30 1997-06-30 HIP joining method of beryllium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17378797A JP3621559B2 (en) 1997-06-30 1997-06-30 HIP joining method of beryllium

Publications (2)

Publication Number Publication Date
JPH1119780A true JPH1119780A (en) 1999-01-26
JP3621559B2 JP3621559B2 (en) 2005-02-16

Family

ID=15967149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17378797A Expired - Lifetime JP3621559B2 (en) 1997-06-30 1997-06-30 HIP joining method of beryllium

Country Status (1)

Country Link
JP (1) JP3621559B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100773766B1 (en) 2006-11-09 2007-11-12 한국원자력연구원 Hot isostatic pressing joining method between be using one process in physical vapor deposition chamber and cu alloy
KR100813568B1 (en) 2006-10-24 2008-03-17 한국원자력연구원 Hot isostatic pressing joining method between be and cu alloy using single or double interlayers
KR100813569B1 (en) 2006-10-30 2008-03-17 한국원자력연구원 Joining method between mechanically or chemically treated be and cu alloy
FR2980297A1 (en) * 2011-09-21 2013-03-22 Aircelle Sa IMPLEMENTATION OF ACOUSTIC INTERMEDIATE SKIN
CN108202180A (en) * 2016-12-20 2018-06-26 宁波江丰电子材料股份有限公司 The manufacturing method of target material assembly
CN108746980A (en) * 2018-06-26 2018-11-06 宁波江丰电子材料股份有限公司 Hot isostatic press welding titanium target and aluminium jacket partition method
CN108788434A (en) * 2018-06-26 2018-11-13 宁波江丰电子材料股份有限公司 Hot isostatic press welding included a tantalum target and aluminium jacket partition method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100813568B1 (en) 2006-10-24 2008-03-17 한국원자력연구원 Hot isostatic pressing joining method between be and cu alloy using single or double interlayers
KR100813569B1 (en) 2006-10-30 2008-03-17 한국원자력연구원 Joining method between mechanically or chemically treated be and cu alloy
KR100773766B1 (en) 2006-11-09 2007-11-12 한국원자력연구원 Hot isostatic pressing joining method between be using one process in physical vapor deposition chamber and cu alloy
FR2980297A1 (en) * 2011-09-21 2013-03-22 Aircelle Sa IMPLEMENTATION OF ACOUSTIC INTERMEDIATE SKIN
WO2013041795A1 (en) * 2011-09-21 2013-03-28 Aircelle Intermediate acoustic skin and the implementation thereof
US9073622B2 (en) 2011-09-21 2015-07-07 Aircelle Intermediate acoustic skin and the implementation thereof
CN108202180A (en) * 2016-12-20 2018-06-26 宁波江丰电子材料股份有限公司 The manufacturing method of target material assembly
CN108746980A (en) * 2018-06-26 2018-11-06 宁波江丰电子材料股份有限公司 Hot isostatic press welding titanium target and aluminium jacket partition method
CN108788434A (en) * 2018-06-26 2018-11-13 宁波江丰电子材料股份有限公司 Hot isostatic press welding included a tantalum target and aluminium jacket partition method

Also Published As

Publication number Publication date
JP3621559B2 (en) 2005-02-16

Similar Documents

Publication Publication Date Title
EP1974847B1 (en) Bonding method of dissimilar materials made from metals and bonding structure thereof
US20030218054A1 (en) Method for forming sputter target assemblies
US5322740A (en) Solid state joint between aluminum alloys and/or magnesium alloys, and a method of making same
JP2001507407A (en) Method for manufacturing high-purity copper sputtering target
EP2530707A2 (en) Method for joining metal-ceramic substrates to metal bodies
US5807443A (en) Sputtering titanium target assembly and producing method thereof
JPH1119780A (en) Hip joining method of beryllium
JP2000312979A (en) Aluminum/stainless steel clad material, and its manufacturing method
KR101645834B1 (en) High-purity copper sputtering target
TW201211292A (en) Method for bonding components of a sputtering target, a bonded assembly of sputtering target components and the use thereof
JPH06108246A (en) Diffusion-bond sputtering target assembly and its production
JPS6133645B2 (en)
EP3302872A1 (en) Brazing processes and brazed products
JPS58128281A (en) Diffusion bonding method of sintered hard alloy and steel
JP4055596B2 (en) Composite
JPWO2002039046A1 (en) Hollow laminate and heat sink using the same
JP3167962B2 (en) Beryllium HIP bonding
JPH01309791A (en) Production of titanium clad steel plate having excellent joinability
JP2651847B2 (en) Aluminum alloy for ceramic joining
JP4522678B2 (en) Thin Al-Cu bonded structure and manufacturing method thereof
JPH07110428B2 (en) Pressure bonding method
JPH09143707A (en) Production of target for sputtering and target for sputtering
JP3660013B2 (en) Sputtering target
JP2001262329A (en) Solid phase diffusion-joined sputtering target assembly and its producing method
JP2001225176A (en) Producing method for hip joined body of beryllium and copper alloy and hip joined body

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041026

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041118

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101126

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101126

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111126

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111126

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121126

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term