JPH11190850A - Liquid crystal element and manufacturing method therefor - Google Patents

Liquid crystal element and manufacturing method therefor

Info

Publication number
JPH11190850A
JPH11190850A JP35882397A JP35882397A JPH11190850A JP H11190850 A JPH11190850 A JP H11190850A JP 35882397 A JP35882397 A JP 35882397A JP 35882397 A JP35882397 A JP 35882397A JP H11190850 A JPH11190850 A JP H11190850A
Authority
JP
Japan
Prior art keywords
liquid crystal
partition member
substrates
substrate
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP35882397A
Other languages
Japanese (ja)
Inventor
Yasuyuki Watabe
泰之 渡部
Shinjiro Okada
伸二郎 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP35882397A priority Critical patent/JPH11190850A/en
Publication of JPH11190850A publication Critical patent/JPH11190850A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PROBLEM TO BE SOLVED: To achieve a uniform drive display over a whole display screen without influence by drive electrodes by forming the thickness of a partition part vertical to a substrate so that it becomes thinner as it goes away from a connection part of a liquid crystal drive voltage supply source. SOLUTION: As a material of a partition member 19, a photosensitive material such as acrylic photosensitive resin, etc., is desirable, which can be bonded to top and bottom substrates 11, 12, applicable in a state of the solution, and can also be patterned easily through a photo-lithographic process. The material film is cured by heating during a substrate sticking process. Moreover, a thickness of the partition member 19 vertical to the substrates is formed so as to be thinner as it goes away from a liquid crystal drive voltage supply source connected with the liquid crystal display element. And, in a rotary coating process of the material for forming the partition member 19, a temperature of the substrates is controlled by controlling the temperature of a substrate holder mounting the substrates thereon to form a temperature distribution on the substrates for forming the film thickness distribution on the material film to be formed on the substrates.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、液晶表示装置や液
晶光シャッター等に用いる液晶素子に関し、特に自発分
極の作用を利用して駆動する強誘電性液晶(FLC)や
反強誘電性液晶等カイラルスメクチック液晶を用いた液
晶素子に好適な液晶素子とその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal element used for a liquid crystal display device or a liquid crystal optical shutter, and more particularly to a ferroelectric liquid crystal (FLC) or an antiferroelectric liquid crystal driven by utilizing the action of spontaneous polarization. The present invention relates to a liquid crystal element suitable for a liquid crystal element using a chiral smectic liquid crystal and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来、液晶素子の駆動方式としては様々
な方式が用いられているが、中でも構成が単純で大画面
化の容易な単純マトリクス方式が広く用いられており、
この単純マトリクス方式を好適に用いることのできる液
晶として、強誘電性液晶が挙げられる。この強誘電性液
晶分子の屈折率異方性を利用して偏光素子との組み合わ
せにより透過光線を制御する型の液晶表示素子がクラー
ク(Clark)及びラガーウォル(Lagerwal
l)により提案されている(特開昭56−107216
号公報、米国特許第4367942号明細書等)。
2. Description of the Related Art Conventionally, various methods have been used for driving a liquid crystal element. Among them, a simple matrix method, which has a simple structure and is easy to enlarge a screen, is widely used.
As a liquid crystal in which the simple matrix method can be suitably used, there is a ferroelectric liquid crystal. A liquid crystal display device of a type that controls transmitted light in combination with a polarizing element using the refractive index anisotropy of the ferroelectric liquid crystal molecules is known as Clark and Lagerwal.
1) (JP-A-56-107216).
No. 4,367,942).

【0003】上記強誘電性液晶は、一般に特定の温度領
域において、カイラルスメクチックC相(SmC* )ま
たはH相(SmH* )を有し、この状態において、加え
られる電界に応答して第1の光学的安定状態と第2の光
学的安定状態のいずれかを取り、且つ電界の印加のない
時はその状態を維持する性質、即ち双安定性メモリ性を
有し、その上自発分極により反転スイッチングを行うた
め非常に速い応答速度を示す。さらに視角特性も優れて
いることから、特に高速、高精細、大画面の表示素子と
して適している。
The ferroelectric liquid crystal generally has a chiral smectic C phase (SmC * ) or an H phase (SmH * ) in a specific temperature range, and in this state, the first phase responds to an applied electric field. It has one of an optically stable state and a second optically stable state, and maintains the state when no electric field is applied, that is, it has a bistable memory property. Shows a very fast response speed. Further, since it has excellent viewing angle characteristics, it is particularly suitable as a high-speed, high-definition, large-screen display element.

【0004】また、同様の液晶分子の屈折率異方性と自
発分極を利用して表示素子を構成する技術として、反強
誘電性を示す液晶が知られている。この反強誘電性液晶
は、一般に特定の温度領域において、カイラルスメクチ
ックCA相(SmCA)を有し、この状態において無電
界時には平均的な光学的安定状態はスメクチック層法線
方向になるが、電界印加によって平均的な光学的安定状
態が層法線方向から傾く性質を有する。その上、反強誘
電性液晶の場合も自発分極と電界のカップリングによる
スイッチングを行うため、非常に速い応答速度を示し、
高速の表示素子として期待されている。
A liquid crystal exhibiting antiferroelectricity has been known as a technique for constructing a display element utilizing similar refractive index anisotropy and spontaneous polarization of liquid crystal molecules. This antiferroelectric liquid crystal generally has a chiral smectic CA phase (SmCA) in a specific temperature range. In this state, when there is no electric field, the average optical stable state is in the normal direction of the smectic layer. The average optical stable state is inclined from the layer normal direction by application. In addition, the antiferroelectric liquid crystal also performs switching by coupling of spontaneous polarization and electric field, so it shows a very fast response speed,
It is expected as a high-speed display element.

【0005】一方、上記強誘電性液晶において良好なス
イッチング特性を得るためには、一般的に液晶層厚を、
液晶相の一つであるコレステリック相で生じる液晶分子
のらせん状態のピッチ(一般的には0.1〜数十μm程
度)以下にする必要がある。ここで、液晶素子を大画面
化する際、全表示領域を均一表示させるためには液晶素
子全面に渡り、均一な液晶層厚、言い換えれば液晶を挟
持している一対の基板の間隙(セルギャップ)を均一に
することの重要性が増してくる。そして、このように基
板の間隔を均一にして液晶素子の均一表示を可能にする
ために均一径のスペーサ粒子を素子内に散布する方法が
一般的になされている。
On the other hand, in order to obtain good switching characteristics in the ferroelectric liquid crystal, generally, the thickness of the liquid crystal layer must be
The helical pitch of liquid crystal molecules generated in the cholesteric phase, which is one of the liquid crystal phases, needs to be less than the pitch (generally, about 0.1 to several tens μm). Here, when the liquid crystal element is enlarged, a uniform liquid crystal layer thickness over the entire surface of the liquid crystal element, in other words, a gap between a pair of substrates sandwiching the liquid crystal (cell gap), is required to uniformly display the entire display area. ) Becomes more important. In general, a method of dispersing spacer particles having a uniform diameter in an element in order to make the distance between the substrates uniform and to enable a uniform display of the liquid crystal element is made.

【0006】一方、液晶素子を大画面化するに伴い、液
晶素子周辺で上下基板を保持させるだけでは液晶素子中
央付近でのギャップを均一に保つことが困難になってく
るという不具合が生じる。そこで、これを解決する方法
として、上下基板間にスペーサ粒子径以上にギャップを
広げないように上下基板に密着する粒子状接着剤を散布
し、この粒子状接着剤とスペーサ粒子を併せて使用する
ことにより、均一にギャップを保持する方法が採られて
いる。
On the other hand, as the size of the liquid crystal element becomes larger, it becomes difficult to maintain a uniform gap near the center of the liquid crystal element only by holding the upper and lower substrates around the liquid crystal element. Therefore, as a method for solving this, a particulate adhesive that adheres to the upper and lower substrates is sprayed so as not to widen the gap between the upper and lower substrates beyond the spacer particle diameter, and the particulate adhesive and the spacer particles are used together. Accordingly, a method of uniformly maintaining the gap is employed.

【0007】さらに近年は、配向性の向上、耐衝撃性の
向上を目的に、ドット状またはストライプ状の隔壁部材
を画素外に設ける構造が実用化に向けて検討されてい
る。この構造の利点は、画素内から配向欠陥の核となる
粒子状接着剤及びスペーサを排除することで、配向性の
向上、駆動信頼性の向上が得られることである。
In recent years, a structure in which a dot-shaped or stripe-shaped partition member is provided outside a pixel for the purpose of improving orientation and impact resistance has been studied for practical use. The advantage of this structure is that by eliminating the particulate adhesive and spacer serving as nuclei of alignment defects from within the pixel, it is possible to obtain improved alignment and drive reliability.

【0008】また、強誘電性液晶や反強誘電性液晶にこ
の構造を適用した場合には、耐衝撃性の問題と注入時及
び低温時の空隙欠陥発生の問題を同時に解決することが
できる。従来、温度変化に伴う液晶の体積収縮が原因で
起こる空隙欠陥の発生と、液晶層構造の復元力の低さが
原因の耐衝撃性の不足は、上記接着剤の弾性だけに着目
するとジレンマを生じる問題であった。しかしながら、
本発明者等の検討によって、隔壁部材と液晶の層方向を
平行にすると、液晶層を分断することで空隙欠陥の発生
を抑えながら液晶が流動しない十分な弾性を隔壁部材に
持たせられることが確認され、強誘電性液晶や反強誘電
性液晶を利用する上での問題点が解決された。
Further, when this structure is applied to a ferroelectric liquid crystal or an antiferroelectric liquid crystal, the problem of shock resistance and the problem of void defects at the time of injection and at a low temperature can be simultaneously solved. Conventionally, the occurrence of void defects caused by the volume shrinkage of liquid crystal due to temperature change and the lack of impact resistance due to the low restoring force of the liquid crystal layer structure are a dilemma when focusing solely on the elasticity of the adhesive. It was a problem that occurred. However,
According to the study of the present inventors, when the layer direction of the partition member and the liquid crystal are made parallel, it is possible that the partition member has sufficient elasticity such that the liquid crystal does not flow while suppressing the generation of void defects by dividing the liquid crystal layer. It was confirmed that the problem in using the ferroelectric liquid crystal and the antiferroelectric liquid crystal was solved.

【0009】[0009]

【発明が解決しようとする課題】上記したような構成の
液晶素子において、大画面化を実現しようとする場合、
基板の間隔は記述したように粒子状接着剤とスペーサ粒
子を合わせて使用することにより均一に保持することが
できるが、駆動方法を単純マトリクス方式とすると、透
明電極だけでは液晶素子内で遅延が生じ、この遅延の影
響により液晶素子全面を均一の駆動条件で駆動すること
ができなくなる。
In the case of realizing a large screen in the liquid crystal device having the above-mentioned structure,
As described above, the distance between the substrates can be maintained uniformly by using the particulate adhesive and spacer particles together.However, if the driving method is a simple matrix method, the delay in the liquid crystal element will be caused only by the transparent electrodes. As a result, the entire surface of the liquid crystal element cannot be driven under uniform driving conditions due to the influence of the delay.

【0010】そのため、従来は透明電極に隣接して補助
金属電極を配置しているが、こように補助金属電極を配
置すると、透明電極及び補助金属電極(以下、「駆動電
極」と称する)のラインに印加される駆動信号により駆
動電極が発熱し、この発熱により液晶素子内において駆
動電極の配置方向に対して温度勾配を生じるようにな
る。
Therefore, conventionally, an auxiliary metal electrode is arranged adjacent to the transparent electrode. However, when the auxiliary metal electrode is arranged in this manner, the transparent electrode and the auxiliary metal electrode (hereinafter, referred to as “drive electrode”) are formed. The drive electrodes generate heat due to the drive signals applied to the lines, and this heat generates a temperature gradient in the liquid crystal element in the direction in which the drive electrodes are arranged.

【0011】図3、図4は駆動電極の発熱により発生す
る液晶素子の表示面における温度勾配を模式的示す図で
あり、図中、31は液晶素子、32,32a,32bは
情報信号印加素子群、33は走査信号印加素子群であ
る。
FIGS. 3 and 4 are diagrams schematically showing a temperature gradient on the display surface of the liquid crystal element generated by the heat generation of the drive electrode. In the figures, 31 is a liquid crystal element, and 32, 32a and 32b are information signal applying elements. A group 33 is a scanning signal applying element group.

【0012】図3に示すように、駆動信号の供給方向が
2方向の場合、図中の矢印に沿って、液晶駆動電圧供給
源である情報信号印加素子群32、走査信号印加素子群
33に近くなるほど高温となり、上記信号印加素子群か
ら離れる程低くなっている。また、駆動信号の供給方向
が3方向の場合、図4に示すように、図中の矢印に沿っ
て、走査信号印加素子群33に近くなるほど高温とな
り、離れる程温度が低くなっている。
As shown in FIG. 3, when the driving signal is supplied in two directions, the information signal applying element group 32 and the scanning signal applying element group 33 which are liquid crystal driving voltage supply sources are supplied along the arrows in the figure. The temperature increases as the distance increases, and decreases as the distance from the signal applying element group increases. In the case where the driving signal is supplied in three directions, as shown in FIG. 4, the temperature becomes higher as the position is closer to the scanning signal applying element group 33 and the temperature becomes lower as the distance increases.

【0013】上記のような温度勾配を持つ結果、強誘電
性液晶がユニフォームの2状態間をスイッチングする電
界強度の最小値(以下「しきい値」という)及び2状態
間をスイッチングできなくなる電界強度(以下「クロス
トーク」という)は、図3、図4の矢印で示される方向
に分布を有する。
As a result of the temperature gradient as described above, the minimum value (hereinafter referred to as "threshold") of the electric field intensity at which the ferroelectric liquid crystal switches between the two states of the uniform, and the electric field intensity at which the two states cannot be switched between (Hereinafter referred to as “crosstalk”) has a distribution in a direction indicated by an arrow in FIGS.

【0014】また、このようにしきい値及びクロストー
クが温度勾配の影響を受けると、液晶素子を表示できる
電界強度範囲(以下「駆動マージン」という)も温度勾
配の影響を受けるようになり、その結果、液晶素子内で
の液晶の駆動条件が異なるようになり、表示面全面に亘
り均一駆動表示が不可能になるという問題を生じる。
When the threshold value and the crosstalk are affected by the temperature gradient, the electric field intensity range in which the liquid crystal element can be displayed (hereinafter referred to as "driving margin") is also affected by the temperature gradient. As a result, the driving conditions of the liquid crystal in the liquid crystal element become different, and there arises a problem that the uniform driving display cannot be performed over the entire display surface.

【0015】特に、前記したような配向特性を示す強誘
電性液晶を用いた液晶素子において、液晶素子のセルギ
ャップは他の単純マトリクス方式で駆動できる液晶を用
いた液晶素子よりかなり狭いため、温度勾配はより大き
な問題点となる。
In particular, in a liquid crystal device using a ferroelectric liquid crystal exhibiting the above-described alignment characteristics, the cell gap of the liquid crystal device is considerably narrower than that of a liquid crystal device using a liquid crystal that can be driven by another simple matrix system. Gradients are a bigger problem.

【0016】上記問題点を解決するために、液晶に印加
される電界強度の大きさまたは液晶層厚を温度勾配に対
応して変化させるという提案がなされている。具体的な
手法としては、スペーサや粒子状接着剤の散布密度、或
いは熱ローラーによるプレス圧でセル厚分布をコントロ
ールしようとするものである。
In order to solve the above problems, it has been proposed to change the magnitude of the electric field applied to the liquid crystal or the thickness of the liquid crystal layer according to the temperature gradient. As a specific method, it is intended to control the cell thickness distribution by the spray density of the spacer or the particulate adhesive, or the pressing pressure by a hot roller.

【0017】この中で、前述の隔壁部材を用いたセルに
適用可能な手法は、熱ローラーによるプレスであるが、
この手法はセル厚分布パターンへの対応性と、樹脂の硬
化と別工程になるために接着性、配向性に問題が有っ
た。また、熱ローラープレス自体が付加工程となる。
Among them, a method applicable to a cell using the above-mentioned partition member is pressing by a hot roller.
This method has a problem in the compatibility with the cell thickness distribution pattern and the adhesiveness and orientation since it is a separate step from the curing of the resin. Also, the hot roller press itself is an additional step.

【0018】本発明の目的は、要求されるセル厚分布パ
ターンに対応し、且つ十分な接着力が得られる隔壁部材
を用いた液晶素子の製造方法を提供し、駆動電極からの
発熱に影響されることなく表示面全面にわたり均一駆動
表示ができる液晶素子を提供することにある。さらに
は、高速、高精細、大画面に適した強誘電性液晶素子に
おいて、配向性、駆動信頼性、耐衝撃性、低温保存性を
付与し、安価で高性能な液晶素子を提供することにあ
る。
An object of the present invention is to provide a method for manufacturing a liquid crystal element using a partition member which can meet a required cell thickness distribution pattern and can obtain a sufficient adhesive strength, and is affected by heat generated from a driving electrode. It is an object of the present invention to provide a liquid crystal element capable of performing uniform driving display over the entire display surface without using the same. Furthermore, in ferroelectric liquid crystal devices suitable for high-speed, high-definition, large screens, we will provide orientation, driving reliability, impact resistance, and low-temperature storage properties to provide inexpensive, high-performance liquid crystal devices. is there.

【0019】[0019]

【課題を解決するための手段】本発明の第一は、それぞ
れにストライプ状の透明電極を有する一対の基板を該透
明電極が互いに直交するように隔壁部材を介して対向配
置し、該隔壁部材で上記一対の基板を接着し、その間隙
に液晶を挟持してなり、少なくとも一方の透明電極上に
補助金属電極を備え、その4辺の少なくとも1辺に液晶
駆動電圧供給源を接続する液晶素子の製造方法であっ
て、上記一方の基板に隔壁部材形成素材を回転塗布する
工程において、当該基板を載置した基板ホルダーの温度
を制御して当該基板の温度を制御することにより、上記
隔壁部材形成素材膜に膜厚分布を形成し、当該素材膜を
パターニングすることにより、基板に垂直な方向の上記
隔壁部材の厚さが、上記液晶駆動電圧供給源の接続部か
ら離れるに従って薄くなるように形成することを特徴と
する。
According to the first aspect of the present invention, a pair of substrates each having a stripe-shaped transparent electrode are opposed to each other via a partition member such that the transparent electrodes are orthogonal to each other. A liquid crystal element comprising a pair of substrates bonded to each other, a liquid crystal interposed therebetween, an auxiliary metal electrode on at least one of the transparent electrodes, and a liquid crystal driving voltage supply connected to at least one of the four sides. In the step of spin-coating the partition member forming material on the one substrate, the temperature of the substrate is controlled by controlling the temperature of a substrate holder on which the substrate is mounted, whereby the partition member is formed. By forming a film thickness distribution on the forming material film and patterning the material film, the thickness of the partition member in the direction perpendicular to the substrate decreases as the distance from the connection portion of the liquid crystal driving voltage supply source decreases. And forming so that.

【0020】また本発明の第二は、それぞれにストライ
プ状の透明電極を有する一対の基板を該透明電極が互い
に直交するように隔壁部材を介して対向配置し、該隔壁
部材で上記一対の基板を接着し、その間隙に液晶を挟持
してなり、少なくとも一方の透明電極上に補助金属電極
を備え、その4辺の少なくとも1辺に液晶駆動電圧供給
源を接続する液晶素子であり、基板に垂直な方向の上記
隔壁部材の厚さが、上記液晶駆動電圧供給源の接続部か
ら離れるに従って薄くなる液晶素子であって、上記本発
明の液晶素子の製造方法によって製造されたことを特徴
とする。
A second aspect of the present invention is that a pair of substrates each having a stripe-shaped transparent electrode are opposed to each other via a partition member such that the transparent electrodes are orthogonal to each other, and the pair of substrates are separated by the partition member. A liquid crystal element having an auxiliary metal electrode on at least one of the transparent electrodes, and a liquid crystal driving voltage supply connected to at least one of the four sides thereof. A liquid crystal element in which the thickness of the partition member in the vertical direction decreases as the distance from the connection portion of the liquid crystal drive voltage supply source decreases, and the liquid crystal element is manufactured by the method of manufacturing a liquid crystal element of the present invention. .

【0021】[0021]

【発明の実施の形態】図1に本発明の液晶素子の一実施
形態の部分断面模式図を示す。図中、11,12は基
板、13,14は透明電極、15,16は補助金属電
極、17,18は配向膜、19は隔壁部材、20は液晶
化合物である。
FIG. 1 is a schematic partial sectional view of an embodiment of the liquid crystal device of the present invention. In the figure, 11 and 12 are substrates, 13 and 14 are transparent electrodes, 15 and 16 are auxiliary metal electrodes, 17 and 18 are alignment films, 19 is a partition member, and 20 is a liquid crystal compound.

【0022】本発明において、基板11,12としては
通常用いられるガラス基板が用いられるが、これに限定
されるものではなく、透明性や強度等必要な特性を備え
ていればプラスチックなども好ましく用いられる。ま
た、透明電極13,14はITO等透明導電材で形成さ
れ、透明電極13は紙面に平行に、透明電極14は紙面
に垂直方向にストライプ状に形成され、互いに直交する
ように配置される。また、補助金属電極15,16には
クロムやアルミニウム等の金属が用いられ、それぞれ透
明電極13,14に隣接或いは図1に示すようにその上
にストライプに沿って形成される。配向膜17,18と
しては、ポリイミド膜等をラビング処理したものが用い
られるが、これに限定されず、無機酸化膜等の低エネル
ギー配向膜なども用いられる。また、配向膜17と18
はそれぞれ同じであっても異なっていても良い。
In the present invention, a commonly used glass substrate is used as the substrates 11 and 12. However, the present invention is not limited to this, and plastics and the like are preferably used as long as they have necessary characteristics such as transparency and strength. Can be The transparent electrodes 13 and 14 are formed of a transparent conductive material such as ITO, and the transparent electrode 13 is formed in a stripe shape in a direction parallel to the plane of the paper and the transparent electrode 14 is formed in a stripe shape in a direction perpendicular to the plane of the paper. The auxiliary metal electrodes 15 and 16 are made of metal such as chromium or aluminum, and are formed adjacent to the transparent electrodes 13 and 14, respectively, or along the stripes thereon as shown in FIG. As the alignment films 17 and 18, a film obtained by rubbing a polyimide film or the like is used, but not limited to this, and a low energy alignment film such as an inorganic oxide film may be used. Also, the alignment films 17 and 18
May be the same or different.

【0023】本発明にかかる隔壁部材19の素材として
は、最終的に上下基板を接着し、溶液状態で塗布が可能
で且つフォトリソ工程により容易にパターニングが可能
なアクリル系感光性樹脂等感光性素材が好ましく、ポジ
型でもネガ型でもいずれでも用いることができる。当該
素材膜は基板貼り合わせ工程において加熱硬化される。
また、本発明にかかる隔壁部材19の基板に垂直な方向
の厚さは、当該液晶素子に接続される液晶駆動電圧供給
源から離れるに従って薄くなるように形成される。即
ち、本発明の液晶素子は、液晶駆動電圧供給源の接続部
から離れるに従ってセルギャップが狭くなるように構成
され、これにより駆動電極の発熱による面内しきい値む
らが相殺される。また、本発明にかかる隔壁部材19
は、従来の隔壁部材と同様に、ストライプ状やドット状
等所望の形状に形成される。
As a material of the partition member 19 according to the present invention, a photosensitive material such as an acrylic photosensitive resin which can be applied in a solution state and which can be easily patterned by a photolithography process is used as a material for the partition member 19 finally bonded. It is preferable to use either a positive type or a negative type. The material film is cured by heating in the substrate bonding step.
Further, the thickness of the partition member 19 according to the present invention in the direction perpendicular to the substrate is formed so as to become thinner as the distance from the liquid crystal driving voltage supply source connected to the liquid crystal element increases. That is, the liquid crystal element of the present invention is configured such that the cell gap becomes narrower as the distance from the connection portion of the liquid crystal driving voltage supply source increases, thereby canceling out in-plane threshold value unevenness due to heat generation of the driving electrodes. Further, the partition member 19 according to the present invention.
Are formed in a desired shape such as a stripe shape or a dot shape, similarly to the conventional partition member.

【0024】本発明の液晶素子は、基板11、12に透
明電極13、14、補助金属電極15、16、配向膜1
7、18を形成した後、基板12上に隔壁部材19の形
成素材を基板の温度を制御しながら回転塗布し、得られ
た素材膜をパターニングし、一方の基板の周縁部に液晶
注入口を除いてシール材を描画し、両基板を重ねて所定
の加圧加熱処理を施してシール材及び隔壁部材19を硬
化させ、液晶注入口より、例えば毛管注入法等により液
晶を注入し、液晶注入口を封止することにより得られ
る。
In the liquid crystal device of the present invention, the transparent electrodes 13 and 14, the auxiliary metal electrodes 15 and 16,
After the formation of 7 and 18, the material for forming the partition member 19 is spin-coated on the substrate 12 while controlling the temperature of the substrate, the obtained material film is patterned, and a liquid crystal injection port is formed on the periphery of one substrate. After removing the sealing material, the two substrates are overlapped and subjected to a predetermined pressure and heat treatment to cure the sealing material and the partition member 19, and the liquid crystal is injected from a liquid crystal injection port by, for example, a capillary injection method, and the liquid crystal is injected. Obtained by sealing the inlet.

【0025】本発明において、上記隔壁部材19の形成
素材の回転塗布工程において、基板を載置した基板ホル
ダーの温度を制御することにより基板の温度を制御し、
基板面内に温度分布を形成することにより基板上に形成
される素材膜に膜厚分布を形成することができる。具体
的には、例えば図2に示すような基板ホルダーを用い
る。図2(a)は平面模式図で、(b)はそのA−A’
断面模式図である。図中、23が上記隔壁部材形成素材
を回転塗布する基板位置を示し、22が該基板の温度制
御を行う位置を示す。
In the present invention, the temperature of the substrate is controlled by controlling the temperature of the substrate holder on which the substrate is placed, in the step of spin-coating the material for forming the partition member 19,
By forming the temperature distribution in the substrate surface, a film thickness distribution can be formed on the material film formed on the substrate. Specifically, for example, a substrate holder as shown in FIG. 2 is used. FIG. 2A is a schematic plan view, and FIG.
It is a cross section schematic diagram. In the figure, reference numeral 23 denotes a substrate position where the above-mentioned material for forming a partition member is spin-coated, and reference numeral 22 denotes a position where the temperature of the substrate is controlled.

【0026】図2に示される基板ホルダーは、液晶素子
の4辺に液晶駆動電圧供給源が配置するタイプであり、
よって、中央部のセルギャップを最も狭くなる(隔壁部
材19の基板に垂直な方向の厚さが中央部で最も小さく
なる)ように形成するための部材であり、当該基板ホル
ダーにおいて2枚の基板を同時に回転塗布することがで
きる。基板ホルダーの温度制御は、例えば所定のパター
ンにペルチェ素子を埋設することによって高速で制御す
ることができる。
The substrate holder shown in FIG. 2 is of a type in which liquid crystal driving voltage supply sources are arranged on four sides of a liquid crystal element.
Therefore, this is a member for forming the cell gap in the central portion to be the narrowest (the thickness of the partition member 19 in the direction perpendicular to the substrate is the smallest in the central portion). Can be simultaneously spin-coated. The temperature of the substrate holder can be controlled at a high speed by, for example, embedding a Peltier element in a predetermined pattern.

【0027】本発明に用いられる液晶としては、前記し
た単純マトリクス駆動方式において、セルギャップに分
布を持たせることが必要なものであれば、本発明の効果
を得ることができるが、特に、前述したように、強誘電
性液晶や反強誘電性液晶等カイラルスメクチック液晶が
好ましく用いられる。例えば、上記液晶が、フルオロカ
ーボン末端部分及び炭化水素末端部分を有し、該両末端
部分が中心核によって結合され、スメクチック中間相或
いは潜在的スメクチック中間相を持つフッ素含有液晶化
合物を含有する液晶組成物を用いた場合などにも好適に
用いられる。
The effect of the present invention can be obtained as long as the liquid crystal used in the present invention needs to have a cell gap distribution in the simple matrix driving method described above. As described above, a chiral smectic liquid crystal such as a ferroelectric liquid crystal and an antiferroelectric liquid crystal is preferably used. For example, a liquid crystal composition comprising a fluorine-containing liquid crystal compound having a fluorocarbon terminal portion and a hydrocarbon terminal portion, wherein both terminal portions are bound by a central nucleus, and having a smectic intermediate phase or a potential smectic intermediate phase. It is also suitably used when using, for example.

【0028】尚、本発明は上記実施形態の構成に限定さ
れるものではなく、本発明の請求項1或いは3において
限定した構成以外は従来の液晶素子の技術を適用するこ
とができる。
It should be noted that the present invention is not limited to the configuration of the above-described embodiment, and the technology of the conventional liquid crystal element can be applied to the configuration other than the configuration defined in claim 1 or 3 of the present invention.

【0029】[0029]

【実施例】[実施例1]本発明第1の実施例として、図
1に示す構成の液晶素子を作製した。
Example 1 As a first example of the present invention, a liquid crystal device having the structure shown in FIG. 1 was manufactured.

【0030】先ず2枚のガラス基板にストライプ状のI
TOパターン及び補助金属電極を所定の工程で形成し、
一方の基板には厚さ5nmのポリイミド膜を形成し、ナ
イロン系ラビング布でストライプに平行にラビングして
配向膜を形成した。他方の基板には、低表面エネルギー
配向膜として、アンチモンドープのSnO2 微粒子を分
散したシリカ溶液を塗布し、100nmの無機酸化物膜
を形成した。
First, a stripe-shaped I is placed on two glass substrates.
Forming a TO pattern and an auxiliary metal electrode in a predetermined process,
A polyimide film having a thickness of 5 nm was formed on one of the substrates, and rubbed in parallel with the stripe with a nylon-based rubbing cloth to form an alignment film. On the other substrate, as a low surface energy alignment film, a silica solution in which antimony-doped SnO 2 fine particles were dispersed was applied to form a 100 nm inorganic oxide film.

【0031】隔壁部材として、アクリル系感光性樹脂
(東京応化工業社製「CL−016S」)を用い、基板
ホルダー(スピンナーヘッド)の温度を基板温度より5
℃高く保ちながら1000rpmで10secスピンコ
ートし、90℃で180secプリベークした。プリベ
ーク後の樹脂膜は中心値が2.7μm、膜厚差が中心値
の10%で中央が凹の膜厚分布となった。これを室温に
冷却した後、高圧水銀ランプにより、マスクを介して2
00mJ/cm2 (365nm)の紫外線を照射した。
次にトリエタノールアミン5%水溶液で20sec現像
後、純水でリンスし、ピッチ100μm、ライン幅10
μm、平均高さ2.5μmのストライプ状の隔壁部材を
得た。
Acrylic photosensitive resin ("CL-016S" manufactured by Tokyo Ohka Kogyo Co., Ltd.) is used as the partition member, and the temperature of the substrate holder (spinner head) is set at 5 degrees below the substrate temperature.
The spin coating was performed at 1000 rpm for 10 sec while maintaining the temperature at a high level, and prebaked at 90 ° C. for 180 sec. The resin film after prebaking had a central value of 2.7 μm, a film thickness difference of 10% of the central value, and a concave film thickness distribution at the center. After this was cooled to room temperature, it was cooled by a high pressure mercury lamp through a mask.
An ultraviolet ray of 00 mJ / cm 2 (365 nm) was irradiated.
Next, after developing with a 5% aqueous solution of triethanolamine for 20 seconds, rinsing with pure water, a pitch of 100 μm, and a line width of 10
A stripe-shaped partition member having a thickness of 2.5 μm and an average height of 2.5 μm was obtained.

【0032】上記基板の一方の周縁部にシール材を描画
し、2枚の基板を電極が互いに直交するように対向配置
して重ね合わせ、0.15kg/cm2 で加圧しながら
150℃で1時間加熱硬化し、セルを得た。上記配向処
理方向は隔壁部材に対して直交している。
A sealing material is drawn on one peripheral edge of the substrate, and two substrates are superposed on each other so that the electrodes are opposed to each other so as to be orthogonal to each other, and pressed at 150 ° C. while pressing at 0.15 kg / cm 2. The cells were cured by heating for an hour to obtain cells. The orientation direction is orthogonal to the partition member.

【0033】上記セル内を真空排気して液晶注入口に強
誘電性液晶を塗布した後、大気圧に戻し、液晶が等方性
を示す温度でセル内に毛管注入し、上記液晶注入口を封
口材にて封止して液晶素子を得た。
After the inside of the cell is evacuated and a ferroelectric liquid crystal is applied to the liquid crystal injection port, the pressure is returned to the atmospheric pressure, and the liquid crystal is injected into the cell at a temperature at which the liquid crystal is isotropic. The liquid crystal element was obtained by sealing with a sealing material.

【0034】上記液晶素子に所定の工程により駆動素子
を4辺実装し、FLCモジュールパネルを完成した。こ
のパネルのセル厚は、中央値が1.9μm、セル厚差の
最大が0.2μmで中央が凹のセル厚分布となった。こ
れにより、駆動時の発熱による実装端とパネル中央との
温度差が約5℃あるにも関わらず、セル厚分布によりパ
ネル内しきい値むらが相殺されて駆動マージンの減少を
抑制することができた。
Four sides of the driving element were mounted on the liquid crystal element by a predetermined process to complete an FLC module panel. The cell thickness of this panel had a median value of 1.9 μm, a maximum cell thickness difference of 0.2 μm, and a concave cell thickness distribution at the center. Thus, even though the temperature difference between the mounting end and the center of the panel due to heat generated during driving is about 5 ° C., the threshold thickness unevenness in the panel is offset by the cell thickness distribution, and the reduction of the driving margin is suppressed. did it.

【0035】[比較例]実施例1の低表面エネルギー配
向膜が塗布された基板に、実施例1と同じ隔壁部材形成
素材を基板ホルダーを室温にして回転塗布した。これを
実施例1と同様に90℃で180secプリベークし
た。得られた素材膜の膜厚は中央値が3.0μm、膜厚
差が中央値の10%でほぼ平坦な膜厚分布を形成した。
Comparative Example The same material for forming a partition member as in Example 1 was spin-coated on the substrate coated with the low surface energy alignment film of Example 1 at a room temperature of the substrate holder. This was prebaked at 90 ° C. for 180 seconds in the same manner as in Example 1. The film thickness of the obtained material film was 3.0 μm at the median, and the film thickness difference was 10% of the median, forming a substantially flat film thickness distribution.

【0036】以下の工程及び対向する側の基板は実施例
1と全く同様にしてFLCモジュールパネルを作製し
た。
An FLC module panel was manufactured in the same manner as in Example 1 except for the following steps and the substrate on the opposite side.

【0037】上記パネルのセル厚は中央値が2.1μ
m、セル厚差の最大が0.2μmで、ほぼ平坦なセル厚
分布となった。これにより、駆動時の発熱による実装端
とパネル中央との温度差が約5℃あるため、パネル内し
きい値むらにより駆動マージンが大幅に減少した。
The cell thickness of the panel is 2.1 μm at the median.
m, the maximum cell thickness difference was 0.2 μm, and the cell thickness distribution was almost flat. As a result, the temperature difference between the mounting end and the center of the panel due to heat generated during driving is about 5 ° C., and the driving margin is greatly reduced due to uneven threshold voltage in the panel.

【0038】[実施例2]2枚のガラス基板上にそれぞ
れストライプ状のITO電極と補助金属電極を形成し、
その上に無機酸化物(東京応化工業社製「MOF,Ti
−Si」)とポリイミド膜(日立化成社製「LP−6
4」)を形成した後、ラビング処理を施した。その後、
一方の基板に実施例1と同様にして、感光性樹脂膜を形
成し、フォトリソ法によりストライプ状にパターニング
して、電極間隙に隔壁部材を形成した。
[Example 2] A stripe-shaped ITO electrode and an auxiliary metal electrode were formed on two glass substrates, respectively.
An inorganic oxide ("MOF, Ti" manufactured by Tokyo Ohka Kogyo Co., Ltd.)
-Si ") and a polyimide film (" LP-6 "manufactured by Hitachi Chemical Co., Ltd.)
4)), a rubbing treatment was performed. afterwards,
A photosensitive resin film was formed on one of the substrates in the same manner as in Example 1, and was patterned in a stripe shape by a photolithography method to form a partition member between the electrodes.

【0039】上記基板のラビング方向が平行になるよう
に貼り合わせ、実施例1と同様に加圧焼成した後、毛管
注入法で液晶を注入し、駆動素子を実装してFLCモジ
ュールパネルを得た。本実施例で用いた液晶は、誘電異
方性が負のカイラルスメクチック液晶である。
The substrates were bonded so that the rubbing directions were parallel, baked under pressure in the same manner as in Example 1, liquid crystal was injected by a capillary injection method, and drive elements were mounted to obtain an FLC module panel. . The liquid crystal used in this example is a chiral smectic liquid crystal having a negative dielectric anisotropy.

【0040】本実施例においても、所望のセル厚分布を
形成することで、駆動時の発熱が大きいこの種のパネル
でも十分な駆動マージンが得られた。
Also in this embodiment, by forming a desired cell thickness distribution, a sufficient drive margin was obtained even with this type of panel generating a large amount of heat during driving.

【0041】[0041]

【発明の効果】以上説明したように、本発明によれば、
液晶素子の面内温度分布の発生によるしきい値むらが隔
壁部材の厚み分布を形成することにより相殺され、駆動
電極からの発熱に影響されることなく表示面全面にわた
り均一駆動表示の液晶素子を提供することができる。特
に、本発明を高速、高精細、大画面に適したFLCパネ
ルに適用した場合、注入時の空隙欠陥改善・低温保存性
向上・耐衝撃性向上を達成しつつ、駆動電極からの発熱
に影響されることのない表示面全面にわたる均一駆動表
示を実現することができる。また本発明によれば、基板
ホルダーの温度を制御することにより容易に隔壁部材の
厚み分布を形成することができるため、1枚の基板から
多数個のセルを取る場合にも対応可能であり、液晶素子
の性能向上とともに生産性の向上・低価格化を図ること
ができる。
As described above, according to the present invention,
Threshold unevenness due to the in-plane temperature distribution of the liquid crystal element is offset by forming the thickness distribution of the partition member, and the liquid crystal element for uniform driving display over the entire display surface without being affected by the heat generated from the driving electrodes. Can be provided. In particular, when the present invention is applied to an FLC panel suitable for a high-speed, high-definition, large-screen, it has an effect on the heat generation from the drive electrode while achieving the improvement of the void defect at the time of injection, the improvement of the low-temperature storage property and the improvement of the impact resistance. Uniform drive display over the entire display surface without being performed can be realized. Further, according to the present invention, since the thickness distribution of the partition member can be easily formed by controlling the temperature of the substrate holder, it is possible to cope with a case where a large number of cells are taken from one substrate. It is possible to improve the productivity of the liquid crystal element as well as to improve the productivity and reduce the price.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の液晶素子の一実施形態の部分断面模式
図である。
FIG. 1 is a schematic partial cross-sectional view of one embodiment of a liquid crystal element of the present invention.

【図2】本発明に用いる基板ホルダーの一実施形態の模
式図である。
FIG. 2 is a schematic view of an embodiment of a substrate holder used in the present invention.

【図3】本発明が解決する液晶素子の温度分布の説明図
である。
FIG. 3 is an explanatory diagram of a temperature distribution of a liquid crystal element solved by the present invention.

【図4】図3とは異なる温度分布の説明図である。FIG. 4 is an explanatory diagram of a temperature distribution different from FIG.

【符号の説明】[Explanation of symbols]

11,12 基板 13,14 透明電極 15,16 補助金属電極 17,18 配向膜 19 隔壁部材 20 液晶化合物 22 温度制御位置 23 基板位置 31 液晶素子 32,32a,32b 情報信号印加素子群 33 走査信号印加素子群 11, 12 Substrate 13, 14 Transparent electrode 15, 16 Auxiliary metal electrode 17, 18 Alignment film 19 Partition member 20 Liquid crystal compound 22 Temperature control position 23 Substrate position 31 Liquid crystal element 32, 32a, 32b Information signal applying element group 33 Scanning signal application Element group

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 それぞれにストライプ状の透明電極を有
する一対の基板を該透明電極が互いに直交するように隔
壁部材を介して対向配置し、該隔壁部材で上記一対の基
板を接着し、その間隙に液晶を挟持してなり、少なくと
も一方の透明電極上に補助金属電極を備え、その4辺の
少なくとも1辺に液晶駆動電圧供給源を接続する液晶素
子の製造方法であって、上記一方の基板に隔壁部材形成
素材を回転塗布する工程において、当該基板を載置した
基板ホルダーの温度を制御して当該基板の温度を制御す
ることにより、上記隔壁部材形成素材膜に膜厚分布を形
成し、当該素材膜をパターニングすることにより、基板
に垂直な方向の上記隔壁部材の厚さが、上記液晶駆動電
圧供給源の接続部から離れるに従って薄くなるように形
成することを特徴とする液晶素子の製造方法。
1. A pair of substrates each having a transparent electrode in the form of a stripe are opposed to each other via a partition member such that the transparent electrodes are orthogonal to each other, and the pair of substrates are adhered to each other with the partition member. A liquid crystal element sandwiched between the two substrates, an auxiliary metal electrode provided on at least one of the transparent electrodes, and a liquid crystal driving voltage supply source connected to at least one of the four sides thereof. In the step of spin-coating the partition member forming material, by controlling the temperature of the substrate by controlling the temperature of the substrate holder on which the substrate is mounted, to form a film thickness distribution on the partition member forming material film, By patterning the material film, the thickness of the partition member in a direction perpendicular to the substrate is formed so as to become thinner as the distance from the connection portion of the liquid crystal drive voltage supply source increases. Method for manufacturing a liquid crystal element.
【請求項2】 上記基板ホルダーの温度を、該基板ホル
ダーに所定のパターン状に埋設されたペルチェ素子によ
って高速制御する請求項1記載の液晶素子の製造方法。
2. The method according to claim 1, wherein the temperature of the substrate holder is controlled at a high speed by a Peltier device embedded in the substrate holder in a predetermined pattern.
【請求項3】 それぞれにストライプ状の透明電極を有
する一対の基板を該透明電極が互いに直交するように隔
壁部材を介して対向配置し、該隔壁部材で上記一対の基
板を接着し、その間隙に液晶を挟持してなり、少なくと
も一方の透明電極上に補助金属電極を備え、その4辺の
少なくとも1辺に液晶駆動電圧供給源を接続する液晶素
子であり、基板に垂直な方向の上記隔壁部材の厚さが、
上記液晶駆動電圧供給源の接続部から離れるに従って薄
くなる液晶素子であって、請求項1または2記載の製造
方法によって製造されたことを特徴とする液晶素子。
3. A pair of substrates each having a stripe-shaped transparent electrode are disposed so as to face each other via a partition member such that the transparent electrodes are orthogonal to each other, and the pair of substrates are adhered to each other by the partition member. A liquid crystal element having an auxiliary metal electrode on at least one of the transparent electrodes, and a liquid crystal driving voltage supply connected to at least one of the four sides thereof. The thickness of the member
3. A liquid crystal element which becomes thinner as the distance from the connection portion of the liquid crystal drive voltage supply source increases, wherein the liquid crystal element is manufactured by the manufacturing method according to claim 1 or 2.
【請求項4】 上記隔壁部材がストライプ状である請求
項3記載の液晶素子。
4. The liquid crystal device according to claim 3, wherein the partition member has a stripe shape.
【請求項5】 上記隔壁部材がドット状である請求項3
記載の液晶素子。
5. The partition member according to claim 3, wherein the partition member has a dot shape.
The liquid crystal element according to the above.
【請求項6】 上記液晶がカイラルスメクチック液晶で
ある請求項3〜5いずれかに記載の液晶素子。
6. The liquid crystal device according to claim 3, wherein the liquid crystal is a chiral smectic liquid crystal.
【請求項7】 上記液晶が強誘電性液晶である請求項6
記載の液晶素子。
7. The liquid crystal according to claim 6, wherein the liquid crystal is a ferroelectric liquid crystal.
The liquid crystal element according to the above.
【請求項8】 上記液晶が反強誘電性液晶である請求項
6記載の液晶素子。
8. The liquid crystal device according to claim 6, wherein the liquid crystal is an antiferroelectric liquid crystal.
【請求項9】 上記液晶が、フルオロカーボン末端部分
及び炭化水素末端部分を有し、該両末端部分が中心核に
よって結合され、スメクチック中間相或いは潜在的スメ
クチック中間相を持つフッ素含有液晶化合物を含有する
液晶組成物である請求項6記載の液晶素子。
9. The liquid crystal has a fluorine-containing liquid crystal compound having a fluorocarbon terminal portion and a hydrocarbon terminal portion, both terminal portions of which are bound by a central nucleus and having a smectic intermediate phase or a potential smectic intermediate phase. The liquid crystal device according to claim 6, which is a liquid crystal composition.
JP35882397A 1997-12-26 1997-12-26 Liquid crystal element and manufacturing method therefor Withdrawn JPH11190850A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35882397A JPH11190850A (en) 1997-12-26 1997-12-26 Liquid crystal element and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35882397A JPH11190850A (en) 1997-12-26 1997-12-26 Liquid crystal element and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JPH11190850A true JPH11190850A (en) 1999-07-13

Family

ID=18461299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35882397A Withdrawn JPH11190850A (en) 1997-12-26 1997-12-26 Liquid crystal element and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JPH11190850A (en)

Similar Documents

Publication Publication Date Title
JP3358935B2 (en) Liquid crystal display device and method of manufacturing the same
US5581384A (en) Process for producing a display device by deforming thermoplastic spacer particles
US6320639B1 (en) Liquid crystal device and process for production thereof
JP2000267114A (en) Liquid crystal display device and production of liquid crystal display device
JP5096026B2 (en) Manufacturing method of liquid crystal display element
JP2000235188A (en) Liquid crystal display device
US6690440B1 (en) Liquid crystal element and manufacturing method thereof
JP4028633B2 (en) Liquid crystal display
JPH0836169A (en) Liquid crystal display device and its production
JP2835787B2 (en) Ferroelectric liquid crystal device
JP2002148624A (en) Liquid crystal display element, color filter and method for manufacturing them
JP4803861B2 (en) Manufacturing method of liquid crystal display device
JPH11190850A (en) Liquid crystal element and manufacturing method therefor
JP4298055B2 (en) Liquid crystal panel and manufacturing method thereof
JP2002202510A (en) Liquid crystal display device and method of manufacturing for the same
JPH0829790A (en) Liquid crystal display device
JPH11190848A (en) Liquid crystal element and its manufacture
JP4511293B2 (en) Liquid crystal light modulator manufacturing method, liquid crystal light modulator, and liquid crystal display device
JP2000111880A (en) Liquid crystal optical modulation element and its manufacture
JP4968980B2 (en) Mother board for liquid crystal display device and liquid crystal display device
US7679704B2 (en) Method of fabricating an in-plane switching mode liquid crystal display comprising rubbing and applying a beam to set pre-tilt angles
JP2000206536A (en) Liquid crystal element
KR100569732B1 (en) Manufacturing Method Of Liquid Crystal Display
JPH09329790A (en) Liquid crystal element and image display device and image formation device provided with the liquid crystal element
JP2000206537A (en) Liquid crystal element and its manufacture

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050301