JPH11190848A - Liquid crystal element and its manufacture - Google Patents

Liquid crystal element and its manufacture

Info

Publication number
JPH11190848A
JPH11190848A JP35882197A JP35882197A JPH11190848A JP H11190848 A JPH11190848 A JP H11190848A JP 35882197 A JP35882197 A JP 35882197A JP 35882197 A JP35882197 A JP 35882197A JP H11190848 A JPH11190848 A JP H11190848A
Authority
JP
Japan
Prior art keywords
liquid crystal
partition member
substrate
substrates
crystal element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP35882197A
Other languages
Japanese (ja)
Inventor
Yasuyuki Watabe
泰之 渡部
Takahiro Hachisu
高弘 蜂巣
Hirohide Munakata
博英 棟方
Shinjiro Okada
伸二郎 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP35882197A priority Critical patent/JPH11190848A/en
Publication of JPH11190848A publication Critical patent/JPH11190848A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PROBLEM TO BE SOLVED: To uniformly drive the liquid crystal element which uses chiral smectic liquid crystal to make a display on the display surface without being affected by the heat generation of a driving electrode. SOLUTION: A partition wall member is formed of a photosensitive resin composition on one of a couple of substrates having striped transparent electrodes, auxiliary metal electrodes, and orientation films formed respectively, the substrates are put one over the other so that the transparent electrodes cross each other, and the partition member is hardened by being heated and pressed while a pressure distribution is formed so that a specific distribution of thickness perpendicular to the substrate of the partition wall member is formed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、液晶表示装置や液
晶光シャッター等に用いる液晶素子に関し、特に自発分
極の作用を利用して駆動する強誘電性液晶(FLC)や
反強誘電性液晶等カイラルスメクチック液晶を用いた液
晶素子に好適な液晶素子とその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal element used for a liquid crystal display device or a liquid crystal optical shutter, and more particularly to a ferroelectric liquid crystal (FLC) or an antiferroelectric liquid crystal driven by utilizing the action of spontaneous polarization. The present invention relates to a liquid crystal element suitable for a liquid crystal element using a chiral smectic liquid crystal and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来、液晶素子の駆動方式としては様々
な方式が用いられているが、中でも構成が単純で大画面
化の容易な単純マトリクス方式が広く用いられており、
この単純マトリクス方式を好適に用いることのできる液
晶として、強誘電性液晶が挙げられる。この強誘電性液
晶分子の屈折率異方性を利用して偏光素子との組み合わ
せにより透過光線を制御する型の液晶表示素子がクラー
ク(Clark)及びラガーウォル(Lagerwal
l)により提案されている(特開昭56−107216
号公報、米国特許第4367942号明細書等)。
2. Description of the Related Art Conventionally, various methods have been used for driving a liquid crystal element. Among them, a simple matrix method, which has a simple structure and is easy to enlarge a screen, is widely used.
As a liquid crystal in which the simple matrix method can be suitably used, there is a ferroelectric liquid crystal. A liquid crystal display device of a type that controls transmitted light in combination with a polarizing element using the refractive index anisotropy of the ferroelectric liquid crystal molecules is known as Clark and Lagerwal.
1) (JP-A-56-107216).
No. 4,367,942).

【0003】上記強誘電性液晶は、一般に特定の温度領
域において、カイラルスメクチックC相(SmC* )ま
たはH相(SmH* )を有し、この状態において、加え
られる電界に応答して第1の光学的安定状態と第2の光
学的安定状態のいずれかを取り、且つ電界の印加のない
時はその状態を維持する性質、即ち双安定性メモリ性を
有し、その上自発分極により反転スイッチングを行うた
め非常に速い応答速度を示す。さらに視角特性も優れて
いることから、特に高速、高精細、大画面の表示素子と
して適している。
The ferroelectric liquid crystal generally has a chiral smectic C phase (SmC * ) or an H phase (SmH * ) in a specific temperature range, and in this state, the first phase responds to an applied electric field. It has one of an optically stable state and a second optically stable state, and maintains the state when no electric field is applied, that is, it has a bistable memory property. Shows a very fast response speed. Further, since it has excellent viewing angle characteristics, it is particularly suitable as a high-speed, high-definition, large-screen display element.

【0004】また、同様の液晶分子の屈折率異方性と自
発分極を利用して表示素子を構成する技術として、反強
誘電性を示す液晶が知られている。この反強誘電性液晶
は、一般に特定の温度領域において、カイラルスメクチ
ックCA相(SmCA)を有し、この状態において無電
界時には平均的な光学的安定状態はスメクチック層法線
方向になるが、電界印加によって平均的な光学的安定状
態が層法線方向から傾く性質を有する。その上、反強誘
電性液晶の場合も自発分極と電界のカップリングによる
スイッチングを行うため、非常に速い応答速度を示し、
高速の表示素子として期待されている。
A liquid crystal exhibiting antiferroelectricity has been known as a technique for constructing a display element utilizing similar refractive index anisotropy and spontaneous polarization of liquid crystal molecules. This antiferroelectric liquid crystal generally has a chiral smectic CA phase (SmCA) in a specific temperature range. In this state, when there is no electric field, the average optical stable state is in the normal direction of the smectic layer. The average optical stable state is inclined from the layer normal direction by application. In addition, the antiferroelectric liquid crystal also performs switching by coupling of spontaneous polarization and electric field, so it shows a very fast response speed,
It is expected as a high-speed display element.

【0005】一方、上記強誘電性液晶において良好なス
イッチング特性を得るためには、一般的に液晶層厚を、
液晶相の一つであるコレステリック相で生じる液晶分子
のらせん状態のピッチ(一般的には0.1〜数十μm程
度)以下にする必要がある。ここで、液晶素子を大画面
化する際、全表示領域を均一表示させるためには液晶素
子全面に渡り、均一な液晶層厚、言い換えれば液晶を挟
持している一対の基板の間隙(セルギャップ)を均一に
することの重要性が増してくる。そして、このように基
板の間隔を均一にして液晶素子の均一表示を可能にする
ために均一径のスペーサ粒子を素子内に散布する方法が
一般的になされている。
On the other hand, in order to obtain good switching characteristics in the ferroelectric liquid crystal, generally, the thickness of the liquid crystal layer must be
The helical pitch of liquid crystal molecules generated in the cholesteric phase, which is one of the liquid crystal phases, needs to be less than the pitch (generally, about 0.1 to several tens μm). Here, when the liquid crystal element is enlarged, a uniform liquid crystal layer thickness over the entire surface of the liquid crystal element, in other words, a gap between a pair of substrates sandwiching the liquid crystal (cell gap), is required to uniformly display the entire display area. ) Becomes more important. In general, a method of dispersing spacer particles having a uniform diameter in an element in order to make the distance between the substrates uniform and to enable a uniform display of the liquid crystal element is made.

【0006】一方、液晶素子を大画面化するに伴い、液
晶素子周辺で上下基板を保持させるだけでは液晶素子中
央付近でのギャップを均一に保つことが困難になってく
るという不具合が生じる。そこで、これを解決する方法
として、上下基板間にスペーサ粒子径以上にギャップを
広げないように上下基板に密着する粒子状接着剤を散布
し、この粒子状接着剤とスペーサ粒子を併せて使用する
ことにより、均一にギャップを保持する方法が採られて
いる。
On the other hand, as the size of the liquid crystal element becomes larger, it becomes difficult to maintain a uniform gap near the center of the liquid crystal element only by holding the upper and lower substrates around the liquid crystal element. Therefore, as a method for solving this, a particulate adhesive that adheres to the upper and lower substrates is sprayed so as not to widen the gap between the upper and lower substrates beyond the spacer particle diameter, and the particulate adhesive and the spacer particles are used together. Accordingly, a method of uniformly maintaining the gap is employed.

【0007】さらに近年は、配向性の向上、耐衝撃性の
向上を目的に、ドット状またはストライプ状の隔壁部材
を画素外に設ける構造が実用化に向けて検討されてい
る。この構造の利点は、画素内から配向欠陥の核となる
粒子状接着剤及びスペーサを排除することで、配向性の
向上、駆動信頼性の向上が得られることである。
In recent years, a structure in which a dot-shaped or stripe-shaped partition member is provided outside a pixel for the purpose of improving orientation and impact resistance has been studied for practical use. The advantage of this structure is that by eliminating the particulate adhesive and spacer serving as nuclei of alignment defects from within the pixel, it is possible to obtain improved alignment and drive reliability.

【0008】また、強誘電性液晶や反強誘電性液晶にこ
の構造を適用した場合には、耐衝撃性の問題と注入時及
び低温時の空隙欠陥発生の問題を同時に解決することが
できる。従来、温度変化に伴う液晶の体積収縮が原因で
起こる空隙欠陥の発生と、液晶層構造の復元力の低さが
原因の耐衝撃性の不足は、上記接着剤の弾性だけに着目
するとジレンマを生じる問題であった。しかしながら、
本発明者等の検討によって、隔壁部材と液晶の層方向を
平行にすると、液晶層を分断することで空隙欠陥の発生
を抑えながら液晶が流動しない十分な弾性を隔壁部材に
持たせられることが確認され、強誘電性液晶や反強誘電
性液晶を利用する上での問題点が解決された。
Further, when this structure is applied to a ferroelectric liquid crystal or an antiferroelectric liquid crystal, the problem of shock resistance and the problem of void defects at the time of injection and at a low temperature can be simultaneously solved. Conventionally, the occurrence of void defects caused by the volume shrinkage of liquid crystal due to temperature change and the lack of impact resistance due to the low restoring force of the liquid crystal layer structure are a dilemma when focusing solely on the elasticity of the adhesive. It was a problem that occurred. However,
According to the study of the present inventors, when the layer direction of the partition member and the liquid crystal are made parallel, it is possible that the partition member has sufficient elasticity such that the liquid crystal does not flow while suppressing the generation of void defects by dividing the liquid crystal layer. It was confirmed that the problem in using the ferroelectric liquid crystal and the antiferroelectric liquid crystal was solved.

【0009】[0009]

【発明が解決しようとする課題】上記したような構成の
液晶素子において、大画面化を実現しようとする場合、
基板の間隔は記述したように粒子状接着剤とスペーサ粒
子を合わせて使用することにより均一に保持することが
できるが、駆動方法を単純マトリクス方式とすると、透
明電極だけでは液晶素子内で遅延が生じ、この遅延の影
響により液晶素子全面を均一の駆動条件で駆動すること
ができなくなる。
In the case of realizing a large screen in the liquid crystal device having the above-mentioned structure,
As described above, the distance between the substrates can be maintained uniformly by using the particulate adhesive and spacer particles together.However, if the driving method is a simple matrix method, the delay in the liquid crystal element will be caused only by the transparent electrodes. As a result, the entire surface of the liquid crystal element cannot be driven under uniform driving conditions due to the influence of the delay.

【0010】そのため、従来は透明電極に隣接して補助
金属電極を配置しているが、こように補助金属電極を配
置すると、透明電極及び補助金属電極(以下、「駆動電
極」と称する)のラインに印加される駆動信号により駆
動電極が発熱し、この発熱により液晶素子内において駆
動電極の配置方向に対して温度勾配を生じるようにな
る。
Therefore, conventionally, an auxiliary metal electrode is arranged adjacent to the transparent electrode. However, when the auxiliary metal electrode is arranged in this manner, the transparent electrode and the auxiliary metal electrode (hereinafter, referred to as “drive electrode”) are formed. The drive electrodes generate heat due to the drive signals applied to the lines, and this heat generates a temperature gradient in the liquid crystal element in the direction in which the drive electrodes are arranged.

【0011】図3、図4は駆動電極の発熱により発生す
る液晶素子の表示面における温度勾配を模式的示す図で
あり、図中、31は液晶素子、32,32a,32bは
情報信号印加素子群、33は走査信号印加素子群であ
る。
FIGS. 3 and 4 are diagrams schematically showing a temperature gradient on the display surface of the liquid crystal element generated by the heat generation of the drive electrode. In the figures, 31 is a liquid crystal element, and 32, 32a and 32b are information signal applying elements. A group 33 is a scanning signal applying element group.

【0012】図3に示すように、駆動信号の供給方向が
2方向の場合、図中の矢印に沿って、液晶駆動電圧供給
源である情報信号印加素子群32、走査信号印加素子群
33に近くなるほど高温となり、上記信号印加素子群か
ら離れる程低くなっている。また、駆動信号の供給方向
が3方向の場合、図4に示すように、図中の矢印に沿っ
て、走査信号印加素子群33に近くなるほど高温とな
り、離れる程温度が低くなっている。
As shown in FIG. 3, when the driving signal is supplied in two directions, the information signal applying element group 32 and the scanning signal applying element group 33 which are liquid crystal driving voltage supply sources are supplied along the arrows in the figure. The temperature increases as the distance increases, and decreases as the distance from the signal applying element group increases. In the case where the driving signal is supplied in three directions, as shown in FIG. 4, the temperature becomes higher as the position is closer to the scanning signal applying element group 33 and the temperature becomes lower as the distance increases.

【0013】上記のような温度勾配を持つ結果、強誘電
性液晶がユニフォームの2状態間をスイッチングする電
界強度の最小値(以下「しきい値」という)及び2状態
間をスイッチングできなくなる電界強度(以下「クロス
トーク」という)は、図3、図4の矢印で示される方向
に分布を有する。
As a result of the temperature gradient as described above, the minimum value (hereinafter referred to as "threshold") of the electric field intensity at which the ferroelectric liquid crystal switches between the two states of the uniform, and the electric field intensity at which the two states cannot be switched between (Hereinafter referred to as “crosstalk”) has a distribution in a direction indicated by an arrow in FIGS.

【0014】また、このようにしきい値及びクロストー
クが温度勾配の影響を受けると、液晶素子を表示できる
電界強度範囲(以下「駆動マージン」という)も温度勾
配の影響を受けるようになり、その結果、液晶素子内で
の液晶の駆動条件が異なるようになり、表示面全面に亘
り均一駆動表示が不可能になるという問題を生じる。
When the threshold value and the crosstalk are affected by the temperature gradient, the electric field intensity range in which the liquid crystal element can be displayed (hereinafter referred to as "driving margin") is also affected by the temperature gradient. As a result, the driving conditions of the liquid crystal in the liquid crystal element become different, and there arises a problem that the uniform driving display cannot be performed over the entire display surface.

【0015】特に、前記したような配向特性を示す強誘
電性液晶を用いた液晶素子において、液晶素子のセルギ
ャップは他の単純マトリクス方式で駆動できる液晶を用
いた液晶素子よりかなり狭いため、温度勾配はより大き
な問題点となる。
In particular, in a liquid crystal device using a ferroelectric liquid crystal exhibiting the above-described alignment characteristics, the cell gap of the liquid crystal device is considerably narrower than that of a liquid crystal device using a liquid crystal that can be driven by another simple matrix system. Gradients are a bigger problem.

【0016】上記問題点を解決するために、液晶に印加
される電界強度の大きさまたは液晶層厚を温度勾配に対
応して変化させるという提案がなされている。具体的な
手法としては、スペーサや粒子状接着剤の散布密度、或
いは熱ローラーによるプレス圧でセル厚分布をコントロ
ールしようとするものである。
In order to solve the above problems, it has been proposed to change the magnitude of the electric field applied to the liquid crystal or the thickness of the liquid crystal layer according to the temperature gradient. As a specific method, it is intended to control the cell thickness distribution by the spray density of the spacer or the particulate adhesive, or the pressing pressure by a hot roller.

【0017】この中で、前述の隔壁部材を用いたセルに
適用可能な手法は、熱ローラーによるプレスであるが、
この手法はセル厚分布パターンへの対応性と、樹脂の硬
化と別工程になるために接着性、配向性に問題が有っ
た。また、熱ローラープレス自体が付加工程となる。
Among them, a method applicable to a cell using the above-mentioned partition member is pressing by a hot roller.
This method has a problem in the compatibility with the cell thickness distribution pattern and the adhesiveness and orientation since it is a separate step from the curing of the resin. Also, the hot roller press itself is an additional step.

【0018】本発明の目的は、要求されるセル厚分布パ
ターンに対応し、且つ十分な接着力が得られる隔壁部材
を用いた液晶素子の製造方法を提供し、駆動電極からの
発熱に影響されることなく表示面全面にわたり均一駆動
表示ができる液晶素子を提供することにある。さらに
は、高速、高精細、大画面に適した強誘電性液晶素子に
おいて、配向性、駆動信頼性、耐衝撃性、低温保存性を
付与し、安価で高性能な液晶素子を提供することにあ
る。
An object of the present invention is to provide a method for manufacturing a liquid crystal element using a partition member which can meet a required cell thickness distribution pattern and can obtain a sufficient adhesive strength, and is affected by heat generated from a driving electrode. It is an object of the present invention to provide a liquid crystal element capable of performing uniform driving display over the entire display surface without using the same. Furthermore, in ferroelectric liquid crystal devices suitable for high-speed, high-definition, large screens, we will provide orientation, driving reliability, impact resistance, and low-temperature storage properties to provide inexpensive, high-performance liquid crystal devices. is there.

【0019】[0019]

【課題を解決するための手段】本発明の第一は、それぞ
れにストライプ状の透明電極を有する一対の基板を該透
明電極が互いに直交するように隔壁部材を介して対向配
置し、該隔壁部材で上記一対の基板を接着し、その間隙
に液晶を挟持してなり、少なくとも一方の透明電極上に
補助金属電極を備え、その4辺の少なくとも1辺に液晶
駆動電圧供給源を備えた液晶素子であって、基板に垂直
な方向の上記隔壁部材の厚さが、上記液晶駆動電圧供給
源から離れるに従って薄くなることを特徴とする。
According to the first aspect of the present invention, a pair of substrates each having a stripe-shaped transparent electrode are opposed to each other via a partition member such that the transparent electrodes are orthogonal to each other. A liquid crystal element comprising a pair of substrates bonded to each other, a liquid crystal interposed therebetween, an auxiliary metal electrode on at least one of the transparent electrodes, and a liquid crystal driving voltage supply source on at least one of the four sides. Wherein the thickness of the partition member in a direction perpendicular to the substrate decreases as the distance from the liquid crystal drive voltage supply source increases.

【0020】また本発明の第二は、一対の基板を隔壁部
材を介して対向配置し、該隔壁部材で該一対の基板を接
着し、その間隙に液晶を挟持してなる液晶素子の製造方
法であって、一方の基板に、加熱硬化部材からなる隔壁
部材を形成し、基板貼り合わせ工程において基板面内に
圧力分布を形成して上記隔壁部材を加熱加圧硬化させる
ことにより、上記隔壁部材の基板に垂直な方向の厚み
を、上記液晶駆動電圧供給源から離れるに従って薄くな
るように形成することを特徴とする。
A second aspect of the present invention is a method of manufacturing a liquid crystal device in which a pair of substrates are opposed to each other via a partition member, the pair of substrates are bonded by the partition members, and a liquid crystal is sandwiched in the gap. And forming a partition member made of a heat-curable member on one of the substrates, forming a pressure distribution in the substrate surface in the substrate bonding step, and heating and press-curing the partition member, thereby forming the partition member. Wherein the thickness in the direction perpendicular to the substrate becomes thinner as the distance from the liquid crystal drive voltage supply source increases.

【0021】[0021]

【発明の実施の形態】図1に本発明の液晶素子の一実施
形態の部分断面模式図を示す。図中、11,12は基
板、13,14は透明電極、15,16は補助金属電
極、17,18は配向膜、19は隔壁部材、20は液晶
化合物である。
FIG. 1 is a schematic partial sectional view of an embodiment of the liquid crystal device of the present invention. In the figure, 11 and 12 are substrates, 13 and 14 are transparent electrodes, 15 and 16 are auxiliary metal electrodes, 17 and 18 are alignment films, 19 is a partition member, and 20 is a liquid crystal compound.

【0022】本発明において、基板11,12としては
通常用いられるガラス基板が用いられるが、これに限定
されるものではなく、透明性や強度等必要な特性を備え
ていればプラスチックなども好ましく用いられる。ま
た、透明電極13,14はITO等透明導電材で形成さ
れ、透明電極13は紙面に平行に、透明電極14は紙面
に垂直方向にストライプ状に形成され、互いに直交する
ように配置される。また、補助金属電極15,16には
クロムやアルミニウム等の金属が用いられ、それぞれ透
明電極13,14に隣接或いは図1に示すようにその上
にストライプに沿って形成される。配向膜17,18と
しては、ポリイミド膜等をラビング処理したものが用い
られるが、これに限定されず、無機酸化膜等の低エネル
ギー配向膜なども用いられる。また、配向膜17と18
はそれぞれ同じであっても異なっていても良い。
In the present invention, a commonly used glass substrate is used as the substrates 11 and 12. However, the present invention is not limited to this, and plastics and the like are preferably used as long as they have necessary characteristics such as transparency and strength. Can be The transparent electrodes 13 and 14 are formed of a transparent conductive material such as ITO, and the transparent electrode 13 is formed in a stripe shape in a direction parallel to the plane of the paper and the transparent electrode 14 is formed in a stripe shape in a direction perpendicular to the plane of the paper. The auxiliary metal electrodes 15 and 16 are made of metal such as chromium or aluminum, and are formed adjacent to the transparent electrodes 13 and 14, respectively, or along the stripes thereon as shown in FIG. As the alignment films 17 and 18, a film obtained by rubbing a polyimide film or the like is used, but not limited to this, and a low energy alignment film such as an inorganic oxide film may be used. Also, the alignment films 17 and 18
May be the same or different.

【0023】本発明において、隔壁部材19は、所定の
パターン形状に形成された後、基板貼り合わせ工程にお
ける加熱加圧操作によって容易に変形して硬化し、上下
基板を接着する素材が用いられる。具体的には、アクリ
ル系感光性樹脂等感光性素材が好ましく、ポジ型でもネ
ガ型でもいずれでも用いることができる。また、本発明
において、隔壁部材19は、ストライプ状でもドット状
でもいずれでも良く、適宜選択される。
In the present invention, the partition member 19 is formed of a material which is formed into a predetermined pattern shape, is easily deformed and hardened by a heating and pressing operation in a substrate bonding step, and is hardened to bond the upper and lower substrates. Specifically, a photosensitive material such as an acrylic photosensitive resin is preferable, and either a positive type or a negative type can be used. Further, in the present invention, the partition member 19 may be either a stripe shape or a dot shape, and is appropriately selected.

【0024】本発明の製造工程としては、基板11、1
2に透明電極13、14、補助金属電極15、16、配
向膜17、18を形成した後、基板12上に隔壁部材1
9を形成し、一方の基板の周縁部に液晶注入口を除いて
シール材を描画し、両基板を重ねて所定の加圧加熱処理
を施してシール材及び隔壁部材19を硬化させ、液晶注
入口より、例えば毛管注入法等により液晶を注入し、液
晶注入口を封止する工程である。
In the manufacturing process of the present invention, the substrates 11, 1
After forming the transparent electrodes 13 and 14, the auxiliary metal electrodes 15 and 16, and the alignment films 17 and 18 on the substrate 2, the partition member 1 is formed on the substrate 12.
9, a sealing material is drawn on the periphery of one of the substrates except for the liquid crystal injection port, and the two substrates are superimposed and subjected to a predetermined pressurization and heating treatment to cure the sealing material and the partition member 19, thereby forming a liquid crystal injection member. This is a step of injecting liquid crystal from the inlet by, for example, a capillary injection method or the like and sealing the liquid crystal inlet.

【0025】本発明においては、上記加圧加熱処理工程
において、基板面内に圧力分布を形成することにより、
隔壁部材19の基板に垂直な方向の厚みに所定の分布を
形成する。具体的には、図2に示すような圧力分布形成
部材を用いることにより圧力分布を形成することができ
る。図2(a)は平面模式図で、(b)はそのA−A’
断面模式図である。当該部材は、緩衝材21a、21b
間に、金属やプラスチック等からなる剛体22を挟持し
たもので、該剛体22の厚みは、形成する液晶素子の隔
壁部材19の厚み分布に対応している。図中、23は貼
り合わせる液晶素子の基板位置に対応する。本部材を重
ね合わせた基板上に載せると、剛体22が素子の基板の
中央部に位置し、当該部材上から基板全面に均一に圧力
を加えると、剛体22の厚み分だけ余計に基板に圧力が
かかり、隔壁部材19の厚みが薄く形成される。これに
より、隔壁部材19の基板に垂直な方向の厚みは基板の
中央部が最も薄く、周縁部に向かって厚く形成される。
尚、本圧力分布形成部材は液晶素子の4辺にそれぞれ信
号印加素子群を配する液晶素子を2個並べて貼り合わせ
る際に用いる形態であり、必要とする隔壁部材19の厚
み分布に応じて剛体の形状や厚み、位置を設定する。
In the present invention, by forming a pressure distribution in the surface of the substrate in the pressurizing and heating treatment step,
A predetermined distribution is formed in the thickness of the partition member 19 in a direction perpendicular to the substrate. Specifically, a pressure distribution can be formed by using a pressure distribution forming member as shown in FIG. FIG. 2A is a schematic plan view, and FIG.
It is a cross section schematic diagram. The members include cushioning materials 21a, 21b
A rigid body 22 made of metal, plastic, or the like is interposed therebetween, and the thickness of the rigid body 22 corresponds to the thickness distribution of the partition member 19 of the liquid crystal element to be formed. In the figure, 23 corresponds to the substrate position of the liquid crystal element to be bonded. When this member is placed on the superimposed substrate, the rigid body 22 is located at the center of the substrate of the element. And the thickness of the partition member 19 is reduced. Thereby, the thickness of the partition member 19 in the direction perpendicular to the substrate is formed to be thinnest at the center of the substrate and thicker toward the periphery.
Note that this pressure distribution forming member is a form used when two liquid crystal elements each having a signal applying element group disposed on each of four sides of the liquid crystal element are arranged side by side and bonded together. Set the shape, thickness and position of.

【0026】本発明に用いられる液晶としては、前記し
た単純マトリクス駆動方式において、セルギャップに分
布を持たせることが必要なものであれば、本発明の効果
を得ることができるが、特に、前述したように、強誘電
性液晶や反強誘電性液晶等カイラルスメクチック液晶が
好ましく用いられる。例えば、上記液晶が、フルオロカ
ーボン末端部分及び炭化水素末端部分を有し、該両末端
部分が中心核によって結合され、スメクチック中間相或
いは潜在的スメクチック中間相を持つフッ素含有液晶化
合物を含有する液晶組成物を用いた場合などにも好適に
用いられる。
The effect of the present invention can be obtained as long as the liquid crystal used in the present invention needs to have a distribution in the cell gap in the simple matrix driving method described above. As described above, a chiral smectic liquid crystal such as a ferroelectric liquid crystal and an antiferroelectric liquid crystal is preferably used. For example, a liquid crystal composition comprising a fluorine-containing liquid crystal compound having a fluorocarbon terminal portion and a hydrocarbon terminal portion, wherein both terminal portions are bound by a central nucleus, and having a smectic intermediate phase or a potential smectic intermediate phase. It is also suitably used when using, for example.

【0027】尚、本発明は上記実施形態の構成に限定さ
れるものではなく、本発明の請求項1或いは8において
限定した構成以外の構成については従来の液晶素子の技
術を適用することができる。
It should be noted that the present invention is not limited to the configuration of the above-described embodiment, and the conventional liquid crystal element technology can be applied to configurations other than the configuration limited in claim 1 or 8 of the present invention. .

【0028】[0028]

【実施例】[実施例1]本発明第1の実施例として、図
1に示す構成の液晶素子を作製した。
Example 1 As a first example of the present invention, a liquid crystal device having the structure shown in FIG. 1 was manufactured.

【0029】先ず2枚のガラス基板にストライプ状のI
TOパターン(厚み700Å)及び各ITOラインに沿
うように補助金属電極(Al/Mo/Alの3層構成、
厚さ1800Å)をスパッタにより形成し、一方の基板
には厚さ5nmのポリイミド膜を形成し、ナイロン系ラ
ビング布でストライプに平行にラビングして配向膜を形
成した。他方の基板には、低表面エネルギー配向膜とし
て、アンチモンドープのSnO2 微粒子を分散したシリ
カ溶液を塗布し、100nmの無機酸化物膜を形成し
た。
First, a stripe-shaped I is placed on two glass substrates.
Auxiliary metal electrodes (three-layer structure of Al / Mo / Al, along the TO pattern (thickness 700 mm) and each ITO line,
A thickness of 1800 °) was formed by sputtering, and a polyimide film having a thickness of 5 nm was formed on one of the substrates, and rubbed parallel to the stripes with a nylon rubbing cloth to form an alignment film. On the other substrate, as a low surface energy alignment film, a silica solution in which antimony-doped SnO 2 fine particles were dispersed was applied to form a 100 nm inorganic oxide film.

【0030】隔壁部材として、アクリル系感光性樹脂
(東京応化工業社製「CL−016S」)を用い、10
00rpmで10secスピンコートし、90℃で18
0secプリベークした。プリベーク後の樹脂膜の厚み
は中心値が3.0μm、膜厚差が中心値の10%でほぼ
平坦な膜厚分布となった。これを室温に冷却した後、高
圧水銀ランプにより、マスクを介して200mJ/cm
2 (365nm)の紫外線を照射した。次にトリエタノ
ールアミン5%水溶液で20sec現像後、純水でリン
スし、ピッチ100μm、ライン幅10μm、平均高さ
2.5μmのストライプ状の隔壁部材を得た。
An acrylic photosensitive resin ("CL-016S" manufactured by Tokyo Ohka Kogyo Co., Ltd.) was used as a partition member.
Spin coat at 10 rpm for 10 sec.
Prebaked for 0 sec. The central value of the thickness of the resin film after prebaking was 3.0 μm, and the film thickness difference was 10% of the central value, resulting in a substantially flat film thickness distribution. After cooling to room temperature, 200 mJ / cm through a mask by a high pressure mercury lamp.
2 (365 nm) ultraviolet light was applied. Next, development was performed with a 5% aqueous solution of triethanolamine for 20 seconds, followed by rinsing with pure water to obtain a striped partition member having a pitch of 100 μm, a line width of 10 μm, and an average height of 2.5 μm.

【0031】上記基板の一方の周縁部にシール材を描画
し、2枚の基板を電極が互いに直交するように対向配置
して重ね合わせ、セル中央部に当たる部分が凸形状の剛
体を挟持した図2に示した圧力分布形成部材を重ねた上
から0.15kg/cm2 で加圧しながら150℃で1
時間加熱硬化し、セルを得た。上記配向処理方向は隔壁
部材に対して直交している。
A drawing in which a sealing material is drawn on one peripheral edge of the above-mentioned substrate, two substrates are arranged so as to face each other so that electrodes are orthogonal to each other, and are overlapped, and a portion corresponding to the central portion of the cell sandwiches a convex rigid body. 2 at 150 ° C. while applying a pressure of 0.15 kg / cm 2 from above the pressure distribution forming member shown in FIG.
The cells were cured by heating for an hour to obtain cells. The orientation direction is orthogonal to the partition member.

【0032】上記セル内を真空排気して液晶注入口に液
晶を塗布した後、大気圧に戻し、液晶が等方性を示す温
度でセル内に毛管注入し、上記液晶注入口を封口材にて
封止して液晶素子を得た。本実施例で用いた液晶は、フ
ッ素含有液晶組成物であり、20℃での層傾き角δ=0
°、チルト角=27°であった。尚、本実施例における
液晶組成物の層傾き角及びチルト角は下記の測定法によ
り測定した値である。
After the inside of the cell is evacuated and the liquid crystal is applied to the liquid crystal injection port, the pressure is returned to the atmospheric pressure, and the liquid crystal is injected into the cell at a temperature at which the liquid crystal is isotropic, and the liquid crystal injection port is used as a sealing material. And sealing was performed to obtain a liquid crystal element. The liquid crystal used in this example is a fluorine-containing liquid crystal composition, and the layer tilt angle δ = 0 ° C. at 20 ° C.
° and tilt angle = 27 °. In addition, the layer tilt angle and the tilt angle of the liquid crystal composition in this example are values measured by the following measuring methods.

【0033】〔液晶層の傾き角δの測定〕基本的には、
クラークやラガーウォルによって行われた方法(Jap
an Display’86,Sep.30〜0ct.
2,1986,456〜458)、或いは、大内らの方
法(J.J.A.P.27(5)(1988)725〜
728)と同様の方法により測定した。測定装置は、回
転陰極方式X線回折装置(MACサイエンス社製)を用
い、液晶セルのガラス基板へのX線の吸収を低減させる
ため、基板にはコーニング社製のマイクロシート(80
μm)を用いた。
[Measurement of tilt angle δ of liquid crystal layer] Basically,
The method performed by Clark and Lagerwal (Jap
an Display '86, Sep. 30 to 0 ct.
2, 1986, 456-458) or the method of Ouchi et al. (JJAP 27 (5) (1988) 725-725).
728). As a measuring device, a rotating cathode type X-ray diffractometer (manufactured by MAC Science Co., Ltd.) is used. In order to reduce the absorption of X-rays to the glass substrate of the liquid crystal cell, a microsheet (80, manufactured by Corning) is used as the substrate.
μm).

【0034】〔チルト角の測定〕±30〜±50V、1
〜100HzのAC(交流)を液晶素子の上下基板間に
電極を介して印加しながら、直交クロスニコル下、その
間に配置された液晶素子を偏光板と平行に回転させると
同時に、フォトマル(浜松フォトニクス社製)で光学応
答を検知しながら、第2の消光位(透過率が最も低くな
る位置)及び第2の消光位を求める。そしてこの時の第
1の消光位から第2の消光位までの角度の1/2をチル
ト角とする。
[Measurement of tilt angle] ± 30 to ± 50 V, 1
While applying an AC (alternating current) of 100 Hz to between the upper and lower substrates of the liquid crystal element through electrodes, the liquid crystal element disposed therebetween is rotated in parallel with the polarizing plate under crossed Nicols, and at the same time, photomultiplier (Hamamatsu) The second extinction position (the position at which the transmittance becomes lowest) and the second extinction position are determined while detecting the optical response using a photonics company. Then, 1/2 of the angle from the first extinction position to the second extinction position at this time is defined as the tilt angle.

【0035】上記液晶素子に所定の工程により駆動素子
を4辺実装し、FLCモジュールパネルを完成した。こ
のパネルのセル厚は、中央値が1.9μm、セル厚差の
最大が0.2μmで中央が凹のセル厚分布となった。こ
れにより、駆動時の発熱による実装端とパネル中央との
温度差が約5℃あるにも関わらず、セル厚分布によりパ
ネル内しきい値むらが相殺されて駆動マージンの減少を
抑制することができた。
Four sides of the driving element were mounted on the liquid crystal element by a predetermined process to complete an FLC module panel. The cell thickness of this panel had a median value of 1.9 μm, a maximum cell thickness difference of 0.2 μm, and a concave cell thickness distribution at the center. Thus, even though the temperature difference between the mounting end and the center of the panel due to heat generated during driving is about 5 ° C., the threshold thickness unevenness in the panel is offset by the cell thickness distribution, and the reduction of the driving margin is suppressed. did it.

【0036】[比較例]実施例1と同じ基板を作製し、
図2に示した圧力分布形成部材を用いない以外は実施例
1と同様の工程でFLCモジュールパネルを作製した。
[Comparative Example] The same substrate as in Example 1 was manufactured.
An FLC module panel was manufactured in the same steps as in Example 1 except that the pressure distribution forming member shown in FIG. 2 was not used.

【0037】上記パネルのセル厚は中央値が2.1μ
m、セル厚差の最大が0.2μmで、ほぼ平坦なセル厚
分布となった。これにより、駆動時の発熱による実装端
とパネル中央との温度差が約5℃あるため、パネル内し
きい値むらにより駆動マージンが大幅に減少した。
The cell thickness of the panel is 2.1 μm at the median.
m, the maximum cell thickness difference was 0.2 μm, and the cell thickness distribution was almost flat. As a result, the temperature difference between the mounting end and the center of the panel due to heat generated during driving is about 5 ° C., and the driving margin is greatly reduced due to uneven threshold voltage in the panel.

【0038】[実施例2]2枚のガラス基板上にそれぞ
れストライプ状のITO電極と補助金属電極を形成し、
その上に無機酸化物(東京応化工業社製「MOF,Ti
−Si」)とポリイミド膜(日立化成社製「LP−6
4」)を形成した後、ラビング処理を施した。その後、
一方の基板に実施例1と同様にして、感光性樹脂膜を形
成し、フォトリソ法によりストライプ状にパターニング
して、電極間隙に隔壁部材を形成した。
[Example 2] A stripe-shaped ITO electrode and an auxiliary metal electrode were formed on two glass substrates, respectively.
An inorganic oxide ("MOF, Ti" manufactured by Tokyo Ohka Kogyo Co., Ltd.)
-Si ") and a polyimide film (" LP-6 "manufactured by Hitachi Chemical Co., Ltd.)
4)), a rubbing treatment was performed. afterwards,
A photosensitive resin film was formed on one of the substrates in the same manner as in Example 1, and was patterned in a stripe shape by a photolithography method to form a partition member between the electrodes.

【0039】上記基板のラビング方向が平行になるよう
に貼り合わせ、実施例1と同様に圧力分布形成部材を用
いて加圧焼成した後、毛管注入法で液晶を注入し、駆動
素子を実装してFLCモジュールパネルを得た。本実施
例で用いた液晶は、誘電異方性が負のカイラルスメクチ
ック液晶である。
The substrates were bonded so that the rubbing directions were parallel to each other, baked under pressure using a pressure distribution forming member in the same manner as in Example 1, and then liquid crystal was injected by a capillary injection method to mount a driving element. Thus, an FLC module panel was obtained. The liquid crystal used in this example is a chiral smectic liquid crystal having a negative dielectric anisotropy.

【0040】本実施例においても、所望のセル厚を形成
することで、駆動時の発熱が大きいこの種のパネルでも
十分な駆動マージンが得られた。
Also in the present embodiment, by forming a desired cell thickness, a sufficient drive margin was obtained even with this type of panel generating a large amount of heat during driving.

【0041】[0041]

【発明の効果】以上説明したように、本発明によれば、
液晶素子の面内温度分布の発生によるしきい値むらが隔
壁部材の厚み分布を形成することにより相殺され、駆動
電極からの発熱に影響されることなく表示面全面にわた
り均一駆動表示の液晶素子を提供することができる。特
に、本発明を高速、高精細、大画面に適したFLCパネ
ルに適用した場合、注入時の空隙欠陥改善・低温保存性
向上・耐衝撃性向上を達成しつつ、駆動電極からの発熱
に影響されることのない表示面全面にわたる均一駆動表
示を実現することができる。さらには、1枚の基板から
多数個のセルを取る場合にも対応可能であり、液晶素子
の性能向上とともに生産性の向上・低価格化を図ること
ができる。
As described above, according to the present invention,
Threshold unevenness due to the in-plane temperature distribution of the liquid crystal element is offset by forming the thickness distribution of the partition member, and the liquid crystal element for uniform driving display over the entire display surface without being affected by the heat generated from the driving electrodes. Can be provided. In particular, when the present invention is applied to an FLC panel suitable for a high-speed, high-definition, large-screen, it has an effect on the heat generation from the drive electrode while achieving the improvement of the void defect at the time of injection, the improvement of the low-temperature storage property and the improvement of the impact resistance. Uniform drive display over the entire display surface without being performed can be realized. Furthermore, it is possible to cope with a case where a large number of cells are obtained from one substrate, and it is possible to improve the performance of the liquid crystal element and to improve the productivity and reduce the price.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の液晶素子の一実施形態の部分断面模式
図である。
FIG. 1 is a schematic partial cross-sectional view of one embodiment of a liquid crystal element of the present invention.

【図2】本発明に用いる圧力分布形成部材の一実施形態
の模式図である。
FIG. 2 is a schematic view of one embodiment of a pressure distribution forming member used in the present invention.

【図3】本発明が解決する液晶素子の温度分布の説明図
である。
FIG. 3 is an explanatory diagram of a temperature distribution of a liquid crystal element solved by the present invention.

【図4】図3とは異なる温度分布の説明図である。FIG. 4 is an explanatory diagram of a temperature distribution different from FIG.

【符号の説明】[Explanation of symbols]

11,12 基板 13,14 透明電極 15,16 補助金属電極 17,18 配向膜 19 隔壁部材 20 液晶化合物 21a,21b 緩衝材 22 剛体 23 基板位置 31 液晶素子 32,32a,32b 情報信号印加素子群 33 走査信号印加素子群 11, 12 Substrate 13, 14 Transparent electrode 15, 16 Auxiliary metal electrode 17, 18 Alignment film 19 Partition member 20 Liquid crystal compound 21a, 21b Buffer material 22 Rigid body 23 Substrate position 31 Liquid crystal element 32, 32a, 32b Information signal applying element group 33 Scan signal applying element group

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡田 伸二郎 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Shinjiro Okada 3-30-2 Shimomaruko, Ota-ku, Tokyo Inside Canon Inc.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 それぞれにストライプ状の透明電極を有
する一対の基板を該透明電極が互いに直交するように隔
壁部材を介して対向配置し、該隔壁部材で上記一対の基
板を接着し、その間隙に液晶を挟持してなり、少なくと
も一方の透明電極上に補助金属電極を備え、その4辺の
少なくとも1辺に液晶駆動電圧供給源を備えた液晶素子
であって、基板に垂直な方向の上記隔壁部材の厚さが、
上記液晶駆動電圧供給源から離れるに従って薄くなるこ
とを特徴とする液晶素子。
1. A pair of substrates each having a transparent electrode in the form of a stripe are opposed to each other via a partition member such that the transparent electrodes are orthogonal to each other, and the pair of substrates are adhered to each other with the partition member. A liquid crystal element having an auxiliary metal electrode on at least one transparent electrode and a liquid crystal driving voltage supply source on at least one of the four sides thereof, wherein the liquid crystal element is provided in a direction perpendicular to the substrate. The thickness of the partition member is
A liquid crystal element, which becomes thinner as the distance from the liquid crystal drive voltage supply source increases.
【請求項2】 上記隔壁部材がストライプ状である請求
項1記載の液晶素子。
2. The liquid crystal device according to claim 1, wherein the partition member has a stripe shape.
【請求項3】 上記隔壁部材がドット状である請求項1
記載の液晶素子。
3. The partition member according to claim 1, wherein the partition member has a dot shape.
The liquid crystal element according to the above.
【請求項4】 上記液晶がカイラルスメクチック液晶で
ある請求項1〜3いずれかに記載の液晶素子。
4. The liquid crystal device according to claim 1, wherein the liquid crystal is a chiral smectic liquid crystal.
【請求項5】 上記液晶が強誘電性液晶である請求項4
記載の液晶素子。
5. The liquid crystal according to claim 4, wherein said liquid crystal is a ferroelectric liquid crystal.
The liquid crystal element according to the above.
【請求項6】 上記液晶が反強誘電性液晶である請求項
4記載の液晶素子。
6. The liquid crystal device according to claim 4, wherein said liquid crystal is an antiferroelectric liquid crystal.
【請求項7】 上記液晶が、フルオロカーボン末端部分
及び炭化水素末端部分を有し、該両末端部分が中心核に
よって結合され、スメクチック中間相或いは潜在的スメ
クチック中間相を持つフッ素含有液晶化合物を含有する
液晶組成物である請求項4記載の液晶素子。
7. The liquid crystal has a fluorine-containing liquid crystal compound having a fluorocarbon terminal portion and a hydrocarbon terminal portion, both terminal portions of which are linked by a central nucleus and having a smectic intermediate phase or a potential smectic intermediate phase. The liquid crystal device according to claim 4, which is a liquid crystal composition.
【請求項8】 一対の基板を隔壁部材を介して対向配置
し、該隔壁部材で該一対の基板を接着し、その間隙に液
晶を挟持してなる液晶素子の製造方法であって、一方の
基板に、加熱硬化部材からなる隔壁部材を形成し、基板
貼り合わせ工程において基板面内に圧力分布を形成して
上記隔壁部材を加熱加圧硬化させることにより、上記隔
壁部材の基板に垂直な方向の厚みを、上記液晶駆動電圧
供給源から離れるに従って薄くなるように形成すること
を特徴とする液晶素子の製造方法。
8. A method for manufacturing a liquid crystal element, comprising: a pair of substrates arranged to face each other with a partition member interposed therebetween, the pair of substrates being adhered to each other by a partition member, and a liquid crystal being sandwiched in a gap therebetween. A partition member made of a heat-curable member is formed on the substrate, and a pressure distribution is formed in the substrate surface in the substrate bonding step, and the partition member is heated and pressurized and cured, whereby a direction perpendicular to the substrate of the partition member is formed. Wherein the thickness of the liquid crystal element is reduced as the distance from the liquid crystal driving voltage supply source increases.
【請求項9】 上記基板面内に圧力分布を形成する手段
が、厚み分布を有する剛体を緩衝材を介して基板に重
ね、その上から基板全面を一様に加圧する請求項8記載
の液晶素子の製造方法。
9. The liquid crystal according to claim 8, wherein said means for forming a pressure distribution in the surface of the substrate superimposes a rigid body having a thickness distribution on the substrate via a buffer material, and uniformly presses the entire surface of the substrate from above. Device manufacturing method.
JP35882197A 1997-12-26 1997-12-26 Liquid crystal element and its manufacture Withdrawn JPH11190848A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35882197A JPH11190848A (en) 1997-12-26 1997-12-26 Liquid crystal element and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35882197A JPH11190848A (en) 1997-12-26 1997-12-26 Liquid crystal element and its manufacture

Publications (1)

Publication Number Publication Date
JPH11190848A true JPH11190848A (en) 1999-07-13

Family

ID=18461288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35882197A Withdrawn JPH11190848A (en) 1997-12-26 1997-12-26 Liquid crystal element and its manufacture

Country Status (1)

Country Link
JP (1) JPH11190848A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7286198B2 (en) 2004-01-08 2007-10-23 Tpo Displays Corp. Transflective liquid crystal display

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7286198B2 (en) 2004-01-08 2007-10-23 Tpo Displays Corp. Transflective liquid crystal display

Similar Documents

Publication Publication Date Title
JP3358935B2 (en) Liquid crystal display device and method of manufacturing the same
KR100253924B1 (en) Lcd device and its manufacturing method
JPH11194343A (en) Liquid crystal display device
JPH0580302A (en) Liquid crystal electrooptical device
JP2924757B2 (en) Liquid crystal element
JP5096026B2 (en) Manufacturing method of liquid crystal display element
JP4028633B2 (en) Liquid crystal display
JP4318954B2 (en) Liquid crystal panel and manufacturing method thereof
JPH08152609A (en) Liquid crystal display element and its production
JP2003255347A (en) Liquid crystal display and production method thereof
JPH0527224A (en) Liquid crystal display device and its production
JPH11190848A (en) Liquid crystal element and its manufacture
JPH08136935A (en) Liquid crystal display device
JPH11190850A (en) Liquid crystal element and manufacturing method therefor
JP2000111880A (en) Liquid crystal optical modulation element and its manufacture
JPH06331948A (en) Production of liquid crystal electrooptical device
JP3006826B2 (en) Liquid crystal display device and method of manufacturing the same
US7679704B2 (en) Method of fabricating an in-plane switching mode liquid crystal display comprising rubbing and applying a beam to set pre-tilt angles
JP3218780B2 (en) LCD panel
JPH08248398A (en) Liquid crystal display element
JP2000206536A (en) Liquid crystal element
JP2000206537A (en) Liquid crystal element and its manufacture
JPH01140126A (en) Liquid crystal display device
JPH05173147A (en) Liquid crystal display element and its manufacture
JPH10206865A (en) Liquid crystal element

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050301