JPH11190701A - Method and apparatus for inspecting foreign matter - Google Patents

Method and apparatus for inspecting foreign matter

Info

Publication number
JPH11190701A
JPH11190701A JP35875097A JP35875097A JPH11190701A JP H11190701 A JPH11190701 A JP H11190701A JP 35875097 A JP35875097 A JP 35875097A JP 35875097 A JP35875097 A JP 35875097A JP H11190701 A JPH11190701 A JP H11190701A
Authority
JP
Japan
Prior art keywords
inspection
angle
optical system
light
foreign matter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35875097A
Other languages
Japanese (ja)
Inventor
Tatsuo Nagasaki
達夫 長崎
Takashi Inoue
隆史 井上
Takeshi Shimono
健 下野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP35875097A priority Critical patent/JPH11190701A/en
Publication of JPH11190701A publication Critical patent/JPH11190701A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PROBLEM TO BE SOLVED: To inspect a matter with a high accuracy by sufficiently reducing an inspecting angle while obtaining necessary optical characteristics of an inspecting optical system. SOLUTION: In the case of an inspecting optical system 21 of a substantially uniform reference shape around an optical axis Y for receiving a folded reflected light 2b from a foreign matter 9 of an inspecting point 5a1, the angle θfor disposing the system 21 is set to a small acute angle to interfere with an optical beam 2a emitted to the point 5a1 or the beam 2a and a surface 5b to be inspected, and the matter 9 is inspected by avoiding the beam 2a or the beam 2a and the surface 5a in a deformed shape from the shape 21a of the system 21, thereby achieving its object.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば、半導体ウ
エハ、光ディスクの原盤、ハードディスクの原盤などの
表面に付着する埃、髪の毛、金属片、ガラス、チッピン
グ、プロセス生成物などの異物を検査する異物検査方法
とその装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a foreign substance for inspecting foreign substances such as dust, hair, metal pieces, glass, chipping, and process products adhered to the surface of a semiconductor wafer, a master of an optical disk, a master of a hard disk, and the like. The present invention relates to an inspection method and an apparatus therefor.

【0002】[0002]

【従来の技術】上記のような異物検査を行うのに、図6
〜図8に示すような方法および装置が知られている。こ
れにつき説明すると、レーザ光源aからのレーザ光bを
コリメータレンズcで平行光とした後、シリンドリカル
レンズdによって被検査面e上の検査点oに向け、被検
査面eとほぼ平行に近い微小な照射角度α、例えばα=
2°程度に設定された照射光軸x方向から、偏光子fに
て偏光したS偏光のレーザビームb1として照射してス
リット状に結像させ、そのときの検査点oからの折り返
し反射光b2を、照射角度αよりも大きな鋭角をなす検
査角度θ、例えばθ=30°程度に設定された検査光軸
y上で受光し、そのうちの検光子hを透過した前記特定
の向きのS偏光と異なった向きに偏光されているP偏光
成分を異物として検出する。図7に照射光軸x、検査光
軸y、および被検査面eの角度関係を光のベクトル図で
単純化して示してある。
2. Description of the Related Art FIG.
A method and apparatus as shown in FIGS. To explain this, after a laser beam b from a laser light source a is collimated by a collimator lens c, it is directed to an inspection point o on a surface e to be inspected by a cylindrical lens d, and is minutely parallel to the surface e to be inspected. Irradiation angle α, for example α =
It is irradiated as an S-polarized laser beam b1 polarized by the polarizer f from the irradiation optical axis x direction set to about 2 ° to form an image in a slit shape, and the reflected light b2 reflected from the inspection point o at that time. Is received on an inspection optical axis y set at an inspection angle θ that forms an acute angle larger than the irradiation angle α, for example, θ = about 30 °, and the S-polarized light in the specific direction transmitted through the analyzer h. P-polarized light components polarized in different directions are detected as foreign matter. FIG. 7 shows the angle relationship between the irradiation optical axis x, the inspection optical axis y, and the surface to be inspected e in a simplified light vector diagram.

【0003】この検出のための検査光学系gは図6、図
8に示すように、対物レンズj、検光子h、結像レンズ
kを1つの鏡筒mに装備したものとされ、受光する折り
返し反射光b2をコリメータレンズcにより平行光にし
た後、検光子hによりP偏光成分のみを透過させ、その
透過光を結像レンズkによりCCDラインセンサnの受
光面に結像させることを、被検査面eの必要域につき走
査して異物検査を行う。
An inspection optical system g for this detection is, as shown in FIGS. 6 and 8, equipped with an objective lens j, an analyzer h, and an imaging lens k in one lens barrel m, and receives light. After turning the returning reflected light b2 into parallel light by the collimator lens c, transmitting only the P-polarized component by the analyzer h, and forming the transmitted light on the light receiving surface of the CCD line sensor n by the imaging lens k, A necessary area of the inspection surface e is scanned to perform a foreign substance inspection.

【0004】検査点oに照射されるS偏光したレーザ光
b1は、検査点oの表面状態の影響を受けて反射し、異
物pによる光の散乱でP偏光成分の発生を伴いながら図
8に示すような前方散乱光b3、側方散乱光b4、およ
び検査光学系gに受光される折り返し反射光b2となる
後方散乱光b5などが生じる。ここで、異物pによる光
の散乱により発生するP偏光成分の方が、プリント配線
パターンを持った回路基板におけるパターンなどからの
反射による回転で発生するP偏光成分よりも強い。この
ため、CCDラインセンサn上に結像され光電変換され
た検出信号では、その信号の値の大小により異物かどう
か判別でき、光学的に高精度に判別され得る。
The S-polarized laser beam b1 applied to the inspection point o is reflected under the influence of the surface condition of the inspection point o, and is scattered by the foreign matter p to generate a P-polarized component as shown in FIG. As shown in the figure, forward scattered light b3, side scattered light b4, and back scattered light b5 that is reflected return light b2 received by inspection optical system g are generated. Here, the P-polarized light component generated by light scattering by the foreign matter p is stronger than the P-polarized light component generated by rotation due to reflection from a pattern on a circuit board having a printed wiring pattern. For this reason, the detection signal imaged on the CCD line sensor n and photoelectrically converted can be determined as a foreign substance based on the value of the signal, and can be optically determined with high precision.

【0005】[0005]

【発明が解決しようとする課題】ところで近時では、製
品の品質、精度のさらなる向上のために、より微小な異
物も検出することの要求が高まってきている。しかし、
上記図6〜図8に示す従来の装置ではこれに応えること
はできない。
Recently, there is an increasing demand for detecting finer foreign substances in order to further improve the quality and accuracy of products. But,
The conventional devices shown in FIGS. 6 to 8 cannot respond to this.

【0006】これにつき本発明者等が種々に実験し、検
討を重ねたところ、検査精度は検査光学系gの検査角度
θに依存する。この依存の特性は、異物pからの散乱光
のP偏光成分の光強度をS(信号)、被検査面e上の銅
やアルミニウムの配線パターン等からの反射光のP偏光
成分をN(ノイズ)としたときのSN比、つまりS/N
を検査精度の尺度として見ると、図9に示すように検査
角度θが小さいほど検出精度が指数倍に高くなり、異物
を検出するためにはS/Nは1以上が必要である。
The inventors of the present invention have conducted various experiments and have conducted various studies. As a result, the inspection accuracy depends on the inspection angle θ of the inspection optical system g. The characteristic of this dependence is that the light intensity of the P-polarized component of the scattered light from the foreign material p is S (signal), and the P-polarized component of the reflected light from the copper or aluminum wiring pattern on the surface to be inspected e is N (noise). ), Ie, S / N
As a measure of inspection accuracy, as shown in FIG. 9, as the inspection angle θ is smaller, the detection accuracy is increased by an exponential factor, and an S / N of 1 or more is required to detect foreign matter.

【0007】今、検査角度θとS/N値の関係を、上記
従来の検査光学系gにつき同じ大きさの異物pの場合で
見ると、検査角度θが15°の場合、図10の(a)に
示すように検査光学系gの開口n内に異物pからの後方
散乱光b5の全体が入ってそのP偏光成分の受光量が最
大となりS値が最大になるが、検査角度θが30°の場
合、図10の(b)に示すように開口n内に後方散乱光
b5の一部しか入らず、異物pからの後方散乱光b5に
おけるP偏光成分の受光量が大幅に減少し、S値が下が
る。従って、検査角度θが大きいとN値の比率が大きく
なり検査精度が低くなる。しかも、検査対象となる異物
pが例えば0.5μm程度以下と小さな場合異物pから
の後方散乱光b5の光量自体が微量になり、それから検
査光学系gが受光できるP偏光成分の光量も微量となる
ので、検査角度θが大きいと検査精度は大きく低下し、
近時の要求に応えられない。このため、検査角度θは1
5°程度には小さく設定することが望まれる。
Now, when the relationship between the inspection angle θ and the S / N value is viewed in the case of the foreign matter p having the same size in the conventional inspection optical system g, when the inspection angle θ is 15 °, FIG. As shown in a), the entire backscattered light b5 from the foreign matter p enters the opening n of the inspection optical system g, the amount of received P-polarized light component becomes maximum, and the S value becomes maximum. In the case of 30 °, only a part of the back scattered light b5 enters the opening n as shown in FIG. 10B, and the amount of the P-polarized light component received in the back scattered light b5 from the foreign matter p is greatly reduced. , S values decrease. Therefore, when the inspection angle θ is large, the ratio of the N value is large, and the inspection accuracy is low. In addition, when the foreign substance p to be inspected is small, for example, about 0.5 μm or less, the amount of the backscattered light b5 from the foreign substance p becomes very small, and the amount of the P-polarized component that can be received by the inspection optical system g becomes very small. Therefore, if the inspection angle θ is large, the inspection accuracy is greatly reduced,
Can't respond to recent demands. Therefore, the inspection angle θ is 1
It is desired that the angle be set as small as about 5 °.

【0008】しかし、検査光学系gは従来、図6、図8
に示すように、検査光軸yのまわりに均等な形状、つま
り円形な基準形状を有したものが用いられ、鏡筒mは円
筒形状である。また、微小な異物pからの後方散乱光b
5のP偏光成分を十分に検出するために、検査光学系g
には開口数NA=0.3程度が最低限必要である。従っ
て、NA=sinθaの式から、検査光学系gの対物レ
ンズjに必要な開口角θaはθa=17.5°程度に設
定され、開口径は50mm程度のものとなる。
[0008] However, the inspection optical system g is conventionally known as shown in FIGS.
As shown in (1), a lens having a uniform shape around the inspection optical axis y, that is, a circular reference shape is used, and the lens barrel m has a cylindrical shape. Also, backscattered light b from minute foreign matter p
In order to sufficiently detect the P-polarized component of No. 5, the inspection optical system g
Requires a numerical aperture NA of at least about 0.3. Accordingly, from the equation of NA = sin θa, the opening angle θa required for the objective lens j of the inspection optical system g is set to about θa = 17.5 °, and the opening diameter is about 50 mm.

【0009】この検査光学系gは前記異物検査のために
鏡筒mがレーザ光bおよび被検査面eを避けた状態で配
置される。
The inspection optical system g is arranged so that the lens barrel m avoids the laser beam b and the surface to be inspected e for the foreign substance inspection.

【0010】それには、実機でのあらゆる変動要因を考
慮して、レーザ光bに鏡筒mによるけられが生じないた
めの、鏡筒mの先端とレーザ光bとの間のマージン角θ
mが必要であり、具体的には2°〜5°程度に設定され
る。また、開口角θaとマージン角θmとの間には、鏡
筒mの部分によって後方散乱光b5の受光がけられる5
°程度のデッド角θkもある。このため、上記検査角度
θは、 θ=α+θm+θk+θa となる。最低の角度設定をしても θ=2°+2°+5°+17.5°=26.5° となり、25°を下回ることは困難である。このため従
来、0.5μm程度以下の微小異物に対しては十分な検
査精度が得られていない。
In order to prevent the laser beam b from being shaken by the lens barrel m in consideration of all fluctuation factors in the actual machine, a margin angle θ between the tip of the lens barrel m and the laser beam b is set.
m is required, and specifically, is set to about 2 ° to 5 °. Further, between the opening angle θa and the margin angle θm, the backscattered light b5 is received by the lens barrel m.
There is also a dead angle θk of about °. Therefore, the inspection angle θ is θ = α + θm + θk + θa. Even if the minimum angle is set, θ = 2 ° + 2 ° + 5 ° + 17.5 ° = 26.5 °, and it is difficult to fall below 25 °. For this reason, conventionally, sufficient inspection accuracy has not been obtained for minute foreign substances of about 0.5 μm or less.

【0011】本発明の目的は、このような知見に基づ
き、検査光学系の必要な光学特性を十分に確保しなが
ら、検査角度を十分に小さくして、高精度内物検査がで
きる異物の検査方法とその装置を提供することにある。
An object of the present invention is to provide a high-precision inspection of foreign objects by sufficiently reducing the inspection angle while sufficiently securing necessary optical characteristics of an inspection optical system based on such knowledge. It is an object of the present invention to provide a method and an apparatus therefor.

【0012】[0012]

【課題を解決するための手段】上記のような目的を達成
するため、本発明の異物検査方法は、被検査面上の検査
点に向け、被検査面とのほぼ平行に近い微小な照射角度
をなした照射光軸上から特定の向きに偏光した光ビーム
を照射して、そのときの検査点からの折り返し反射光
を、被検査面と照射角度よりも大きい検査角度をなす検
査光軸上で受光して、前記特定の向きと異なった向きに
偏光されている偏光成分を異物として検出するのに、検
査角度を、前記反射光を受光する光軸まわりにほぼ均等
な基準形状をした検査光学系の場合に、前記検査点に照
射する光ビームないしは、光ビームおよび被検査面と干
渉するような小さな鋭角に設定し、検査光学系の前記基
準形状からの変形形状にて、光ビームないしは、光ビー
ムおよび被検査面を避けて前記異物の検出を行うことを
特徴としている。
In order to achieve the above object, a foreign matter inspection method according to the present invention is directed to an inspection point on a surface to be inspected, a small irradiation angle almost parallel to the surface to be inspected. A light beam polarized in a specific direction is irradiated from the irradiation optical axis, and the reflected light from the inspection point at that time is reflected on the inspection optical axis at an inspection angle larger than the irradiation angle with the surface to be inspected. In order to detect a polarized component polarized in a direction different from the specific direction as a foreign object, the inspection angle is set to a substantially uniform reference shape around an optical axis for receiving the reflected light. In the case of an optical system, a light beam or a light beam to irradiate the inspection point is set at a small acute angle so as to interfere with the light beam and the surface to be inspected, and the light beam or the light beam is deformed from the reference shape of the inspection optical system. , Light beam and inspection surface Only with it is characterized by the detection of the foreign substance.

【0013】このような構成では、検査光学系が、従来
のような検査光軸まわりにほぼ均等な基準形状を有する
場合において、被検査面の検査点に照射する光ビームと
対向する側で、光ビームないしは、光ビームおよび被検
査面と干渉する状態に検査角度が設定されて、基準形状
にて干渉しない従来の配置の場合の検査角度よりも小さ
くなる分だけ、被検査面の検査点にある異物からの折り
返し反射光の光路側に寄せることができ、また、前記検
査光学系はその基準形状からの変形形状によって前記光
ビーム、ないしは光ビームおよび被検査面を避けること
により、検査点に向け照射される光ビームに検査光学系
によるけられが生じるようなことはなく、さらに、前記
変形形状は検査光学系の基準形状における開口の光ビー
ムと対向する側が、光ビームないしは、光ビームおよび
被検査面と干渉しない分だけ、本発明の異物検査装置の
ように少なくとも対物レンズ側で切除された形状として
得られ、基準形状にて前記干渉のない小さな開口数に設
定する場合のように、異物からの折り返し反射光の受光
域が極端に小さくなるようなことはないので、本発明の
異物検査装置とともに、検査光学系の必要光学特性を十
分に確保しながら、検査角度を小さくできることによっ
て、異物からの折り返し反射光の受光量を総合的に増大
させて小さな異物でも高精度に検査することができる。
In such a configuration, when the inspection optical system has a substantially uniform reference shape around the inspection optical axis as in the related art, on the side facing the light beam irradiated to the inspection point on the surface to be inspected, The inspection angle is set to a state where the light beam or the light beam and the surface to be inspected interfere with each other, and the inspection angle on the surface to be inspected is reduced by an amount smaller than the inspection angle in the case of the conventional arrangement that does not interfere with the reference shape. It can be brought closer to the optical path side of reflected light reflected from a certain foreign matter, and the inspection optical system avoids the light beam, or the light beam and the surface to be inspected by a deformation shape from its reference shape, so that the inspection optical system can be moved to an inspection point. There is no such a case that the light beam irradiated for the purpose is shaken by the inspection optical system, and the deformed shape is the side of the reference shape of the inspection optical system opposite to the light beam of the opening. The light beam or the portion not interfering with the light beam and the surface to be inspected is obtained as a shape cut off at least on the objective lens side as in the foreign matter inspection device of the present invention, and has a small numerical aperture without interference in the reference shape. As in the case of setting, since the light receiving area of the reflected light reflected from the foreign matter does not become extremely small, while ensuring the necessary optical characteristics of the inspection optical system together with the foreign matter inspection device of the present invention, Since the inspection angle can be reduced, the amount of reflected reflected light from the foreign matter can be increased comprehensively, and small foreign matter can be inspected with high accuracy.

【0014】[0014]

【発明の実施の形態】以下、本発明の異物検査方法およ
びその装置の代表的な実施の形態についてその実施例と
ともに図1〜図5を参照しながら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A representative embodiment of a foreign matter inspection method and apparatus according to the present invention will be described below with reference to FIGS.

【0015】本実施の形態は図1、図2に示すように、
光ビームとしてレーザ光源1からのレーザ光2を用い
て、例えば、表面に回路パターンが形成された回路基板
5などの被検査面5a上の検査点5a1に照射する照射
光学系11を用いている。しかし、これに限られること
はなく、種々な直進光を用いることができる。照射光学
系11は被検査面5aとのほぼ平行に近い微小な照射角
度α、例えばα=2°程度に設定された照射光軸Xの方
向から検査点5a1に向けレーザ光2を照射するように
設置され、レーザ光2をコリメータレンズ3で平行光と
した後、シリンドリカルレンズ4によって被検査面5a
上の検査点5a1にスリット状に結像させる。検査点5
a1に照射するレーザ光2は偏光子6にて偏光したS偏
光のレーザ光2aとするようにしてある。
In this embodiment, as shown in FIGS. 1 and 2,
For example, an irradiation optical system 11 that irradiates an inspection point 5a1 on a surface 5a to be inspected such as a circuit board 5 having a circuit pattern formed on a surface thereof using a laser beam 2 from a laser light source 1 as a light beam. . However, the present invention is not limited to this, and various types of straight light can be used. The irradiation optical system 11 emits the laser beam 2 toward the inspection point 5a1 from the direction of the irradiation optical axis X set to a minute irradiation angle α almost parallel to the inspection surface 5a, for example, α = about 2 °. The laser light 2 is collimated by a collimator lens 3 and then collimated by a cylindrical lens 4.
An image is formed in a slit shape on the upper inspection point 5a1. Inspection point 5
The laser beam 2 irradiated to a1 is an S-polarized laser beam 2a polarized by the polarizer 6.

【0016】検査点5a1がレーザ光2aで照射された
ときの異物9からの反射光は、図4に示すように前方散
乱光2b1、側方散乱光2b2、および折り返し反射光
2bである後方散乱光2b3などと各種の方向に散乱し
て反射される。この内の後方散乱光2b3を折り返し反
射光2bとして検査光学系21により受光してCCDラ
インセンサ8に結像させ、そのときのCCDラインセン
サ8で光電変換された電気信号から異物9の検査を行
う。この場合のレーザ光2aの照射角度α、折り返し反
射光2bを受光する検査角度θ、および被検査面5aの
関係を図3にベクトル図にて簡略に示してある。
When the inspection point 5a1 is irradiated with the laser light 2a, the reflected light from the foreign matter 9 is a forward scattered light 2b1, a side scattered light 2b2, and a back scattered light 2b as shown in FIG. Light 2b3 and the like are scattered and reflected in various directions. The back scattered light 2b3 is reflected by the inspection optical system 21 as the reflected light 2b to form an image on the CCD line sensor 8, and the inspection of the foreign substance 9 is performed based on the electric signal photoelectrically converted by the CCD line sensor 8 at that time. Do. In this case, the relationship among the irradiation angle α of the laser beam 2a, the inspection angle θ at which the reflected reflected light 2b is received, and the surface 5a to be inspected is simply shown in a vector diagram in FIG.

【0017】このような受光のために検査光学系21
は、従来通り、被検査面5aと照射角度αよりも大きい
鋭角な検査角度θをなす検査光軸Y上で受光するように
配置されている。本実施の形態では検査角度θを従来よ
りも小さく、例えば15°に設定している。検査光学系
21はコリメータレンズである対物レンズ12、検光子
13、結像レンズ14を1つの鏡筒15に装備したもの
としてあり、折り返し反射光2bとして受光する後方散
乱光2b3を対物レンズ12により平行光にした後、検
光子13によりP偏光成分のみを透過させ、その透過し
たP偏光のレーザ光2cを結像レンズ14によりCCD
ラインセンサ8の受光面に結像させる。CCDラインセ
ンサ8の出力は検光子13を介し前記特定の向きのS偏
光と異なった向きに偏光したP偏光成分についてのもの
を異物として検出することを、被検査面5aの必要域に
つき走査して行う。対物レンズ12は図示する実施例で
はレンズ12a、12bによる2枚構成としてあるが、
1枚でもよいし、3枚以上でもよく、具体的な構成は特
に問わない。また、CCDラインセンサ8に代えてフォ
トダイオード等の種々の光電変換素子を用いることがで
きるし、ラインセンサでなく検査視野に対応した受光面
を有する各種の形態を採用することができる。
For such light reception, the inspection optical system 21
Is arranged so as to receive light on the inspection optical axis Y forming an acute inspection angle θ larger than the irradiation angle α with the surface 5a to be inspected, as in the related art. In the present embodiment, the inspection angle θ is set smaller than before, for example, 15 °. The inspection optical system 21 includes an objective lens 12, which is a collimator lens, an analyzer 13, and an imaging lens 14, provided in one lens barrel 15, and the backscattered light 2b3 received as the reflected light 2b is reflected by the objective lens 12. After being converted into parallel light, only the P-polarized light component is transmitted by the analyzer 13, and the transmitted P-polarized laser light 2 c is transmitted by the imaging lens 14 to the CCD.
An image is formed on the light receiving surface of the line sensor 8. The output of the CCD line sensor 8 scans the required area of the surface 5a to be inspected through the analyzer 13 to detect, as a foreign substance, a P-polarized component polarized in a direction different from the S-polarized light in the specific direction. Do it. In the illustrated embodiment, the objective lens 12 has a two-element configuration including lenses 12a and 12b.
One or three or more sheets may be used, and the specific configuration is not particularly limited. Further, various photoelectric conversion elements such as a photodiode can be used in place of the CCD line sensor 8, and various forms having a light receiving surface corresponding to the inspection visual field can be employed instead of the line sensor.

【0018】本実施の形態では、検査光学系21とし
て、前記した従来例の場合同様な光学特性に設定された
もので、開口角θaは開口数NA=0.3を満足するθ
a=17.5°に設定して開口径が50mm程度となる
もので、従来できなかった前記15°の検査角度θを満
足するため、図1の(a)に仮想線21aで示す検査光
軸Yまわりにほぼ均等な円筒形である基準形状におい
て、前記検査点5a1に照射するレーザ光2aと対向す
る側で、レーザ光2aおよび被検査面5aと干渉するよ
うな配置として、前記検査角度θを15°に設定する一
方、検査光学系21の図1の(a)に実線で示し、図1
の(b)、図2に示すような基準形状からの変形形状に
て前記レーザ光2aおよび被検査面5aを避けて前記異
物9の検出を行う。
In the present embodiment, the inspection optical system 21 is set to have the same optical characteristics as in the above-described conventional example, and the aperture angle θa satisfies the numerical aperture NA = 0.3.
Since the aperture diameter is about 50 mm when a is set to 17.5 °, the inspection light θ indicated by the imaginary line 21a in FIG. In the reference shape, which is a cylinder substantially uniform around the axis Y, the inspection angle is set so as to interfere with the laser beam 2a and the surface 5a to be inspected on the side facing the laser beam 2a irradiated to the inspection point 5a1. While θ is set to 15 °, the inspection optical system 21 is shown by a solid line in FIG.
(B), the foreign substance 9 is detected in a deformed shape from the reference shape as shown in FIG. 2 while avoiding the laser beam 2a and the inspection surface 5a.

【0019】実際の装置としては前記基準形状からの変
形形状は、基準形状の検査光学系21を必要最小限に切
除して形成するのが容易であり、図1の(a)実線およ
び、図1の(b)、図2に示すように少なくとも対物レ
ンズ12の側につき被検査面5aに沿った平面Zにて、
レーザ光2aとの間のマージン角θmのみを配慮した検
査光軸Yとの間の切除角θbの位置で切除すればよい。
つまり、前記切除によって対物レンズ12が鏡筒15か
ら露出して被検査面5aと直接対向するので、鏡筒15
によるデッド角θkは発生せず省略できる。切除方法は
切り落としや研削など種々な方法がある。もっとも、必
要形状に初期から形成されたものを組み立ててもよいの
は勿論である。
In an actual apparatus, it is easy to form a deformed shape from the reference shape by cutting the inspection optical system 21 of the reference shape to the minimum necessary. The solid line in FIG. 1 (b), at least on the side of the objective lens 12 as shown in FIG.
The cutting may be performed at the position of the cutting angle θb with respect to the inspection optical axis Y in consideration of only the margin angle θm with the laser beam 2a.
In other words, the objective lens 12 is exposed from the lens barrel 15 by the resection and directly faces the surface 5a to be inspected.
Does not occur and can be omitted. There are various cutting methods such as cutting off and grinding. Needless to say, it is of course possible to assemble the necessary shape formed from the beginning.

【0020】ここで、切除角θbは、 θb=θ−(α+θm) となり、従来通り照射角度αを2°、マージン角θmを
2°に設定して切除角θbは11°程度となる。
Here, the ablation angle θb is as follows: θb = θ− (α + θm), and the irradiation angle α is set to 2 ° and the margin angle θm is set to 2 ° as in the past, and the ablation angle θb is about 11 °.

【0021】従って、検査角度θは、 θ=θb+α+θm となり、α=2°、θm=2°と設定した場合、θb=
11°であるので、 θ=2°+2°+11°=15° と、本実施の形態の上記設置条件を満足している。
Accordingly, the inspection angle θ becomes θ = θb + α + θm, and when α = 2 ° and θm = 2 °, θb =
Since it is 11 °, θ = 2 ° + 2 ° + 11 ° = 15 °, which satisfies the above-described installation condition of the present embodiment.

【0022】このように、検査光学系21が、従来のよ
うな検査光軸Yまわりにほぼ均等な基準形状を有する場
合において、被検査面5aの検査点5a1に照射するレ
ーザ光2、2aと対向する側で、レーザ光2、2aおよ
び被検査面5aと干渉する状態に検査角度θが設定され
て、基準形状にて干渉しない従来の配置の場合の検査角
度θよりも小さくなる分だけ、図5の(a)に示すよう
に被検査面5aの検査点5a1にある異物9からの折り
返し反射光2bの光路側に寄せることができる。
As described above, when the inspection optical system 21 has a substantially uniform reference shape around the inspection optical axis Y as in the related art, the laser beams 2 and 2a that irradiate the inspection point 5a1 on the surface 5a to be inspected are On the opposite side, the inspection angle θ is set in a state of interfering with the laser beams 2 and 2a and the surface 5a to be inspected, so that the inspection angle θ is smaller than the inspection angle θ in the conventional arrangement that does not interfere with the reference shape. As shown in FIG. 5A, the reflected light 2b from the foreign material 9 at the inspection point 5a1 on the inspection surface 5a can be brought closer to the optical path side.

【0023】また、検査光学系21はその基準形状から
の変形形状によってレーザ光2、2aおよび被検査面5
aを避けることにより、検査点5a1に向け照射される
レーザ光2、2aに検査光学系21によるけられが生じ
るようなことはない。
The inspection optical system 21 changes the shape of the laser beam 2, 2a and the surface
By avoiding a, the laser beam 2, 2a irradiated toward the inspection point 5a1 is not shaken by the inspection optical system 21.

【0024】さらに、検査光学系21の変形形状は、そ
の基準形状における開口21bのレーザ光2、2aと対
向する側の一部が、図5の(b)に示すようにレーザ光
2、2aおよび被検査面5aと干渉しない分だけ切除さ
れた形状として得られ、基準形状にて前記干渉のない小
さな開口数に設定する図5の(b)に仮想線で示す仮想
開口21cの場合のように、異物9からの折り返し反射
光2bの受光域が極端に小さくなるようなことなく、大
半の部分を受光でき、折り返し反射光2bである後方散
乱光2b3の光強度の強い部分の約10%程度に光のけ
られ量を抑えることができ、これらによって、本実施の
形態では、検査光学系21の必要光学特性を十分に確保
しながら、検査角度θを小さくできることによって、異
物9からの折り返し反射光2bの受光量を総合的に増大
させて、0.5μm以下の小さな異物9でもSN比を向
上し高精度に検査することができる。
Further, the deformed shape of the inspection optical system 21 is such that a part of the opening 21b on the side facing the laser beams 2 and 2a in the reference shape has the laser beams 2 and 2a as shown in FIG. 5B, which is obtained as a shape that is cut off by the amount not to interfere with the surface 5a to be inspected and has a small numerical aperture without interference in the reference shape, as in the case of the virtual opening 21c shown by a virtual line in FIG. In addition, most portions can be received without the light receiving area of the reflected reflected light 2b from the foreign material 9 becoming extremely small, and about 10% of the portion where the light intensity of the backscattered light 2b3 as the reflected reflected light 2b is strong. Thus, in the present embodiment, the inspection angle θ can be reduced while sufficiently securing the necessary optical characteristics of the inspection optical system 21. Return And overall increase the amount of received reflected light 2b, it is possible to 0.5μm even less small particles 9 to improve the SN ratio to inspect with high accuracy.

【0025】このような特徴は、検査光学系21の検査
角度θを従来の下限値25°を少しでも下回れば、図9
を用いて既述したように指数倍に有効になるので、検査
光学系21が基準形状にて少なくともレーザ光2aと干
渉するような検査角度θにて設置し、基準形状からの変
形形状にてレーザ光2aを避けるようにしても有効であ
り、本発明の範疇に属する。
FIG. 9 shows that the inspection angle θ of the inspection optical system 21 is slightly smaller than the conventional lower limit of 25 °.
As described above, the inspection optical system 21 is effective at an exponential multiple, so that the inspection optical system 21 is installed at an inspection angle θ such that it interferes with at least the laser beam 2a in the reference shape, and the inspection optical system 21 is deformed from the reference shape. It is effective to avoid the laser beam 2a, and it is within the scope of the present invention.

【0026】また、図1の(b)に一点鎖線で示すよう
に、検査光軸Yに平行な面Wで切除したものでも、本発
明の目的は達成できる。要するに、本発明の要旨を変更
しない範囲で種々な具体的構成を採用することができ
る。
Further, the object of the present invention can be achieved even by cutting off at a plane W parallel to the inspection optical axis Y, as shown by a dashed line in FIG. 1B. In short, various specific configurations can be adopted without changing the gist of the present invention.

【0027】[0027]

【発明の効果】本発明の異物検査方法および装置によれ
ば、検査光学系の必要光学特性を十分に確保しながら、
検査角度を小さくできることによって、異物からの折り
返し反射光の受光量を総合的に増大させて小さな異物で
も高精度に検査することができる。
According to the foreign matter inspection method and apparatus of the present invention, the required optical characteristics of the inspection optical system can be sufficiently ensured.
Since the inspection angle can be reduced, the amount of reflected reflected light from the foreign matter can be increased comprehensively, and small foreign matter can be inspected with high accuracy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態を示す異物検査装置の検査
光学系側の要部を示し、その(a)は受光状態を示す断
面図、その(b)は検査光学系の対物レンズ側の正面図
である。
FIG. 1 shows a main part of an inspection optical system side of a foreign matter inspection apparatus according to an embodiment of the present invention, in which (a) is a cross-sectional view showing a light receiving state, and (b) is an objective lens side of the inspection optical system. FIG.

【図2】図1の異物検査装置の全体を示す斜視図であ
る。
FIG. 2 is a perspective view showing the entire foreign matter inspection apparatus of FIG. 1;

【図3】図2の装置のベクトル説明図である。FIG. 3 is a vector explanatory diagram of the device of FIG. 2;

【図4】図1、図2の装置における異物検査状態での異
物から反射される散乱光の説明図である。
FIG. 4 is an explanatory diagram of scattered light reflected from a foreign substance in a foreign substance inspection state in the apparatus shown in FIGS. 1 and 2;

【図5】図1、図2の装置の検査光学系の開口と異物か
らの後方散乱光の入射状態との関係の説明図で、その
(a)は仮想入射状態を、その(b)は実施の形態での
実際の入射状態をそれぞれ示している。
FIGS. 5A and 5B are explanatory diagrams illustrating a relationship between an opening of an inspection optical system of the apparatus in FIGS. 1 and 2 and an incident state of backscattered light from a foreign substance, wherein FIG. 5A illustrates a virtual incident state and FIG. 2 shows actual incident states in the embodiment.

【図6】従来の異物検査装置の全体を示す斜視図であ
る。
FIG. 6 is a perspective view showing an entire conventional foreign matter inspection device.

【図7】図6の装置のベクトル説明図である。FIG. 7 is a vector explanatory diagram of the device of FIG. 6;

【図8】図6の装置の検査光学系側の要部を受光状態で
示す断面図である。
8 is a cross-sectional view showing a main part of the apparatus of FIG. 6 on the inspection optical system side in a light receiving state.

【図9】図6の装置の検査光学系の、被検査面との間の
検査角度と、この検査光学系を経て検出される異物信号
Sおよびノイズ信号DのS/N値との関係を示すグラフ
である。
9 shows the relationship between the inspection angle of the inspection optical system of the apparatus shown in FIG. 6 with respect to the surface to be inspected and the S / N values of the foreign matter signal S and the noise signal D detected through the inspection optical system. It is a graph shown.

【図10】図6の装置の検査光学系の開口と異物からの
後方散乱光の入射状態の説明図で、その(a)は理想入
射状態を、その(b)は実際の入射状態をそれぞれ示し
ている。
10A and 10B are explanatory diagrams of an incident state of backscattered light from an opening of an inspection optical system and a foreign substance of the apparatus of FIG. 6, in which FIG. 10A shows an ideal incident state and FIG. Is shown.

【符号の説明】[Explanation of symbols]

1 レーザ光源 2 レーザ光 2a S偏光のレーザ光 2b、2b3 折り返し反射光 2c P偏光のレーザ光 5a 被検査面 6 偏光子 8 CCDラインセンサ 9 異物 11 照射光学系 12 対物レンズ 13 検光子 14 結像レンズ 15 鏡筒 21 検査光学系 21a 基準形態図 21b 開口 α 照射角度 θ 検査角度 θa 開口角 θb 切除角 X 照射光軸 Y 検査光軸 W、Z 切除面 Reference Signs List 1 laser light source 2 laser light 2a S-polarized laser light 2b, 2b3 folded reflected light 2c P-polarized laser light 5a surface to be inspected 6 polarizer 8 CCD line sensor 9 foreign matter 11 irradiation optical system 12 objective lens 13 analyzer 14 imaging Lens 15 Lens barrel 21 Inspection optical system 21a Reference form diagram 21b Aperture α Irradiation angle θ Inspection angle θa Aperture angle θb Cutting angle X Irradiation optical axis Y Inspection optical axis W, Z Cutting surface

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 被検査面上の検査点に向け、被検査面と
のほぼ平行に近い微小な照射角度をなした照射光軸上か
ら特定の向きに偏光した光ビームを照射して、そのとき
の検査点からの折り返し反射光を、被検査面と照射角度
よりも大きい検査角度をなす検査光軸上で受光して、前
記特定の向きと異なった向きに偏光されている偏光成分
を異物として検出する異物検査方法において、 検査角度を、前記反射光を受光する光軸まわりにほぼ均
等な基準形状をした検査光学系の場合に、前記検査点に
照射する光ビームないしは、光ビームおよび被検査面と
干渉するような小さな鋭角に設定し、検査光学系の前記
基準形状からの変形形状にて、光ビームないしは、光ビ
ームおよび被検査面を避けて前記異物の検出を行うこと
を特徴とする異物検査方法。
1. A light beam polarized in a specific direction from an irradiation optical axis having a minute irradiation angle almost parallel to an inspection surface is irradiated toward an inspection point on the inspection surface, and The reflected light from the inspection point at that time is received on the inspection optical axis forming an inspection angle larger than the irradiation angle with the surface to be inspected, and the polarized component polarized in a direction different from the specific direction is contaminated. In the case of an inspection optical system having a substantially uniform reference shape around an optical axis for receiving the reflected light, a light beam or a light beam or a light beam applied to the inspection point is detected. It is set at a small acute angle so as to interfere with the inspection surface, and in the deformed shape from the reference shape of the inspection optical system, the light beam or the light beam and the detection of the foreign matter while avoiding the surface to be inspected. Foreign matter inspection method
【請求項2】 被検査面上の検査点に向け、被検査面と
のほぼ平行に近い微小な照射角度をなした照射光軸上の
照射光学系から特定の向きに偏光した光ビームを照射し
て、そのときの検査点からの折り返し反射光を、被検査
面と照射角度よりも大きい検査角度をなす検査光軸上の
検査光学系で受光し、前記特定の向きと異なった向きに
偏光されている偏光成分を異物として検出する異物検査
装置において、 前記検査光学系を、光軸まわりにほぼ均等な基準形状か
ら、前記照射する光ビームおよび被検査面と対向する側
を切除して、光ビームに近接配置したことを特徴とする
異物検査装置。
2. A light beam polarized in a specific direction is emitted from an irradiation optical system on an irradiation optical axis having a minute irradiation angle almost parallel to the inspection surface toward an inspection point on the inspection surface. Then, the reflected light reflected from the inspection point at that time is received by the inspection optical system on the inspection optical axis forming an inspection angle larger than the irradiation angle with the surface to be inspected, and polarized in a direction different from the specific direction. In a foreign matter inspection device that detects a polarized component as a foreign matter, the inspection optical system, from a substantially uniform reference shape around the optical axis, cut off the side facing the light beam to be irradiated and the surface to be inspected, A foreign matter inspection device, which is disposed close to a light beam.
【請求項3】 検査光学系の切除は、その対物レンズ側
に被検査面とほぼ沿う平面にて施されている請求項2に
記載の異物検査装置。
3. The foreign matter inspection apparatus according to claim 2, wherein the inspection optical system is cut off on the objective lens side in a plane substantially along the surface to be inspected.
JP35875097A 1997-12-26 1997-12-26 Method and apparatus for inspecting foreign matter Pending JPH11190701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35875097A JPH11190701A (en) 1997-12-26 1997-12-26 Method and apparatus for inspecting foreign matter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35875097A JPH11190701A (en) 1997-12-26 1997-12-26 Method and apparatus for inspecting foreign matter

Publications (1)

Publication Number Publication Date
JPH11190701A true JPH11190701A (en) 1999-07-13

Family

ID=18460925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35875097A Pending JPH11190701A (en) 1997-12-26 1997-12-26 Method and apparatus for inspecting foreign matter

Country Status (1)

Country Link
JP (1) JPH11190701A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105973898A (en) * 2016-06-17 2016-09-28 苏州玻色智能科技有限公司 Detection device of intelligent-terminal touch-screen protection cover plate
CN106066334A (en) * 2016-06-17 2016-11-02 苏州玻色智能科技有限公司 A kind of testing agency of the detection device for intelligent terminal touch screen cover sheet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105973898A (en) * 2016-06-17 2016-09-28 苏州玻色智能科技有限公司 Detection device of intelligent-terminal touch-screen protection cover plate
CN106066334A (en) * 2016-06-17 2016-11-02 苏州玻色智能科技有限公司 A kind of testing agency of the detection device for intelligent terminal touch screen cover sheet

Similar Documents

Publication Publication Date Title
US5748305A (en) Method and apparatus for particle inspection
KR920007196B1 (en) Method and apparatus for detecting foreign matter
US5861952A (en) Optical inspection method and apparatus including intensity modulation of a light beam and detection of light scattered at an inspection position
US5963316A (en) Method and apparatus for inspecting a surface state
JPH06281589A (en) Defect evaluating apparatus
US6208750B1 (en) Method for detecting particles using illumination with several wavelengths
JPH05100413A (en) Foreign matter detecting device
WO2016047666A1 (en) Solid immersion lens holder and image acquisition device
KR20170030706A (en) Substrate Inspection Apparatus
EP0335163B1 (en) Apparatus for detecting foreign matter on the surface of a substrate
JP3185878B2 (en) Optical inspection equipment
JPH11190701A (en) Method and apparatus for inspecting foreign matter
US20230060883A1 (en) Defect inspection apparatus and defect inspection method
JP3053096B2 (en) Foreign object detection method and device
JPH05288536A (en) Foreign matter inspection device
JPH0565020B2 (en)
JP3336392B2 (en) Foreign matter inspection apparatus and method
WO2003073085A1 (en) Surface foreign matters inspecting device
JPH10142489A (en) Method and device for focus detection
JP2709946B2 (en) Foreign matter inspection method and foreign matter inspection device
JPH10206338A (en) Foreign matter inspecting method and foreign matter inspecting device
JPH10123060A (en) Apparatus for defect inspection
JPH0419457Y2 (en)
JPH0795038B2 (en) Object defect inspection device
JPH10239014A (en) Focal point detecting device and inspecting device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20031216