JPH11189652A - Organosilicon polymer and its producti0n - Google Patents

Organosilicon polymer and its producti0n

Info

Publication number
JPH11189652A
JPH11189652A JP36723197A JP36723197A JPH11189652A JP H11189652 A JPH11189652 A JP H11189652A JP 36723197 A JP36723197 A JP 36723197A JP 36723197 A JP36723197 A JP 36723197A JP H11189652 A JPH11189652 A JP H11189652A
Authority
JP
Japan
Prior art keywords
reaction
temperature
polysilane
catalyst
organosilicon polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP36723197A
Other languages
Japanese (ja)
Other versions
JP3475761B2 (en
Inventor
Yoshitaka Hamada
吉隆 濱田
Shigeru Mori
滋 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP36723197A priority Critical patent/JP3475761B2/en
Publication of JPH11189652A publication Critical patent/JPH11189652A/en
Application granted granted Critical
Publication of JP3475761B2 publication Critical patent/JP3475761B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Silicon Polymers (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an organosilicon polymer which has both excellent chemical properties equivalent to those of a high-mol.-wt. polysilane and an excellent solubility by forming an organosilicon polymer having a specified glass transition temp. SOLUTION: The objective organosilicon polymer has a main structure of the formula, a glass transition temp. of 20 deg.C or higher, and a wt. average mol.wt. of 2,500-4,000 and is prepd. by reacting trihydrosilane in the presence of 100-1,000 ppm metallocene catalyst in an inert gas atmosphere at from room temp. to 80 deg.C for at least 24 hr and subjecting the resultant polysilane to dehydration and condensation at 120 deg.C or higher for 2-8 hr. The metallocene catalyst is a zirconocene catalyst formed by reacting dichlorozirconocene with an alkyllithium in the reaction system and is used as a dehydration and condensation catalyst. In the formula, R is a 1-10C optionally substd., linear or branched alkyl group or a 6-14C optionally substd. arom. hydrocarbon group; and (n) and (m) are each an integer provided n+m>=20.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ポリシランの優れ
た化学的性質を有する上、各種溶剤への溶解性に優れ、
かつ室温で固体の形状を示し、取り扱いが容易であり、
炭化ケイ素セラミックスの前駆体、フォトレジスト材
料、光重合開始剤、各種導電性材料等として有効に利用
できる新規な有機ケイ素系ポリマー及びその製造方法に
関する。
TECHNICAL FIELD The present invention relates to a polysilane having excellent chemical properties and excellent solubility in various solvents.
And shows a solid shape at room temperature, easy to handle,
The present invention relates to a novel organosilicon polymer which can be effectively used as a precursor of a silicon carbide ceramic, a photoresist material, a photopolymerization initiator, various conductive materials, and the like, and a method for producing the same.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】従来、
ポリシランの製造方法としては、ジオルガノジクロロシ
ランの金属ナトリウムによるウルツ反応を利用したもの
が一般的であるが、この方法は金属ナトリウムの使用と
合成時のポットイールドの悪さが問題となっていた。
2. Description of the Related Art
As a method for producing polysilane, a method utilizing the Wurtz reaction of diorganodichlorosilane with metallic sodium is generally used. However, this method has a problem in that the use of metallic sodium and poor pot yield during synthesis are problematic.

【0003】これに対して、ポリシランを脱水素縮合法
を利用して製造する方法は、ポリシランの収率、ポット
イールド共に高いものであるが、生成するポリシランの
分子量があまり大きくならないという欠点を有してい
た。
On the other hand, the method of producing polysilane using the dehydrocondensation method is high in both the yield and pot yield of polysilane, but has the disadvantage that the molecular weight of the produced polysilane is not so large. Was.

【0004】この場合、ポリシランの光学的性質等の化
学的特性は、重合度20以上のポリシランであれば分子
量の大小にあまり依存することなく同等であることか
ら、上記脱水素縮合法によるポリシランの製造方法にお
いては、ポリシランの高分子量化のため側鎖水素基を利
用した架橋を行うことによる材料化が検討されている。
In this case, since the chemical properties such as the optical properties of the polysilane are the same regardless of the molecular weight of the polysilane having a polymerization degree of 20 or more, the polysilane obtained by the dehydrocondensation method is the same. In the production method, materialization by cross-linking using side-chain hydrogen groups has been studied in order to increase the molecular weight of polysilane.

【0005】従来、脱水素縮合法の検討においては、高
い重合度のポリマーを得ることに注意が向けられ、この
ためにはジルコノセン触媒を利用して100℃以下の低
い温度で長時間反応させることが必要であるということ
が見出されている。このように長時間反応させることで
重量平均分子量10,000程度のポリシランを合成し
得ることが報告されているが、しかしこの程度の分子量
10,000以下のポリマーは、室温下でその形状が水
飴状となり、取り扱いに問題があった。
Conventionally, in the study of the dehydrocondensation method, attention has been paid to obtaining a polymer having a high degree of polymerization. For this purpose, a reaction is carried out for a long time at a low temperature of 100 ° C. or less using a zirconocene catalyst. Is found to be necessary. It has been reported that a polysilane having a weight-average molecular weight of about 10,000 can be synthesized by such a long reaction. However, a polymer having a molecular weight of about 10,000 or less has a shape of syrup at room temperature. And there was a problem in handling.

【0006】本発明は、上記事情に鑑みなされたもの
で、ポリシランとしての優れた化学的性質を有し、かつ
室温下で取扱いの容易な有機ケイ素系ポリマー及びこの
ポリマーを再現性良く高収率で製造することができる上
記有機ケイ素系ポリマーの製造方法を提供することを目
的とする。
The present invention has been made in view of the above circumstances, and an organosilicon-based polymer having excellent chemical properties as a polysilane and easy to handle at room temperature, and a polymer having high reproducibility and high yield. An object of the present invention is to provide a method for producing the organosilicon-based polymer which can be produced by the method described above.

【0007】[0007]

【課題を解決するための手段及び発明の実施の形態】本
発明者は、上記目的を達成するため鋭意検討を重ねた結
果、トリヒドロシランを出発原料とし、メタロセン触
媒、特にジルコノセン脱水素縮合触媒の存在下、不活性
気体雰囲気中で無溶媒又は溶媒存在下において80℃以
下の低温条件で反応を開始してこの温度範囲で24時間
以上反応を行い、ある程度の重合度を得た後、徐々に反
応温度を上昇させて最終的に120℃以上の温度条件で
反応を行うことにより、脱水素縮合法により再現性良く
ポリマーの主構造が下記一般式(1)で示される新規な
有機ケイ素系ポリマーを得ることができ、このポリマー
は重合度がポリシランの化学的性質を示すことが可能な
20以上であり、ポリシランとして高分子量ポリシラン
と同等の優れた化学的性質を有する上、溶解性に優れ、
かつ室温(20℃)以上のガラス転移点(Tg)を有し
て室温で固体の形状を示し、取り扱いも容易であるこ
と、そして上記式(1)の有機ケイ素系ポリマーは、炭
化ケイ素セラミックスの前駆体、フォトレジスト材料、
光重合開始剤、導電性材料、光導電性材料、非線形光学
材料等として有効に利用できることを知見し、本発明を
なすに至った。
Means for Solving the Problems and Embodiments of the Invention The present inventors have made intensive studies to achieve the above object, and as a result, using trihydrosilane as a starting material, a metallocene catalyst, particularly a zirconocene dehydrocondensation catalyst. In the presence, in an inert gas atmosphere in the absence of a solvent or in the presence of a solvent, start the reaction at a low temperature of 80 ° C. or less, perform the reaction for 24 hours or more in this temperature range, and after gradually obtaining a certain degree of polymerization, gradually A novel organosilicon-based polymer whose main structure is represented by the following general formula (1) with good reproducibility by dehydrocondensation by raising the reaction temperature and finally performing the reaction at a temperature of 120 ° C. or higher This polymer has a degree of polymerization of 20 or more capable of showing the chemical properties of polysilane, and as a polysilane, an excellent chemical equivalent to high molecular weight polysilane. Above having properties excellent in solubility,
And has a glass transition point (Tg) of room temperature (20 ° C.) or higher, exhibits a solid shape at room temperature, is easy to handle, and the organosilicon-based polymer of the above formula (1) is a silicon carbide ceramic. Precursors, photoresist materials,
The present inventors have found that they can be effectively used as a photopolymerization initiator, a conductive material, a photoconductive material, a nonlinear optical material, and the like, and have accomplished the present invention.

【0008】即ち、上述したように、ジルコノセン触媒
を用いた低温、長時間の反応では比較的高分子量のポリ
シランが得られるものの、これは水飴状となるものであ
るが、更に120℃以上の高温で反応させると低分子量
のポリマーしか生成しないものの、得られたポリマーは
ガラス転移点(Tg)が高く、室温で固体状態を示すも
のである。
That is, as described above, although a relatively high-molecular-weight polysilane is obtained in a low-temperature and long-time reaction using a zirconocene catalyst, it becomes syrup-like, but is further heated to a high temperature of 120 ° C. or more. Although only a low molecular weight polymer is produced when the reaction is carried out, the obtained polymer has a high glass transition point (Tg) and shows a solid state at room temperature.

【0009】従って、本発明は、主構造が下記一般式
(1)で示され、20℃以上のガラス転移点を有するこ
とを特徴とする有機ケイ素系ポリマーを提供する。
Accordingly, the present invention provides an organosilicon-based polymer having a main structure represented by the following general formula (1) and having a glass transition point of 20 ° C. or higher.

【0010】[0010]

【化2】 (式中、Rは炭素数1〜10の置換及び非置換の直鎖状
及び分岐状のアルキル基並びに炭素数6〜14の置換及
び非置換の芳香族炭化水素基から選ばれる基を示す。ま
た、n、mはそれぞれn+m≧20を満足する整数であ
る。)
Embedded image (In the formula, R represents a group selected from a substituted and unsubstituted linear and branched alkyl group having 1 to 10 carbon atoms and a substituted and unsubstituted aromatic hydrocarbon group having 6 to 14 carbon atoms. Further, n and m are integers that satisfy n + m ≧ 20.)

【0011】また、本発明は、トリヒドロシランを出発
原料とし、メタロセン触媒の存在下に不活性雰囲気中で
80℃以下の温度で反応を行った後、反応温度を昇温
し、120℃以上の温度で更に反応を行うことを特徴と
する上記有機ケイ素系ポリマーの製造方法を提供する。
In the present invention, a reaction is carried out at a temperature of 80 ° C. or less in an inert atmosphere in the presence of a metallocene catalyst using trihydrosilane as a starting material, and then the reaction temperature is raised to 120 ° C. or more. A method for producing the organosilicon-based polymer, wherein the reaction is further performed at a temperature.

【0012】この場合、上記した本発明の製造方法は、
トリヒドロシランの脱水素縮合反応の選択性が反応温度
により異なることを利用したもので、まず、反応初期の
80℃以下の低温反応では、ヒドロシランの鎖長延長反
応が選択的に進行し、しかも鎖長延長反応以外の副反応
が抑制されること、更に、この低温反応に続く120℃
以上の高温条件の反応では、デグラデーションを伴いな
がら3次元架橋反応の割合が徐々に増加し、3次元架橋
反応が比較的ゆっくり進むものと考えられ、これにより
重合度が20以上でポリシランとしての優れた化学的性
質を有し、溶解性に優れ、かつ室温で固体の形状を示す
取り扱い易い有機ケイ素系ポリマーを再現性良く製造で
きるものである。
In this case, the manufacturing method of the present invention described above
It utilizes the fact that the selectivity of the dehydrocondensation reaction of trihydrosilane varies depending on the reaction temperature. First, in the low-temperature reaction of 80 ° C. or lower at the beginning of the reaction, the chain extension reaction of the hydrosilane proceeds selectively, and The side reactions other than the long elongation reaction are suppressed.
In the reaction under the high temperature conditions described above, it is considered that the rate of the three-dimensional crosslinking reaction gradually increases with the accompanying degradation, and the three-dimensional crosslinking reaction proceeds relatively slowly. An organosilicon-based polymer having excellent chemical properties, excellent solubility, and showing a solid shape at room temperature can be produced with good reproducibility.

【0013】以下、本発明につき更に詳細に説明する
と、本発明の有機ケイ素系ポリマーは、ポリマーの主構
造が下記一般式(1)で示されるものである。
Now, the present invention will be described in further detail. The main structure of the organosilicon-based polymer of the present invention is represented by the following general formula (1).

【0014】[0014]

【化3】 (式中、Rは炭素数1〜10の置換及び非置換の直鎖状
及び分岐状のアルキル基並びに炭素数6〜14の置換及
び非置換の芳香族炭化水素基から選ばれる基を示す。ま
た、n、mはそれぞれn+m≧20を満足する整数であ
る。)
Embedded image (In the formula, R represents a group selected from a substituted and unsubstituted linear and branched alkyl group having 1 to 10 carbon atoms and a substituted and unsubstituted aromatic hydrocarbon group having 6 to 14 carbon atoms. Further, n and m are integers that satisfy n + m ≧ 20.)

【0015】ここで、上記非置換のアルキル基として
は、メチル基、エチル基、n−プロピル基、イソプロピ
ル基、n−ブチル基、イソブチル基、tert−ブチル
基、ペンチル基、ネオペンチル基、ヘキシル基、オクチ
ル基、デシル基などが例示され、非置換の芳香族炭化水
素基としては、フェニル基、ナフチル基、トリル基、ベ
ンジル基、フェニルエチル基などが例示される。また、
置換のアルキル基、芳香族炭化水素基としては、上記非
置換のアルキル基、芳香族炭化水素基の水素原子の一部
又は全部をフッ素等のハロゲン原子、三級アミノ基、カ
ルボキシル基、(メタ)アクリル基、メルカプト基、ポ
リエーテル基、高級脂肪酸エステル基などで置換した基
を挙げることができる。
Here, the unsubstituted alkyl group includes methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, pentyl, neopentyl, hexyl and the like. Octyl group, decyl group and the like, and unsubstituted aromatic hydrocarbon groups include phenyl group, naphthyl group, tolyl group, benzyl group, phenylethyl group and the like. Also,
Examples of the substituted alkyl group and aromatic hydrocarbon group include the above unsubstituted alkyl group and aromatic hydrocarbon group in which some or all of the hydrogen atoms are halogen atoms such as fluorine, tertiary amino groups, carboxyl groups, ) Groups substituted with an acryl group, a mercapto group, a polyether group, a higher fatty acid ester group and the like can be mentioned.

【0016】n,mはn+m≧20を満足する整数であ
るが、n+mは大きいほど好ましい。上限は特に制限さ
れないが、mの割合が多くかつm+nが大きすぎると一
般の有機溶媒に対して溶解性が悪くなるので好ましくな
い。
Although n and m are integers satisfying n + m ≧ 20, it is preferable that n + m is larger. Although the upper limit is not particularly limited, it is not preferable that the ratio of m is large and m + n is too large, since the solubility in a general organic solvent is deteriorated.

【0017】なお、式(1)のポリマーの重量平均分子
量は、通常2,000以上であり、特に2,500〜
4,000であることが好ましい。
The weight average molecular weight of the polymer of the formula (1) is usually 2,000 or more, especially 2,500 to
It is preferably 4,000.

【0018】また、上記式(1)の有機ケイ素系ポリマ
ーは、Tgが室温(20℃)以上、好ましくは40〜7
0℃であることが必要であり、Tgが室温より低いと取
扱いが困難になってしまう。
The organosilicon polymer of the above formula (1) has a Tg of room temperature (20 ° C.) or more, preferably 40 to 7 ° C.
The temperature must be 0 ° C., and if Tg is lower than room temperature, handling becomes difficult.

【0019】本発明の上記式(1)の有機ケイ素系ポリ
マーは、トリヒドロシランを出発原料とし、メタロセン
触媒の存在下に不活性雰囲気中で80℃以下の温度で反
応を行った後、反応温度を昇温し、120℃以上の温度
で更に反応を行うものである。
The organosilicon polymer of the above formula (1) of the present invention is obtained by reacting trihydrosilane as a starting material at a temperature of 80 ° C. or less in an inert atmosphere in the presence of a metallocene catalyst, And further react at a temperature of 120 ° C. or higher.

【0020】ここで、トリヒドロシランとしては、RS
iH3(Rは上記と同様の意味を示す)で示されるもの
を使用する。
Here, as the trihydrosilane, RS
The one represented by iH 3 (R has the same meaning as described above) is used.

【0021】また、メタロセン触媒としては、通常ジル
コノセン触媒が用いられる。ジルコノセン脱水素縮合触
媒としては、通常使用されているものを用いることがで
き、具体的には系内でジクロロジルコノセンとアルキル
リチウムとを反応させて脱水素縮合触媒を調製し、すぐ
に重合反応を行うことが好ましい。なお、上記触媒の使
用量は、触媒量とすることができるが、例えば100〜
1,000ppmの範囲が好適である。
As the metallocene catalyst, a zirconocene catalyst is usually used. As the zirconocene dehydrogenation / condensation catalyst, a commonly used zirconocene dehydrogenation catalyst can be used.Specifically, dichlorozirconocene and alkyllithium are reacted in the system to prepare a dehydrogenation / condensation catalyst, and the polymerization reaction is immediately carried out. It is preferred to do so. The amount of the catalyst used may be a catalyst amount, for example, 100 to
A range of 1,000 ppm is preferred.

【0022】不活性気体としては、アルゴン、窒素等が
用いられる。
As the inert gas, argon, nitrogen or the like is used.

【0023】上記脱水素縮合反応は、無溶媒で行うこと
が一般的である。溶媒を使用する場合は、例えばオクタ
ン、デカン等の溶媒をトリヒドロシランと同量程度の使
用量で使用することが望ましい。
The above dehydrocondensation reaction is generally carried out without a solvent. When a solvent is used, it is desirable to use a solvent such as octane or decane in the same amount as that of trihydrosilane.

【0024】本発明においては、上記トリヒドロシラン
原料及び脱水素縮合触媒を用いて、まず通常室温(20
℃)以上80℃以下、好ましくは50〜70℃の低温条
件で脱水素縮合反応を開始し、この低温条件下で24時
間以上、好ましくは48〜72時間反応を行う。この低
温条件下での反応では、原料のヒドロシランが徐々に水
素を発生しながら重量平均分子量が3,000〜5,0
00でほぼ正規分布に近い分子量分布を持つポリシラン
を得ることができるが、このポリシランは通常室温で水
飴状の外観を示す。
In the present invention, the above-mentioned trihydrosilane raw material and the dehydrocondensation catalyst are first used at room temperature (20
C.) to 80 ° C. or lower, preferably 50 to 70 ° C., and the dehydrocondensation reaction is started, and the reaction is carried out at low temperature for 24 hours or longer, preferably 48 to 72 hours. In the reaction under this low temperature condition, the weight average molecular weight becomes 3,000 to 50,000 while the hydrosilane as the raw material gradually generates hydrogen.
Although a polysilane having a molecular weight distribution close to a normal distribution can be obtained at 00, this polysilane usually shows a syrupy appearance at room temperature.

【0025】重量平均分子量が3,000以上になった
ところで反応温度を120℃以上、好ましくは120〜
180℃、より好ましくは120〜150℃に上昇さ
せ、1〜12時間、好ましくは2〜8時間脱水素縮合反
応を行う。反応の最終段階の温度が高すぎるとデグラデ
ーションの進行がきわめて速く、反応時間の精密な調整
が必要となり、面倒であり、120℃未満ではTgの上
昇に寄与する反応の進行が遅く、反応に長時間を要する
ために実用的でない。反応時間は1時間未満では十分な
反応が行われず、12時間を超えるような長時間では実
用的ではないのでやや高めの温度で短時間で行うのが実
用的である。
When the weight average molecular weight becomes 3,000 or more, the reaction temperature is raised to 120 ° C. or more, preferably
The temperature is raised to 180 ° C, more preferably 120 to 150 ° C, and the dehydrocondensation reaction is performed for 1 to 12 hours, preferably 2 to 8 hours. If the temperature at the final stage of the reaction is too high, the progress of the degradation is extremely fast, and precise adjustment of the reaction time is required, which is troublesome. If the temperature is lower than 120 ° C., the progress of the reaction contributing to the rise of Tg is slow, and It is not practical because it takes a long time. When the reaction time is less than 1 hour, a sufficient reaction is not performed, and when the reaction time is longer than 12 hours, it is not practical. Therefore, it is practical to carry out the reaction at a slightly higher temperature in a short time.

【0026】[0026]

【発明の効果】本発明の上記式(1)で示され、ケイ素
鎖長20以上で室温以上のガラス転移点を持つ新規な有
機ケイ素ポリマーは、ポリシランとしての光学的性質な
どが高分子量ポリシランと同等でありながら溶解性に優
れ、かつ室温で固形形状であるために取り扱いが容易で
酸化等の化学劣化を受け難く、架橋反応等による強固な
ポリシラン膜への応用などに利用し易いポリシランであ
り、炭化ケイ素セラミックスの前駆体、フォトレジスト
材料、光重合開始剤、導電性材料、光導電性材料、非線
形光学材料等として有効に利用することができる。ま
た、本発明の有機ケイ素系ポリマーの製造方法によれ
ば、上記式(1)の有機ケイ素系ポリマーを脱水素縮合
法により再現性良く製造することができる。
The novel organosilicon polymer of the present invention represented by the above formula (1) and having a silicon chain length of 20 or more and a glass transition point of room temperature or more has a high molecular weight polysilane and a high molecular weight polysilane. It is a polysilane that has the same solubility but is excellent in solubility, and is easy to handle because it is in a solid form at room temperature, is not susceptible to chemical deterioration such as oxidation, and is easy to use for application to strong polysilane films due to crosslinking reactions and the like. It can be effectively used as a precursor of silicon carbide ceramics, a photoresist material, a photopolymerization initiator, a conductive material, a photoconductive material, a nonlinear optical material, and the like. Further, according to the method for producing an organosilicon polymer of the present invention, the organosilicon polymer of the above formula (1) can be produced with good reproducibility by a dehydrocondensation method.

【0027】[0027]

【実施例】以下、実施例を示して本発明を具体的に説明
するが、本発明は下記実施例に制限されるものではな
い。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to the following examples.

【0028】〔実施例1〕アルゴン雰囲気中、ジクロロ
ジルコノセン30mgと無水エーテル20ml及びメチ
ルリチウム1.6Nエーテル溶液50μlを仕込み、室
温で1時間反応させることにより脱水素縮合触媒を調製
した。次に、減圧にて溶媒を留去し、得られた触媒を乾
固させた後、フェニルシラン50gを仕込み、80℃で
24時間反応させたところ、徐々に水素を発生しながら
重量平均分子量(Mw)約3,300でほぼ正規分布に
近い分子量分布を持つポリシランが得られた。このとき
のTgは16.3℃で、水飴状の外観を示した。その
後、反応温度を130℃に上昇させ、更に3時間脱水素
反応を行ったところ、若干の低分子量化が見られたもの
の(Mw=2,600)、室温でガラス状のポリマー
(Tg32.3℃)がほぼ定量的に得られた。得られた
ポリマーの1H NMR分析結果より推定される構造
は、下記式で示されるものであった。分析結果を表1に
示す。
Example 1 In an argon atmosphere, 30 mg of dichlorozirconocene, 20 ml of anhydrous ether and 50 μl of a methyllithium 1.6N ether solution were charged and reacted at room temperature for 1 hour to prepare a dehydrocondensation catalyst. Next, the solvent was distilled off under reduced pressure, and the obtained catalyst was evaporated to dryness. Then, 50 g of phenylsilane was charged and reacted at 80 ° C. for 24 hours. Mw) A polysilane having a molecular weight distribution of about 3,300 and almost a normal distribution was obtained. At this time, Tg was 16.3 ° C., and the syrup-like appearance was shown. Thereafter, the reaction temperature was increased to 130 ° C., and the dehydrogenation reaction was further performed for 3 hours. As a result, although a slight reduction in molecular weight was observed (Mw = 2,600), a glassy polymer (Tg32.3) was obtained at room temperature. ° C) was obtained almost quantitatively. The structure deduced from the 1 H NMR analysis result of the obtained polymer was represented by the following formula. Table 1 shows the analysis results.

【0029】[0029]

【化4】 Embedded image

【0030】なお、上記130℃、3時間の反応後、更
に反応温度を200℃まで上昇させ、5時間反応を行っ
たところ、更に水素ガスの発生を伴う反応が進行し、M
wは910に減少し、一方Tgは78.2℃となり、こ
の結果は脱水素反応を200℃で行った場合と同等の結
果となった。
After the reaction at 130 ° C. for 3 hours, the reaction temperature was further raised to 200 ° C., and the reaction was carried out for 5 hours.
w was reduced to 910, while Tg was 78.2 ° C., which was equivalent to performing the dehydrogenation reaction at 200 ° C.

【0031】従って、以上より反応温度として80℃以
下で24時間以上を行った後、120〜150℃程度に
て数時間反応を行うことが最適であり、80℃以下の反
応条件では鎖長延長以外の副反応が抑制され、またデグ
ラデーション反応は150℃以下の条件ではそれほど速
くないということを利用する方法は、再現性よく所望の
重合度、Tgを有する3次元架橋ポリシランを得ること
ができる。
Therefore, it is best to carry out the reaction at a reaction temperature of 80 ° C. or lower for 24 hours or more, and then to carry out the reaction at about 120 to 150 ° C. for several hours. A method utilizing the fact that side reactions other than the above are suppressed and that the degradation reaction is not so fast under the condition of 150 ° C. or lower can provide a three-dimensional crosslinked polysilane having a desired degree of polymerization and Tg with good reproducibility. .

【0032】〔実施例2〜5〕実施例1に準じて80℃
にて鎖長延長反応を行った後、表1に示す温度、時間で
高温反応を行った。その結果いずれの場合も室温以上に
ガラス転移点を有するポリマーが得られた。
[Examples 2 to 5] 80 ° C. according to Example 1
, And then a high-temperature reaction was performed at the temperature and time shown in Table 1. As a result, a polymer having a glass transition point at room temperature or higher was obtained in each case.

【0033】[0033]

【表1】 [Table 1]

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 主構造が下記一般式(1)で示され、2
0℃以上のガラス転移点を有することを特徴とする有機
ケイ素系ポリマー。 【化1】 (式中、Rは炭素数1〜10の置換及び非置換の直鎖状
及び分岐状のアルキル基並びに炭素数6〜14の置換及
び非置換の芳香族炭化水素基から選ばれる基を示す。ま
た、n、mはそれぞれn+m≧20を満足する整数であ
る。)
The main structure is represented by the following general formula (1):
An organosilicon polymer having a glass transition point of 0 ° C. or higher. Embedded image (In the formula, R represents a group selected from a substituted and unsubstituted linear and branched alkyl group having 1 to 10 carbon atoms and a substituted and unsubstituted aromatic hydrocarbon group having 6 to 14 carbon atoms. Further, n and m are integers that satisfy n + m ≧ 20.)
【請求項2】 トリヒドロシランを出発原料とし、メタ
ロセン触媒の存在下に不活性雰囲気中で80℃以下の温
度で反応を行った後、反応温度を昇温し、120℃以上
の温度で更に反応を行うことを特徴とする請求項1記載
の有機ケイ素系ポリマーの製造方法。
2. A reaction is carried out at a temperature of 80 ° C. or less in an inert atmosphere in the presence of a metallocene catalyst using trihydrosilane as a starting material, and then the reaction temperature is raised, and the reaction is further carried out at a temperature of 120 ° C. or more. 2. The method for producing an organosilicon-based polymer according to claim 1, wherein
JP36723197A 1997-12-25 1997-12-25 Organosilicon polymer and method for producing the same Expired - Fee Related JP3475761B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36723197A JP3475761B2 (en) 1997-12-25 1997-12-25 Organosilicon polymer and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36723197A JP3475761B2 (en) 1997-12-25 1997-12-25 Organosilicon polymer and method for producing the same

Publications (2)

Publication Number Publication Date
JPH11189652A true JPH11189652A (en) 1999-07-13
JP3475761B2 JP3475761B2 (en) 2003-12-08

Family

ID=18488804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36723197A Expired - Fee Related JP3475761B2 (en) 1997-12-25 1997-12-25 Organosilicon polymer and method for producing the same

Country Status (1)

Country Link
JP (1) JP3475761B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007077198A (en) * 2005-09-12 2007-03-29 Osaka Gas Co Ltd Copolysilane and resin composition containing copolysilane
WO2007066594A1 (en) * 2005-12-07 2007-06-14 Osaka Gas Co., Ltd. Polysilane and resin composition containing polysilane
WO2010005107A1 (en) * 2008-07-11 2010-01-14 独立行政法人科学技術振興機構 Polysilane manufacturing method
WO2010005106A1 (en) * 2008-07-11 2010-01-14 独立行政法人科学技術振興機構 Polymer manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007077198A (en) * 2005-09-12 2007-03-29 Osaka Gas Co Ltd Copolysilane and resin composition containing copolysilane
WO2007066594A1 (en) * 2005-12-07 2007-06-14 Osaka Gas Co., Ltd. Polysilane and resin composition containing polysilane
US8163863B2 (en) 2005-12-07 2012-04-24 Osaka Gas Co., Ltd. Polysilane and polysilane-containing resin composition
JP5613870B2 (en) * 2005-12-07 2014-10-29 大阪瓦斯株式会社 Polysilane and resin composition containing polysilane
WO2010005107A1 (en) * 2008-07-11 2010-01-14 独立行政法人科学技術振興機構 Polysilane manufacturing method
WO2010005106A1 (en) * 2008-07-11 2010-01-14 独立行政法人科学技術振興機構 Polymer manufacturing method

Also Published As

Publication number Publication date
JP3475761B2 (en) 2003-12-08

Similar Documents

Publication Publication Date Title
EP0998478A1 (en) Metal complexes with a tridentate ligand as polymerisation catalysts
JPH11189652A (en) Organosilicon polymer and its producti0n
JPH1180362A (en) Production of silphenylenealkylene polymer
JP3942201B2 (en) Method for producing phenylpolysilsesquioxane
JP2002524594A5 (en)
JPH06157727A (en) Multiple-branch cycloalkyl polyester and its production
JP2917619B2 (en) Polysilane copolymer and method for producing the same
JPH06157728A (en) Multiple-branch aliphatic/aromatic polyester and production of multiple-branch aliphatic/aromatic polyester
JPH06145361A (en) Poly(silylene)vinylene from ethynylhydridosilane
JP3032420B2 (en) Method for producing modified polysiloxane
JPH0539359A (en) Silicone-polyamino acid copolymer and its production
JP2007023163A (en) Composition for forming film, insulating film and their production method
JP2707688B2 (en) Polysilane carboxylic acid compound
JP2621310B2 (en) Method for producing polysilane polymer
CA2377180C (en) Polymerisation catalysts
JP3184549B2 (en) Alkoxy-containing organopolysilane and method for producing the same
JPS6312636A (en) Dimethylphenylsilylmethylpolysilane and production thereof
JP2758116B2 (en) Method for producing methyl group-containing polysilane
JPH0748454A (en) Polysiloxane oligomer and production thereof
JPH0539358A (en) Polysilane
JP3926762B2 (en) Catalyst and method for producing the same
JP2000336169A (en) Production of crosslinked polysilylenemethylene and composition of the same
JP2914221B2 (en) New organohalosilane compounds
JPH0753721A (en) Pyrrolyl group-pendant polysilane and its preparation
TWI250993B (en) Norbornene type monomer and polymer containing alkyl halide group for atom transfer free radical polymerization (ATRP)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130926

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees