JPH11189491A - Vaporization vessel for liquid stock for vapor growth - Google Patents

Vaporization vessel for liquid stock for vapor growth

Info

Publication number
JPH11189491A
JPH11189491A JP36646397A JP36646397A JPH11189491A JP H11189491 A JPH11189491 A JP H11189491A JP 36646397 A JP36646397 A JP 36646397A JP 36646397 A JP36646397 A JP 36646397A JP H11189491 A JPH11189491 A JP H11189491A
Authority
JP
Japan
Prior art keywords
container
phase growth
vaporization
liquid material
vapor phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP36646397A
Other languages
Japanese (ja)
Other versions
JP3560457B2 (en
Inventor
Hiromi Osaki
浩美 大崎
Mitsuyoshi Oshima
光芳 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP36646397A priority Critical patent/JP3560457B2/en
Publication of JPH11189491A publication Critical patent/JPH11189491A/en
Application granted granted Critical
Publication of JP3560457B2 publication Critical patent/JP3560457B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a vaporization vessel of simple structure enabling a liquid stock for vapor growth to be vaporized and withdrawn at stable gas concentrations until the remaining liquid in the vessel is nearly gone. SOLUTION: This vaporization vessel has a closed vessel 1 with a groove 4 at the bottom, a carrier gas introduction tube 2 with the lower end 7 reached to the groove 4 and the upper portion penetrated through the upper part of the closed vessel and opened outside the closed vessel, and a gas withdrawal tube 3 with the lower end penetrated through the upper part of the closed vessel and opened inside the closed vessel and the upper portion opened outside the closed vessel. A liquid stock for vapor growth filled in the closed vessel is vaporized and withdrawn via the gas withdrawal tube 3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、化合物半導体を製
造するためのMOCVD(Metalorganic
Chemic−al Vapor Depositio
n)によるエピタキシャル気相成長用の液体原料の気化
容器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an MOCVD (Metalorganic) for manufacturing a compound semiconductor.
Chemical-al Vapor Deposition
The present invention relates to a container for vaporizing a liquid source for epitaxial vapor phase growth according to n).

【0002】[0002]

【従来の技術】近年、III−V族及びII−VI族の化合物
半導体が、半導体発光素子、マイクロ波トランジスタ等
の広い分野に用いられるようになり、それらの優れた特
性を利用して、高速コンピュータ用集積回路、オプトエ
レクトロニクス用集積回路等にも使用されるようになっ
た。
2. Description of the Related Art In recent years, III-V and II-VI compound semiconductors have been used in a wide range of fields such as semiconductor light emitting devices and microwave transistors. It has also been used for integrated circuits for computers, integrated circuits for optoelectronics, and the like.

【0003】これら広範な用途に利用される化合物半導
体を製造する場合の結晶成長法として、有機金属化合物
等を用いたMOCVD法が主として採用される。MOC
VD法は、化合物半導体あるいは混晶半導体のエピタキ
シャル薄膜を形成する上で多く用いられる結晶成長法の
ひとつで、例えば、トリメチルガリウム、トリメチルア
ルミニウム、ジメチル亜鉛のような有機金属化合物や、
アルキルホスフィン、アルキルアルシンのような有機V
族化合物を気化し、基体上での熱分解反応を利用して薄
膜の結晶成長を行う方法である。
[0003] As a crystal growth method for producing a compound semiconductor used for such a wide variety of uses, an MOCVD method using an organometallic compound or the like is mainly employed. MOC
The VD method is one of crystal growth methods often used for forming an epitaxial thin film of a compound semiconductor or a mixed crystal semiconductor. For example, an organic metal compound such as trimethylgallium, trimethylaluminum, dimethylzinc,
Organic V such as alkyl phosphine and alkyl arsine
This is a method in which a group III compound is vaporized and crystal growth of a thin film is performed using a thermal decomposition reaction on a substrate.

【0004】この方法の場合、エピタキシャル成長させ
ている間に、基体上に供給されるキャリアガス中の有機
金属化合物等の混合比が変動すると、得られる半導体の
電気的あるいは光学的特性に著しい悪影響が生じる。高
性能素子を得るためには、一定濃度の気相成長用原料が
安定的に供給されることが必要である。
In this method, if the mixing ratio of an organometallic compound or the like in a carrier gas supplied to a substrate fluctuates during epitaxial growth, the electrical or optical characteristics of the obtained semiconductor are significantly adversely affected. Occurs. In order to obtain a high-performance element, it is necessary to stably supply a constant concentration of a raw material for vapor phase growth.

【0005】液体原料を気化するには、通常、キャリア
ガス導入管とガス導出管とを密閉容器にそれぞれ接続し
た気化容器が用いられる。キャリアガス導入管から水素
ガスなどのキャリアガスを密閉容器内に導入して液体原
料中でバブリングさせると、液体原料が気化してキャリ
アガスに飽和した混合ガスがガス導出管から排出され
る。
[0005] In order to vaporize a liquid raw material, usually, a vaporization vessel in which a carrier gas introduction pipe and a gas discharge pipe are connected to a closed vessel is used. When a carrier gas such as hydrogen gas is introduced from the carrier gas introduction pipe into the closed container and bubbled in the liquid raw material, the mixed gas saturated with the carrier gas is vaporized from the liquid raw material and discharged from the gas discharge pipe.

【0006】従来、これら気相成長用液体原料をキャリ
アガスによりバブリング同伴する容器としては、例えば
特開昭59−191699、実開昭62−46639、
実開昭62−196331等に記載された底部が平坦な
気化容器が用いられていた。しかし、このような底部が
平坦な気化容器を用いてキャリアガスによりバブリング
同伴を行う場合、容器内の気相成長用液体原料の残量が
減少すると、残量がほとんどなくなるまで混合ガスを放
出し尽くすことはできないという欠点があった。これ
は、キャリアガスと液体原料との気液接触が十分できな
いことによるものと推定される。
[0006] Conventionally, as a container for entraining these liquid materials for vapor phase growth by bubbling with a carrier gas, for example, JP-A-59-191699, JP-A-62-46639,
A vaporization container having a flat bottom as described in Japanese Utility Model Application Laid-Open No. 62-196331 has been used. However, when bubbling is carried out with a carrier gas using a vaporization container having such a flat bottom, when the remaining amount of the liquid material for vapor phase growth in the container decreases, the mixed gas is discharged until the remaining amount is almost exhausted. There was a disadvantage that it could not be exhausted. This is presumed to be due to insufficient gas-liquid contact between the carrier gas and the liquid source.

【0007】そこで、上記問題を改善するために、実開
平6−20951において容器の底部が球面状の気化容
器、特開平1−168331、特開昭63−1159
8、特開平2−26017において容器本体中央より下
部の径がテーパー状に徐々に絞られた形状の気化容器等
も提案されている。
In order to solve the above-mentioned problem, Japanese Unexamined Utility Model Publication No. 6-20951 discloses a vaporization container having a spherical bottom portion.
8. Japanese Patent Application Laid-Open No. Hei 2-26017 proposes a vaporizing container or the like having a shape in which the diameter of the lower portion from the center of the container body is gradually reduced in a tapered shape.

【0008】[0008]

【発明が解決しようとする課題】しかし、近年は大型の
気化容器が用いられるようになり、前述した問題点がさ
らに顕著化しており、上記のような従来の気化容器では
依然として解決できないでいる。例えば、容器本体中央
より下部の径がテーパー状に絞られた形状の気化容器の
場合、内部の液体原料が少なくなって液面がテーパー状
の部分にかかると、気化する液体原料の濃度が徐々に低
くなるという欠点があった。これは、液面の表面積が減
少するためと考えられる。また、テーパー状の部分の存
在により、大きさが同じ他の容器に比べて充填できる液
体原料の量が少なくなるので、容器の大型化による充填
量の増加効果が十分に得られないという問題もあった。
However, in recent years, large-sized vaporizing containers have been used, and the above-mentioned problems have become more remarkable. The above-mentioned conventional vaporizing containers still cannot be solved. For example, in the case of a vaporization container having a shape in which the diameter of the lower portion from the center of the container body is tapered, if the liquid material inside decreases and the liquid level falls on the tapered portion, the concentration of the liquid material to be vaporized gradually increases. However, there is a drawback that it becomes lower. This is thought to be because the surface area of the liquid surface was reduced. In addition, since the amount of the liquid raw material that can be filled is smaller than that of other containers having the same size due to the presence of the tapered portion, there is also a problem that the effect of increasing the filling amount by increasing the size of the container cannot be sufficiently obtained. there were.

【0009】本発明は上記問題点を解決するためになさ
れたものであり、簡単な構造で、容器内残液がほとんど
なくなるまで安定したガス濃度で気相成長用液体原料を
気化導出することができる気化容器を提供することを目
的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and it is an object of the present invention to vaporize and extract a liquid material for vapor phase growth at a stable gas concentration until almost no residual liquid remains in a container with a simple structure. It is an object of the present invention to provide a vaporization container which can be used.

【0010】[0010]

【課題を解決するための手段】本願の請求項1記載の発
明は、底部に溝が形成された密閉容器と、下端が密閉容
器底部の溝に達して開口するとともに上部が密閉容器上
部を貫通して密閉容器外部に開口したキャリアガス導入
管と、下端が密閉容器上部を貫通して密閉容器内部に開
口するとともに上部が容器外部に開口したガス導出管と
を有し、密閉容器内に充填した気相成長用液体原料を気
化してガス導出管から導出することを特徴とする気相成
長用液体原料の気化容器を提供する。
According to the first aspect of the present invention, there is provided an airtight container having a groove formed in a bottom portion, a lower end reaching the groove in the airtight container bottom and opening, and an upper portion penetrating the upper portion of the airtight container. A carrier gas inlet pipe opened to the outside of the closed vessel and a gas outlet pipe whose lower end penetrates the upper part of the closed vessel and opens inside the closed vessel, and has an upper part opened to the outside of the closed vessel. The present invention provides a vaporization container for a vapor source for vapor phase growth, characterized in that the vaporized liquid source for vapor phase growth is vaporized and led out from a gas outlet pipe.

【0011】本願の請求項2記載の発明は、請求項1記
載の気化容器において、密閉容器の底部に形成された溝
が円筒状であることを特徴とする気相成長用液体原料の
気化容器を提供する。
According to a second aspect of the present invention, there is provided the vaporization container according to the first aspect, wherein the groove formed at the bottom of the closed container is cylindrical. I will provide a.

【0012】本願の請求項3記載の発明は、請求項2記
載の気化容器において、円筒状の溝の直径が5〜50m
mφ、深さが5〜50mmであることを特徴とする気相
成長用液体原料の気化容器を提供する。
According to a third aspect of the present invention, in the vaporization container according to the second aspect, the diameter of the cylindrical groove is 5 to 50 m.
Provided is a vaporization container for a liquid source for vapor phase growth, which has a diameter of mφ and a depth of 5 to 50 mm.

【0013】本願の請求項4記載の発明は、請求項1記
載の気化容器において、密閉容器の底部に形成された溝
が多角柱状であることを特徴とする気相成長用液体原料
の気化容器を提供する。
According to a fourth aspect of the present invention, there is provided the vaporization container according to the first aspect, wherein the groove formed at the bottom of the closed container has a polygonal column shape. I will provide a.

【0014】本願の請求項5記載の発明は、請求項4記
載の気化容器において、多角柱状の溝の対角線長さが5
〜50mm、深さが5〜50mmであることを特徴とす
る気相成長用液体原料の気化容器を提供する。
According to a fifth aspect of the present invention, in the vaporization container according to the fourth aspect, the polygonal column-shaped groove has a diagonal length of 5 mm.
Provided is a vaporization container for a liquid material for vapor phase growth, which is characterized by having a depth of 5 to 50 mm and a depth of 5 to 50 mm.

【0015】本願の請求項6記載の発明は、請求項1記
載の気化容器において、気化容器に充填する気相成長用
液体原料が、一般式(I)
According to a sixth aspect of the present invention, in the vaporization container according to the first aspect, the liquid material for vapor phase growth filled in the vaporization container is represented by the general formula (I):

【化4】 (R1〜R3はそのうちの1個以上が1種又は2種以上の
炭素数1から3のアルキル基で他は水素原子である基群
を表し、M1は3価の金属元素を表す。)で示される有
機金属化合物、または一般式(II)
Embedded image (R 1 to R 3 represent a group in which at least one of them is one or more alkyl groups having 1 to 3 carbon atoms and the other is a hydrogen atom, and M 1 represents a trivalent metal element Or an organometallic compound represented by the general formula (II)

【化5】 (R4及びR5はそのうちの1個又は2個が1種又は2種
の炭素数1から3のアルキル基で他は水素原子である基
群を表し、M2は2価の金属元素を表す。)で示される
有機金属、または一般式(III)
Embedded image (R 4 and R 5 represent a group in which one or two of them are one or two alkyl groups having 1 to 3 carbon atoms and the other is a hydrogen atom, and M 2 represents a divalent metal element. An organic metal represented by the general formula (III)

【化6】 (R6〜R8はそのうちの1個以上が1種又は2種以上の
炭素数1から10のアルキル基で他は水素原子である基
群を表し、M3はリン又はヒ素を表す。)で示されるア
ルキルホスフィン又はアルキルアルシンであることを特
徴とする気相成長用液体原料の気化容器を提供する。
Embedded image (R 6 to R 8 represent a group of one or more of which are one or more alkyl groups having 1 to 10 carbon atoms and the other being a hydrogen atom, and M 3 represents phosphorus or arsenic.) A vaporization container for a liquid material for vapor phase growth, which is an alkyl phosphine or an alkyl arsine represented by the formula:

【0016】[0016]

【発明の実施の形態】図1は、本発明の実施形態の一例
を示す。この気化容器は、底部に溝4が形成された密閉
容器1と、下端7が容器底部の溝4に達するとともに上
端が容器上部を貫通して容器外部に開口しているキャリ
アガス導入管2と、下端が容器上部を貫通して容器内部
に開口するとともに上部が容器外部に開口しているガス
導出管3とを有している。キャリアガス導入管2及びガ
ス導出管3の上部(容器外部に突出している部分)には
それぞれバルブ6、5が設けられている。
FIG. 1 shows an example of an embodiment of the present invention. The vaporization container includes a closed container 1 having a groove 4 formed at the bottom, a carrier gas introduction pipe 2 having a lower end 7 reaching the groove 4 at the bottom of the container and an upper end passing through the upper part of the container and opening to the outside of the container. And a gas outlet pipe 3 whose lower end passes through the upper part of the container and opens inside the container and whose upper part opens outside the container. Valves 6 and 5 are provided above the carrier gas inlet pipe 2 and the gas outlet pipe 3 (portions protruding outside the container), respectively.

【0017】密閉容器1の底部に設けられた溝4は、好
ましくは円筒状又は多角柱状であり、キャリアガス導入
管2の開口した先端7が溝4の底部付近まで達してい
る。
The groove 4 provided at the bottom of the closed vessel 1 is preferably cylindrical or polygonal, and the open end 7 of the carrier gas introduction pipe 2 reaches near the bottom of the groove 4.

【0018】このような構成の気化容器により気相成長
用液体原料を気化供給させるには、まず気相成長用液体
原料を容器1内に充填し、バルブ6を開けてキャリアガ
ス導入管2より水素等のキャリアガスを導入して気相成
長用液体原料をバブリングすると、気相成長用液体原料
が気化する。ここで、ガス導出管3のバルブ5を開ける
と、ガス導出管3から気化した気相成長用原料がキャリ
アガスに同伴して導出される。
In order to vaporize and supply the liquid material for vapor phase growth by the vaporization container having such a configuration, first, the liquid material for vapor phase growth is charged into the container 1, the valve 6 is opened, and the gas is supplied from the carrier gas introduction pipe 2. When a carrier gas such as hydrogen is introduced and the liquid material for vapor phase growth is bubbled, the liquid material for vapor phase growth is vaporized. Here, when the valve 5 of the gas outlet pipe 3 is opened, the vaporized raw material for vapor phase growth is led out of the gas outlet pipe 3 together with the carrier gas.

【0019】気相成長用液体原料の気化を続けると次第
に液体原料は減少し、液面が溝4内のキャリアガス導入
管2の先端7付近まで下がると、原料液体の気化はそれ
以上できなくなるが、溝4内に残る気相成長用液体原料
の残液量は極僅かである。
When the vaporization of the liquid material for vapor phase growth is continued, the liquid material gradually decreases, and when the liquid level falls to the vicinity of the tip 7 of the carrier gas introduction pipe 2 in the groove 4, the vaporization of the liquid material cannot be further performed. However, the remaining amount of the liquid material for vapor phase growth remaining in the groove 4 is extremely small.

【0020】密閉容器全体の大きさは特に限定されない
が、通常この分野で使用される容器として、直径は30
mmφ〜500mmφ、高さは50mm〜500mmの
範囲でそれぞれ選べばよい。
Although the size of the whole closed container is not particularly limited, a container usually used in this field has a diameter of 30.
mmφ to 500 mmφ, and the height may be selected in the range of 50 mm to 500 mm.

【0021】溝4の寸法は、円筒状の場合は直径5mm
〜50mmφ、多角柱状の場合はその対角線の長さが5
mm〜50mm程度であるのが好ましい。溝4の寸法が
直径5mmφ又は対角線長さ5mmより小さい場合は、
バブリングの勢いが強い場合に液体原料がバブリングに
よって飛散してしまい、より良い効果が得られなくなる
恐れがある。一方、溝4の寸法を直径50mmφ又は対
角線長さ50mmより大きくしても、残液量が多くなっ
てしまい不経済である。また、溝4の深さは、キャリア
ガスと気相成長用液体原料とが十分気液接触できるだけ
の液深を取ることができる程度あれば良いが、好ましく
は5mm〜50mmである。5mmより浅い場合は十分
な気液接触が行われない恐れがあり、飽和した混合ガス
が得られなくなることが予想される。一方、50mmよ
り深くしても容器寸法が無用に縦長となるだけで不経済
であり、効果的とは言えない。
The size of the groove 4 is 5 mm in the case of a cylindrical shape.
~ 50mmφ, diagonal length is 5 in case of polygonal column
It is preferably about 50 mm to 50 mm. When the dimension of the groove 4 is smaller than 5 mm in diameter or 5 mm in diagonal length,
When the bubbling is strong, the liquid material may be scattered by the bubbling, and a better effect may not be obtained. On the other hand, even if the dimension of the groove 4 is larger than the diameter 50 mmφ or the diagonal length 50 mm, the residual liquid amount increases, which is uneconomical. The depth of the groove 4 may be such that the carrier gas and the liquid material for vapor phase growth can have a liquid depth sufficient to make gas-liquid contact, but is preferably 5 mm to 50 mm. If the depth is smaller than 5 mm, sufficient gas-liquid contact may not be performed, and it is expected that a saturated mixed gas cannot be obtained. On the other hand, even if it is deeper than 50 mm, the container dimensions are unnecessarily elongated vertically, which is uneconomical and cannot be said to be effective.

【0022】また、ここで使用される気液成長用液体原
料としては、一般式(I)
The liquid raw material for gas-liquid growth used here is represented by the general formula (I)

【化7】 (R1〜R3はそのうちの1個以上が1種又は2種以上の
炭素数1から3のアルキル基で他は水素原子である基群
を表し、M1は3価の金属元素を表す。)で示される有
機金属化合物、または一般式(II)
Embedded image (R 1 to R 3 represent a group in which at least one of them is one or more alkyl groups having 1 to 3 carbon atoms and the other is a hydrogen atom, and M 1 represents a trivalent metal element Or an organometallic compound represented by the general formula (II)

【化8】 (R4及びR5はそのうちの1個又は2個が1種又は2種
の炭素数1から3のアルキル基で他は水素原子である基
群を表し、M2は2価の金属元素を表す。)で示される
有機金属、または一般式(III)
Embedded image (R 4 and R 5 represent a group in which one or two of them are one or two alkyl groups having 1 to 3 carbon atoms and the other is a hydrogen atom, and M 2 represents a divalent metal element. An organic metal represented by the general formula (III)

【化9】 (R6〜R8はそのうちの1個以上が1種又は2種以上の
炭素数1から10のアルキル基で他は水素原子である基
群を表し、M3はリン又はヒ素を表す。)で示されるア
ルキルホスフィン又はアルキルアルシンが挙げられる。
Embedded image (R 6 to R 8 represent a group of one or more of which are one or more alkyl groups having 1 to 10 carbon atoms and the other being a hydrogen atom, and M 3 represents phosphorus or arsenic.) And an alkyl phosphine or an alkyl arsine represented by

【0023】より具体的には、有機金属化合物として
は、トリメチルアルミニウム、トリエチルアルミニウ
ム、トリメチルガリウム、トリエチルガリウム、ジメチ
ル亜鉛、ジエチル亜鉛、トリエチルインジウム等が挙げ
られる。また、アルキルホスフィンとしてターシャリー
ブチルホスフィン、アルキルアルシンとしてターシャリ
ーブチルアルシンがそれぞれ挙げられる。
More specifically, examples of the organometallic compound include trimethylaluminum, triethylaluminum, trimethylgallium, triethylgallium, dimethylzinc, diethylzinc, triethylindium and the like. In addition, tertiary butyl phosphine is exemplified as alkyl phosphine, and tertiary butyl arsine is exemplified as alkyl arsine.

【0024】上述のように、本発明の気相成長用液体原
料の気化容器を用い、トリメチルガリウム等の液体原料
をキャリアガスにより気化同伴することで、エピタキシ
ャル成長を行うことにより、気化量の変動なく、残量が
ほとんど無くなるまで安定したガス濃度の供給ができ
る。
As described above, the liquid source such as trimethylgallium is vaporized and entrained by the carrier gas using the vaporization container for the liquid source for vapor phase growth of the present invention, thereby performing the epitaxial growth, so that the vaporization amount does not fluctuate. In addition, a stable gas concentration can be supplied until the remaining amount becomes almost zero.

【0025】[0025]

【実施例】以下に本発明の実施例を示す。Examples of the present invention will be described below.

【0026】(実施例1)図1に示した気化容器を用
い、この気化容器による液体原料の安定供給が可能であ
るか試験を行った。この気化容器は、密閉容器1本体は
外径90mmφ×高さ160mmの円筒状で、空間内容
量が約700mlである。また、底部に直径20mm
φ、深さ20mmの円筒状の溝4を有する。密閉容器1
の上端壁をキャリアガス導入管2が貫通し、その下端7
は円筒状の溝4の底から5mm上方の位置で開口してい
る。さらに、密閉容器1の上端壁にはガス導出管3が貫
通して開口している。これらキャリアガス導入管2及び
ガス導出管3の上部にはそれぞれバルブ6、5が設けら
れている。
Example 1 Using the vaporization container shown in FIG. 1, a test was conducted to determine whether stable supply of the liquid raw material was possible using this vaporization container. In this vaporization container, the main body of the closed container 1 has a cylindrical shape with an outer diameter of 90 mmφ and a height of 160 mm, and has a space capacity of about 700 ml. In addition, diameter 20mm in the bottom
It has a cylindrical groove 4 having a diameter of φ and a depth of 20 mm. Closed container 1
The carrier gas introduction pipe 2 penetrates the upper end wall of the
Is opened at a position 5 mm above the bottom of the cylindrical groove 4. Further, a gas outlet pipe 3 penetrates and opens on the upper end wall of the closed casing 1. Valves 6 and 5 are provided above the carrier gas inlet pipe 2 and the gas outlet pipe 3, respectively.

【0027】この気化容器内にトリメチルガリウム50
0gを充填した。このトリメチルガリウムの入った気化
容器を恒温槽内に取り付け、キャリアガスとして高純度
ヘリウムを用い、キャリアガス導入管2より高純度ヘリ
ウムを導入してバブリングし、ガス導出管3より高純度
ヘリウムに同伴してトリメチルガリウムを導出した。ガ
ス導出管3より得られたガス相をガス濃度計(アプリオ
リ社製)にて測定した。
In this vaporization vessel, trimethylgallium 50
0 g was charged. The vaporization container containing the trimethylgallium is mounted in a thermostat, high-purity helium is used as a carrier gas, high-purity helium is introduced from the carrier gas inlet pipe 2 and bubbling is performed, and the high-purity helium is entrained from the gas outlet pipe 3. To derive trimethylgallium. The gas phase obtained from the gas outlet pipe 3 was measured with a gas concentration meter (Apriori).

【0028】図5は、フィード量(トリメチルガリウム
の全充填量に対する導出量の割合)とトリメチルガリウ
ムの濃度との関係を示す。フィード量は経時とともに増
加し、100%に近いほど残量が少ないことを意味す
る。図5の実施例1に示すように、本実施例の気化容器
によれば、長時間濃度が安定して供給できるとともに、
気化量の低下により使用できずに残る液量が極めて少な
いことが確認された。使用できずに残った液量は8g
(充填量に対して約2%)と少なかった。
FIG. 5 shows the relationship between the amount of feed (the ratio of the amount of feed to the total amount of trimethylgallium) and the concentration of trimethylgallium. The feed amount increases with time, and the closer to 100%, the smaller the remaining amount. As shown in Embodiment 1 of FIG. 5, according to the vaporization container of this embodiment, the concentration can be stably supplied for a long time,
It was confirmed that the amount of liquid remaining unusable due to a decrease in the amount of vaporization was extremely small. 8g of liquid left unusable
(About 2% based on the filling amount).

【0029】(実施例2)図1に示す気化容器におい
て、底部の溝4を直径30mmφ、深さ30mmの円筒
状としたこと以外は実施例1と同様の気化容器を使用
し、実施例1と同様の試験を行った。その結果、実施例
1と同様に長時間安定して供給でき、使用できずに残っ
た液がほとんどなかった。残った液量は12g(充填量
に対して約2%)と少なかった。
(Example 2) In the vaporizing container shown in Fig. 1, the same vaporizing container as in Example 1 was used except that the bottom groove 4 was formed in a cylindrical shape having a diameter of 30mmφ and a depth of 30mm. The same test was performed. As a result, as in Example 1, the liquid could be supplied stably for a long time, and there was almost no liquid that could not be used and remained. The remaining liquid amount was as small as 12 g (about 2% based on the filling amount).

【0030】(実施例3)図1に示す気化容器におい
て、密閉容器1を外径165mmφ、高さ205mmと
したこと以外は実施例1と同様の気化容器を使用し、実
施例1と同様の試験を行った。その結果、実施例1と同
様に長時間安定して供給でき、使用できずに残った液が
ほとんどなかった。残った液量は10g(充填量に対し
て約2%)と少なかった。
Example 3 In the vaporizing container shown in FIG. 1, the same vaporizing container as that of Example 1 was used except that the closed container 1 had an outer diameter of 165 mmφ and a height of 205 mm. The test was performed. As a result, as in Example 1, the liquid could be supplied stably for a long time, and there was almost no liquid that could not be used and remained. The remaining liquid amount was as small as 10 g (about 2% based on the filling amount).

【0031】(実施例4)図1に示す気化容器におい
て、底部の溝4を対角線長さ30mm、深さ30mmの
四角柱状としたこと以外は実施例1と同様の気化容器を
使用し、実施例1と同様の試験を行った。その結果、実
施例1と同様に長時間安定して供給でき、使用できずに
残った液がほとんどなかった。残った液量は13g(充
填量に対して約3%)と少なかった。
(Example 4) In the vaporization container shown in Fig. 1, the same vaporization container as that of Example 1 was used except that the bottom groove 4 was formed as a square column having a diagonal length of 30mm and a depth of 30mm. The same test as in Example 1 was performed. As a result, as in Example 1, the liquid could be supplied stably for a long time, and there was almost no liquid that could not be used and remained. The remaining liquid amount was as small as 13 g (about 3% based on the filling amount).

【0032】(実施例5)実施例1と同じ気化容器を使
用し、トリメチルガリウムに替えてターシャリーブチル
ホスフィンを使用した以外は実施例1と同様の試験を行
った。その結果、実施例1と同様に長時間安定して供給
でき、使用できずに残った液がほとんどなかった。残っ
た液量は7g(充填量に対して約1%)と少なかった。
Example 5 The same test as in Example 1 was performed except that the same vaporization vessel as in Example 1 was used and tertiary butylphosphine was used instead of trimethylgallium. As a result, as in Example 1, the liquid could be supplied stably for a long time, and there was almost no liquid that could not be used and remained. The remaining liquid amount was as small as 7 g (about 1% based on the filling amount).

【0033】(比較例1)図2に示すように、底部が平
坦で溝がない構造となっている気化容器を使用し、実施
例1と同様にトリメチルガリウムによる供給試験を行っ
た。その結果、図5の比較例1に示すように最後まで安
定供給することができず、残った液量は83g(充填量
に対して約17%)と多かった。
(Comparative Example 1) As shown in FIG. 2, a supply test using trimethylgallium was performed in the same manner as in Example 1 using a vaporization container having a flat bottom and a structure without grooves. As a result, as shown in Comparative Example 1 in FIG. 5, stable supply was not possible to the end, and the amount of the remaining liquid was as large as 83 g (about 17% with respect to the filling amount).

【0034】(比較例2)図3に示すように、底部が球
面状内面8を有する構造となっている以外は実施例1と
同様の気化容器を使用し、実施例1と同様にトリメチル
ガリウムによる供給試験を行った。その結果、比較例1
の平坦な底部を有する気化容器に比べて改善が見られる
ものの、依然として最後まで安定供給することができ
ず、残った液量は34g(充填量に対して約7%)と多
かった。
Comparative Example 2 As shown in FIG. 3, a vaporization container similar to that of Example 1 was used except that the bottom had a structure having a spherical inner surface 8, and trimethylgallium was used in the same manner as in Example 1. A supply test was performed. As a result, Comparative Example 1
Although the improvement was observed as compared with the vaporization container having a flat bottom, the liquid could not be supplied stably to the end, and the amount of the remaining liquid was as large as 34 g (about 7% based on the charged amount).

【0035】(比較例3)図4に示すように、底部の内
径が徐々に細くなったテーパー状内面9を有する構造と
なっている以外は実施例1と同様の気化容器を使用し、
実施例1と同様にトリメチルガリウムによる供給試験を
行った。その結果、図5の比較例3に示すように、比較
例1の平坦な底部を有する気化容器に比べて改善が見ら
れるものの、残液が少なくなって液面がテーパー状内面
9にかかると徐々にその濃度が低下し、最後まで安定供
給することができなかった。残った液量は25g(充填
量に対して約5%)と多かった。
(Comparative Example 3) As shown in FIG. 4, the same vaporizing container as that of Example 1 was used except that the inner diameter of the bottom portion was gradually reduced to have a tapered inner surface 9.
A supply test using trimethylgallium was performed in the same manner as in Example 1. As a result, as shown in Comparative Example 3 in FIG. 5, although an improvement is observed as compared with the vaporization container having a flat bottom of Comparative Example 1, when the residual liquid decreases and the liquid level falls on the tapered inner surface 9. The concentration gradually decreased and could not be supplied stably until the end. The remaining liquid amount was as large as 25 g (about 5% based on the filling amount).

【0036】[0036]

【発明の効果】以上説明した通り本発明によれば、簡単
な構造で、容器内残液がほとんどなくなるまで安定した
ガス濃度で気相成長用液体原料を気化導出することがで
きる。
As described above, according to the present invention, a liquid material for vapor phase growth can be vaporized and derived at a stable gas concentration with a simple structure until almost no residual liquid remains in the container.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の気化容器の一例を示す断面図である。FIG. 1 is a sectional view showing an example of a vaporization container of the present invention.

【図2】従来の気化容器の一例を示す断面図である。FIG. 2 is a sectional view showing an example of a conventional vaporization container.

【図3】従来の気化容器の一例を示す断面図である。FIG. 3 is a sectional view showing an example of a conventional vaporization container.

【図4】従来の気化容器の一例を示す断面図である。FIG. 4 is a sectional view showing an example of a conventional vaporization container.

【図5】フィード量(トリメチルガリウムの全充填量に
対する導出量の割合)とトリメチルガリウムの濃度との
関係を示すグラフである。
FIG. 5 is a graph showing a relationship between a feed amount (a ratio of a derived amount to a total filling amount of trimethylgallium) and a concentration of trimethylgallium.

【符号の説明】[Explanation of symbols]

1 密閉容器 2 キャリアガス導入管 3 ガス導出管 4 溝 5,6 バルブ 7 キャリアガス導入管の下端 DESCRIPTION OF SYMBOLS 1 Closed container 2 Carrier gas introduction pipe 3 Gas outlet pipe 4 Groove 5, 6 Valve 7 Lower end of carrier gas introduction pipe

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 底部に溝が形成された密閉容器と、下端
が密閉容器底部の溝に達して開口するとともに上部が容
器上端壁を貫通して密閉容器外部に開口したキャリアガ
ス導入管と、下端が密閉容器上部を貫通して密閉容器内
部に開口するとともに上部が密閉容器外部に開口したガ
ス導出管とを有し、密閉容器内に充填した気相成長用液
体原料を気化してガス導出管から導出することを特徴と
する気相成長用液体原料の気化容器。
A closed gas container having a groove formed in a bottom portion, a carrier gas inlet pipe having a lower end reaching a groove in a closed container bottom portion and opening, and an upper portion penetrating a container upper end wall and opening to the outside of the sealed container; A gas outlet pipe whose lower end passes through the upper part of the closed vessel and opens inside the closed vessel, and has a gas outlet pipe whose upper part is opened outside the closed vessel. A vaporization container for a liquid material for vapor phase growth, which is derived from a tube.
【請求項2】 密閉容器の底部に形成された溝が円筒状
であることを特徴とする請求項1記載の気相成長用液体
原料の気化容器。
2. The vaporization container for vapor-phase growth liquid material according to claim 1, wherein the groove formed in the bottom of the closed container is cylindrical.
【請求項3】 円筒状の溝の直径が5〜50mmφ、深
さが5〜50mmであることを特徴とする請求項2記載
の気相成長用液体原料の気化容器。
3. The vaporization container for a liquid material for vapor phase growth according to claim 2, wherein the diameter of the cylindrical groove is 5 to 50 mmφ and the depth is 5 to 50 mm.
【請求項4】 密閉容器の底部に形成された溝が多角柱
状であることを特徴とする請求項1記載の気相成長用液
体原料の気化容器。
4. The container for vaporizing a liquid material for vapor phase growth according to claim 1, wherein the groove formed at the bottom of the closed container has a polygonal column shape.
【請求項5】 多角柱状の溝の対角線長さが5〜50m
m、深さが5〜50mmであることを特徴とする請求項
4記載の気相成長用液体原料の気化容器。
5. The diagonal length of the polygonal column-shaped groove is 5 to 50 m.
5. The vaporization container for a liquid material for vapor phase growth according to claim 4, wherein m and the depth are 5 to 50 mm.
【請求項6】 気化容器に充填する気相成長用液体原料
が、一般式(I) 【化1】 (R1〜R3はそのうちの1個以上が1種又は2種以上の
炭素数1から3のアルキル基で他は水素原子である基群
を表し、M1は3価の金属元素を表す。)で示される有
機金属化合物、または一般式(II) 【化2】 (R4及びR5はそのうちの1個又は2個が1種又は2種
の炭素数1から3のアルキル基で他は水素原子である基
群を表し、M2は2価の金属元素を表す。)で示される
有機金属、または一般式(III) 【化3】 (R6〜R8はそのうちの1個以上が1種又は2種以上の
炭素数1から10のアルキル基で他は水素原子である基
群を表し、M3はリン又はヒ素を表す。)で示されるア
ルキルホスフィン又はアルキルアルシンであることを特
徴とする請求項1記載の気相成長用液体原料の気化容
器。
6. The liquid material for vapor phase growth to be charged in a vaporization container is represented by the general formula (I): (R 1 to R 3 represent a group in which at least one of them is one or more alkyl groups having 1 to 3 carbon atoms and the other is a hydrogen atom, and M 1 represents a trivalent metal element Or an organometallic compound represented by the general formula (II): (R 4 and R 5 represent a group in which one or two of them are one or two alkyl groups having 1 to 3 carbon atoms and the other is a hydrogen atom, and M 2 represents a divalent metal element. Or an organic metal represented by the general formula (III): (R 6 to R 8 represent a group of one or more of which are one or more alkyl groups having 1 to 10 carbon atoms and the other being a hydrogen atom, and M 3 represents phosphorus or arsenic.) 2. The vaporization container for a liquid material for vapor phase growth according to claim 1, which is an alkyl phosphine or an alkyl arsine represented by the formula:
JP36646397A 1997-12-24 1997-12-24 Vaporization container for liquid source for vapor phase growth Expired - Fee Related JP3560457B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36646397A JP3560457B2 (en) 1997-12-24 1997-12-24 Vaporization container for liquid source for vapor phase growth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36646397A JP3560457B2 (en) 1997-12-24 1997-12-24 Vaporization container for liquid source for vapor phase growth

Publications (2)

Publication Number Publication Date
JPH11189491A true JPH11189491A (en) 1999-07-13
JP3560457B2 JP3560457B2 (en) 2004-09-02

Family

ID=18486849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36646397A Expired - Fee Related JP3560457B2 (en) 1997-12-24 1997-12-24 Vaporization container for liquid source for vapor phase growth

Country Status (1)

Country Link
JP (1) JP3560457B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003516304A (en) * 1999-12-11 2003-05-13 エピケム リミテッド Method and apparatus for supplying a precursor to a plurality of epitaxial reactor sections

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003516304A (en) * 1999-12-11 2003-05-13 エピケム リミテッド Method and apparatus for supplying a precursor to a plurality of epitaxial reactor sections
JP2011137235A (en) * 1999-12-11 2011-07-14 Sigma Aldrich Co Method for bulk supply of organometallic precursor to a plurality of epitaxial reactor sites

Also Published As

Publication number Publication date
JP3560457B2 (en) 2004-09-02

Similar Documents

Publication Publication Date Title
US7547363B2 (en) Solid organometallic compound-filled container and filling method thereof
KR101560755B1 (en) Methods of preparing titanium containing thin films by atomic layer deposition using monocyclopentadienyl titanium-based precursors
US5776255A (en) Chemical vapor deposition apparatus
US7348445B2 (en) Organoaluminum precursor compounds
US20060193984A1 (en) Organoaluminum precursor compounds
KR20060052798A (en) Semi-insulating gan and method of making the same
US20120083100A1 (en) Thermalizing gas injectors for generating increased precursor gas, material deposition systems including such injectors, and related methods
KR910001925B1 (en) Process for saturating organic metallic compound
US20100270508A1 (en) Zirconium precursors useful in atomic layer deposition of zirconium-containing films
JP3560457B2 (en) Vaporization container for liquid source for vapor phase growth
JP4900966B2 (en) Method for producing gallium hydride gas and method for producing gallium nitride crystal
CA2124052C (en) Liquid indium source
JP2004031782A (en) Organic metal gas supply device
CN103975417B (en) System for semiconductor crystalline material formation
US6602549B1 (en) Indium source reagent composition, and use thereof for deposition of indium-containing films on subtrates and ion implantation of indium-doped shallow junction microelectronic structures
JP2002220669A (en) Vaporization vessel for liquid raw material
JPH079433U (en) Bubbler
Shenai et al. Correlation of film properties and reduced impurity concentrations in sources for III/V-MOVPE using high-purity trimethylindium and tertiarybutylphosphine
JP2006120857A (en) Vapor phase epitaxy equipment, manufacturing method of semiconductor substrate using the same, and semiconductor substrate
JPH06173011A (en) Vaporization vessel
US20230019365A1 (en) Aluminum precursor compound, production method therefor, and aluminum containing layer forming method using same
KR102286480B1 (en) Apparatus for supplying organometallic compound with double structure
KR101947384B1 (en) Mg BASED MATERIAL, A METHOD FOR FORMING Mg BASED MATERIAL AND NOVEL COMPOUND
CN103255391A (en) Water bath tank and film deposition apparatus using same
JP3479041B2 (en) Method for producing group III metal nitride thin film

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040518

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040525

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100604

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees