JPH11188423A - Coast stopping position control of transfer machine - Google Patents

Coast stopping position control of transfer machine

Info

Publication number
JPH11188423A
JPH11188423A JP35760597A JP35760597A JPH11188423A JP H11188423 A JPH11188423 A JP H11188423A JP 35760597 A JP35760597 A JP 35760597A JP 35760597 A JP35760597 A JP 35760597A JP H11188423 A JPH11188423 A JP H11188423A
Authority
JP
Japan
Prior art keywords
stop
ram
coasting
coil
sequencer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP35760597A
Other languages
Japanese (ja)
Other versions
JP3712027B2 (en
Inventor
Keiichi Kurahara
恵一 蔵原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP35760597A priority Critical patent/JP3712027B2/en
Publication of JPH11188423A publication Critical patent/JPH11188423A/en
Application granted granted Critical
Publication of JP3712027B2 publication Critical patent/JP3712027B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Winding, Rewinding, Material Storage Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve accuracy of coil car stopping position at low cost. SOLUTION: In a stop position control method of a transfer machine such as a coil car to transfer the coil with a device to be driven by a linear motor 5 or a hydraulic equipment 10, which is controlled by an electrode valve 9, a transfer control to stop the machine at several given positions is made by a sequencer 1 having a CPU 22, a RAM 23. A coasted distance at the time of previous stopping is memorized in the RAM 23 and at the time of next stop, the coast distance information of the previous stopping is obtained from the RAM 23 to correct the stop coasting distance by the CPU 22 so as to improve the stop position accuracy of the transfer machine.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、鉄鋼または非鉄等
のプロセスラインにおける金属帯板をコイル状に巻き取
った帯板コイル等を直入れ電動機や電磁弁を使用して搬
送する搬送機械の惰走停止位置制御に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a coasting machine for conveying a metal strip in a process line of steel or non-ferrous, etc., into which a strip is wound in a coil shape, etc., by directly inserting the strip and using an electric motor or a solenoid valve. It relates to the running stop position control.

【0002】[0002]

【従来の技術】従来より、鉄鋼または非鉄プロセスライ
ンの巻き戻しリール又は巻き取りリールのコイル取着部
(マンドレル)からコイルを着脱する際には、リールの
径方向に上下移動する昇降機能、及びリールの軸方向に
移動する搬送機能を共に備えたコイルカーが用いられて
いる。従来のコイルカーの昇降機能についての典型的な
例としては、特開平5−138247号に開示されてい
る「昇降力切替式コイルカー」が知られている。図5は
その昇降力切替式コイルカーの構成図であり、V型スキ
ッド方式のコイルカーの例を示している。図5におい
て、リール220の下方にコイル210の尾端を支持す
ることで、コイルを巻きゆるみなく巻き取り、巻き取っ
たコイルを払い出すためのコイルカー120が設けられ
ている。コイルカー本体230にはV型スキッド240
がガイドロッド250を介して、昇降駆動機構のV型ス
キッド昇降シリンダー260によって、昇降可能に支持
されている。電磁弁130を上昇側に位置させて、圧油
口から作動液を電磁弁130を通して昇降用シリンダー
260のa側に供給することで、V型スキッド240が
上昇する。又、電磁弁130を下降側に位置させれば、
V型スキッド240は下降する。こうして電磁弁13
0、昇降用シリンダー260、V型スキッド240によ
り昇降駆動機構を構成している。又、この昇降駆動力は
圧力切替弁140、減圧弁150、160、リリーフ弁
170によって、昇降力の低高圧切替えを可能にしてい
る。この構成で、コイルの巻取りが終了に近付くとコイ
ルカー120を上昇させ、V型スキッド240がコイル
210に接触し、この状態でコイル210の重量により
昇降シリンダー260が押し下げられ、昇降シリンダー
260側の圧力が高くなってリリーフ弁170が作動
し、作動液はリリーフ弁170を通って返油口側へ流れ
るので、コイル210はスリ疵、巻ゆるみ等がなくコイ
ルカー130に安定に支持され移送される。
2. Description of the Related Art Conventionally, when a coil is attached to or detached from a coil attachment portion (mandrel) of a rewind or take-up reel of a steel or non-ferrous process line, a lifting / lowering function that moves up and down in the radial direction of the reel, and A coil car equipped with a transport function that moves in the axial direction of the reel is used. As a typical example of the conventional function of raising and lowering a coil car, there is known a "lifting and lowering force switching type coil car" disclosed in Japanese Patent Application Laid-Open No. 5-138247. FIG. 5 is a configuration diagram of the lifting / lowering force switching type coil car, and shows an example of a V-skid coil car. In FIG. 5, a coil car 120 is provided for supporting the tail end of the coil 210 below the reel 220 to take up the coil without loosening and paying out the wound coil. The coil car body 230 has a V-shaped skid 240
Is supported by a V-shaped skid lifting cylinder 260 of a lifting drive mechanism via a guide rod 250 so as to be able to move up and down. By positioning the solenoid valve 130 on the ascending side and supplying hydraulic fluid from the pressure oil port to the a side of the lifting cylinder 260 through the solenoid valve 130, the V-shaped skid 240 is raised. Also, if the solenoid valve 130 is located on the descending side,
The V-shaped skid 240 descends. Thus, the solenoid valve 13
0, the lifting cylinder 260 and the V-shaped skid 240 constitute a lifting drive mechanism. In addition, the lifting drive force can be switched between low and high pressures by a pressure switching valve 140, pressure reducing valves 150 and 160, and a relief valve 170. With this configuration, when the winding of the coil approaches the end, the coil car 120 is raised, and the V-shaped skid 240 comes into contact with the coil 210, and in this state, the lifting cylinder 260 is pushed down by the weight of the coil 210, and the lifting cylinder 260 side When the pressure increases, the relief valve 170 operates, and the hydraulic fluid flows to the oil return port side through the relief valve 170, so that the coil 210 is stably supported and transferred to the coil car 130 without any flaws or loose winding. .

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記従
来例においては、コイルカーの搬送制御でも特に停止制
御は比較的ラフな走行環境のことでもあり、余り精度が
考慮されることはなくスペース的にも限定されていたの
で、モータ制御についても高価なインバータを使った制
御は行わずコストの低廉な直入れ制御方式を用いていた
ために、被搬送物体(コイル)の慣性質量のバラツキに
より停止指令後の惰走距離が一定にならず、数回測定し
た惰走距離の平均値を用いた停止位置補正等を行ってい
たが、停止精度が確保できないために停止制御に時間が
かかるという問題があった。そこで、本発明は、高価な
インバータ制御方式などによらない簡単な改善によっ
て、コイルカーの停止精度を向上させることができる搬
送機械の惰走停止位置制御方法を提供することを目的と
している。
However, in the above-mentioned conventional example, even in the transfer control of the coil car, especially the stop control is also a relatively rough running environment, and the precision is not considered so much and the space is not much considered. Since the motor control was limited, the control using an expensive inverter was not performed and the low-cost direct-insertion control method was used. The coasting distance was not constant, and stop position correction and the like were performed using the average value of the coasting distances measured several times. . Therefore, an object of the present invention is to provide a coasting stop position control method for a transport machine that can improve the stop accuracy of a coil car by a simple improvement that does not depend on an expensive inverter control method or the like.

【0004】[0004]

【課題を解決するための手段】上記問題を解決するた
め、請求項1記載の発明は、直入れ電動機を使用して搬
送物を搬送する搬送機械をCPU、RAMを有するシー
ケンサによって定位置に停止させる搬送機械の惰走停止
位置制御方法において、前回の停止時の惰走距離を前記
RAMに記憶して置き、次回の停止時に前記RAMから
前回の惰走距離情報を得て前記CPUで停止惰走距離を
補正することを特徴としている。また、請求項2記載の
発明は、請求項1記載の直入れ電動機に代えて、電磁弁
で制御される油圧機器を使用して搬送物を搬送するよう
にしている。このように、次回の停止時に前回の停止惰
走距離を補正して搬送機械の停止位置精度を向上させる
ので、被搬送物体の慣性質量が変わった場合も、その慣
性質量により決まる惰走距離を使用してシーケンサは学
習機能に基づき、定位置停止指令を出力するため、慣性
質量の変化に関係なく停止位置精度を確保することがで
きる。
According to a first aspect of the present invention, there is provided a transport machine for transporting an article to be transported using a direct insertion motor, which is stopped at a fixed position by a sequencer having a CPU and a RAM. In the method of controlling the coasting stop position of the transporting machine to be controlled, the coasting distance at the time of the previous stop is stored in the RAM, and at the next stop, the previous coasting distance information is obtained from the RAM, and the CPU stops coasting. It is characterized by correcting the running distance. According to a second aspect of the present invention, a conveyed object is conveyed by using a hydraulic device controlled by a solenoid valve, instead of the direct insertion motor according to the first aspect. In this way, the previous stop coasting distance is corrected at the next stop to improve the stop position accuracy of the transport machine, so that even if the inertial mass of the transported object changes, the coasting distance determined by the inertial mass is changed. When used, the sequencer outputs a fixed position stop command based on the learning function, so that stop position accuracy can be ensured regardless of a change in inertial mass.

【0005】[0005]

【発明の実施の形態】以下、本発明の実施の形態につい
て図を参照して説明する。図1は本発明の実施の形態に
係るシーケンサと搬送機械の概念ブロック図であり、図
2は図1に示すシーケンサの制御動作のフローチャート
である。図3は図1に示すシーケンサのブロック図であ
る。図4は図1に示すシーケンサの停止指令出力タイミ
ングを示す図である。図1において、1は指令側の搬送
プロセスコンピュータ(図示していない)からの指令を
受けて、搬送機械を制御するシーケンサである。2は搬
送機械としてのコイルカーであり、コイルカー2に被搬
送物体(例えば金属帯板コイル)4を積載して、給電用
SW(直入れ用SW)8を介してSSRモジュール等に
よるモータ制御回路7から給電される、直入れ電動機
(モータ)5によりコイルカー2の車輪2aを回転駆動
してコイルカー2を搬送する。なお、6はSSR並列回
路等で構成するモータ正逆転SW回路である。3はコイ
ルカー2の昇降機構であり、油圧源を調節する電磁弁9
によってV型スキッド3aを昇降するシリンダーによ
り、コイル4をV型スキッド3a上に支持積載する。つ
ぎに図2のフローチャートを参照して動作について説明
する。 搬送制御用のプロセスコンピュータ(図示していな
い)からの搬送指令を、図3に示すようなシーケンサ1
がI/O20を介して受取る(S20)。 シーケンサ1は搬送指令を受けたら、コイルカー2
の昇降機構3の電磁弁9を作動させて、コイル4をコイ
ルカー2に積載する(S21)。 シーケンサ1は搬送指令に指定されている停止点の
定位置を確認して、モータ5の回転方向、速度をモータ
制御回路7で算出してSW8により給電駆動しコイルカ
ー2の搬送を開始する(S22)。 シーケンサ1は次の停止点である定位置での前回の
惰走距離をRAM23から読み出し(S23)、 通常の停止指令実行ポイントから前回の惰走距離を
減算した時点で、実際の停止指令を実行してモータ5へ
の給電をSW8をOFFして遮断する(S24)。 この処理は図4に示すように、停止位置1は停止指
令実行点から惰走距離(斜線部分)だけずれて停止する
ので、これを減じて停止位置を補正するものである。 定位置に停止したか?の位置確認を行い(S2
5)、 予定位置に停止していれば、停止位置等の情報をプ
ロセスコンピュータへ通知して、RAM23の惰走距離
を更新して終了する(S26)。 又、停止位置がずれていれば補正した後、S26で
惰走距離を演算し直し更新して終了する(S27)。 このように、本実施の形態によれば前回の惰走距離デー
タにより補正制御を行っているので、従来のような数回
の測定値の平均値を用いた固定値制御に比較すれば、は
るかにリアルタイムの追従制御に近く、学習機能により
刻々データを前回のものに更新することによって正確な
停止位置制御が可能になる。また、図3に示すように、
直入れ電動機5に代えて、電磁弁9で制御される油圧機
器10(例えば、油圧モータ、油圧シリンダ等)を使用
して搬送物を搬送するようにしてももちろんよい。な
お、鉄鋼プロセスライン等の例で、自動車向け鋼板の生
産ライン、スティンレス鋼の生産ライン、磁性鋼の生産
ライン、といったロット毎にコイルの慣性による惰走距
離データを交換して、停止指令の実行の都度データを更
新するようにすれば、コイルの慣性質量が変わっても正
確に対応することが可能である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a conceptual block diagram of a sequencer and a transport machine according to an embodiment of the present invention, and FIG. 2 is a flowchart of a control operation of the sequencer shown in FIG. FIG. 3 is a block diagram of the sequencer shown in FIG. FIG. 4 is a diagram showing a stop command output timing of the sequencer shown in FIG. In FIG. 1, reference numeral 1 denotes a sequencer for controlling a transfer machine in response to a command from a transfer process computer (not shown) on the command side. Reference numeral 2 denotes a coil car as a transport machine. An object to be transported (for example, a metal strip coil) 4 is loaded on the coil car 2, and a motor control circuit 7 such as an SSR module or the like is provided via a power supply switch (direct insertion switch) 8. The wheel 2a of the coil car 2 is driven to rotate by a direct-insertion motor (motor) 5 fed from the coil car 2, and the coil car 2 is transported. Reference numeral 6 denotes a motor forward / reverse SW circuit composed of an SSR parallel circuit or the like. Numeral 3 denotes an elevating mechanism for the coil car 2, and a solenoid valve 9 for adjusting the hydraulic pressure
The coil 4 is supported and loaded on the V-shaped skid 3a by a cylinder that moves the V-shaped skid 3a up and down. Next, the operation will be described with reference to the flowchart of FIG. A transfer command from a transfer control process computer (not shown) is sent to the sequencer 1 as shown in FIG.
Is received via the I / O 20 (S20). When the sequencer 1 receives the transfer command, the sequencer 1
The electromagnetic valve 9 of the lifting mechanism 3 is operated to load the coil 4 on the coil car 2 (S21). The sequencer 1 confirms the fixed position of the stop point specified in the transfer command, calculates the rotation direction and speed of the motor 5 by the motor control circuit 7, drives the power supply by the SW 8, and starts the transfer of the coil car 2 (S22). ). The sequencer 1 reads the previous coasting distance at the fixed position as the next stop point from the RAM 23 (S23), and executes the actual stop command when the previous coasting distance is subtracted from the normal stop command execution point. Then, the power supply to the motor 5 is turned off by turning off the SW8 (S24). In this processing, as shown in FIG. 4, since the stop position 1 is shifted from the stop command execution point by the coasting distance (shaded portion), the stop position is corrected by reducing this. Did it stop in place? Confirm the position of (S2
5) If the vehicle has stopped at the scheduled position, information such as the stop position is notified to the process computer, the coasting distance in the RAM 23 is updated, and the process ends (S26). If the stop position is deviated, the position is corrected, the coasting distance is calculated again at S26, and the process is terminated (S27). As described above, according to the present embodiment, since the correction control is performed based on the previous coasting distance data, compared with the conventional fixed value control using the average value of several measured values as in the related art, Real-time follow-up control is achieved, and accurate stop position control becomes possible by updating the data to the previous one by the learning function. Also, as shown in FIG.
Instead of the direct insertion motor 5, a conveyed object may be conveyed using a hydraulic device 10 (for example, a hydraulic motor, a hydraulic cylinder, or the like) controlled by a solenoid valve 9. In the example of a steel process line, the coasting distance data due to the inertia of the coil is exchanged for each lot, such as a steel sheet production line for automobiles, a stainless steel production line, and a magnetic steel production line, and a stop command is issued. If the data is updated each time the execution is performed, it is possible to accurately cope with a change in the inertial mass of the coil.

【0006】[0006]

【発明の効果】以上説明したように、本発明によれば、
前回のコイルカー停止時の惰走距離を記憶して置き、次
回の停止時に前回の停止惰走距離を補正して搬送機械の
停止位置精度を向上させるように構成したので、搬送機
械の定位置停止精度を向上させる効果がある。
As described above, according to the present invention,
The coasting distance at the time of the previous stop of the coil car is stored and stored, and at the next stop, the previous stop coasting distance is corrected to improve the stop position accuracy of the transfer machine. This has the effect of improving accuracy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態に係るシーケンサと搬送機
械の概念ブロック図である。
FIG. 1 is a conceptual block diagram of a sequencer and a transport machine according to an embodiment of the present invention.

【図2】図1に示すシーケンサの制御動作のフローチャ
ートである。
FIG. 2 is a flowchart of a control operation of the sequencer shown in FIG.

【図3】図1に示すシーケンサのブロック図である。FIG. 3 is a block diagram of the sequencer shown in FIG. 1;

【図4】図1に示すシーケンサの停止命令出力タイミン
グを示す図である。
FIG. 4 is a diagram showing a stop instruction output timing of the sequencer shown in FIG. 1;

【図5】従来の昇降力切替式コイルカーの構成図であ
る。
FIG. 5 is a configuration diagram of a conventional lifting / lowering force switching type coil car.

【符号の説明】[Explanation of symbols]

1 シーケンサ 2 コルカー 3 昇降機構 4 コイル 5 直入れモータ 6 反転SW 7 モータ制御回路 8 直入れSW 9 電磁弁 10 油圧機器 20、21 I/O CPU 22 RAM 23 ROM 24 DESCRIPTION OF SYMBOLS 1 Sequencer 2 Colker 3 Elevating mechanism 4 Coil 5 Direct insertion motor 6 Inverting switch 7 Motor control circuit 8 Direct insertion SW 9 Solenoid valve 10 Hydraulic equipment 20, 21 I / O CPU 22 RAM 23 ROM 24

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 直入れ電動機を使用して搬送物を搬送す
る搬送機械をCPU、RAMを有するシーケンサによっ
て定位置に停止させる搬送機械の惰走停止位置制御方法
において、 前回の停止時の惰走距離を前記RAMに記憶して置き、
次回の停止時に前記RAMから前回の惰走距離情報を得
て前記CPUで停止惰走距離を補正することを特徴とす
る搬送機械の惰走停止位置制御方法。
1. A method of controlling a coasting stop position of a transport machine in which a transport machine that transports a transported object using a direct insertion motor is stopped at a fixed position by a sequencer having a CPU and a RAM. The distance is stored and stored in the RAM,
A method for controlling a coasting stop position of a transport machine, comprising: obtaining the previous coasting distance information from the RAM at the next stop and correcting the stop coasting distance by the CPU.
【請求項2】 電磁弁で制御される油圧機器を使用して
搬送物を搬送する搬送機械をCPU、RAMを有するシ
ーケンサによって定位置に停止させる搬送機械の惰走停
止位置制御方法において、 前回の停止時の惰走距離を前記RAMに記憶して置き、
次回の停止時に前記RAMから前回の惰走距離情報を得
て前記CPUで停止惰走距離を補正することを特徴とす
る搬送機械の惰走停止位置制御方法。
2. A coasting stop position control method for a transport machine that stops a transport machine that transports a transported object using a hydraulic device controlled by an electromagnetic valve at a fixed position by a sequencer having a CPU and a RAM. The coasting distance at the time of stop is stored and stored in the RAM,
A method for controlling a coasting stop position of a transport machine, comprising: obtaining the previous coasting distance information from the RAM at the next stop and correcting the stop coasting distance by the CPU.
JP35760597A 1997-12-25 1997-12-25 Method for controlling coasting stop position of transfer machine Expired - Fee Related JP3712027B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35760597A JP3712027B2 (en) 1997-12-25 1997-12-25 Method for controlling coasting stop position of transfer machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35760597A JP3712027B2 (en) 1997-12-25 1997-12-25 Method for controlling coasting stop position of transfer machine

Publications (2)

Publication Number Publication Date
JPH11188423A true JPH11188423A (en) 1999-07-13
JP3712027B2 JP3712027B2 (en) 2005-11-02

Family

ID=18454983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35760597A Expired - Fee Related JP3712027B2 (en) 1997-12-25 1997-12-25 Method for controlling coasting stop position of transfer machine

Country Status (1)

Country Link
JP (1) JP3712027B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9026348B2 (en) 2012-12-21 2015-05-05 Honda Motor Co., Ltd. System and method for brake coaching

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9026348B2 (en) 2012-12-21 2015-05-05 Honda Motor Co., Ltd. System and method for brake coaching

Also Published As

Publication number Publication date
JP3712027B2 (en) 2005-11-02

Similar Documents

Publication Publication Date Title
CN108132641B (en) Control method and system of stacker crane and electric vehicle battery replacement control method and system
US5093754A (en) Control system for a magnetic levitation body
US4827598A (en) Automatic assembling method and apparatus for vehicle bodies
CN111026125B (en) Automatic correction method for automatic navigation trolley
JPH09164829A (en) Control system of body level of car
JP2019098938A (en) Automatic carrier vehicle
CN100477481C (en) Method for realizing precision positioning utilizing electric machine
KR20100131920A (en) Transporting vehicle
JP2012003675A (en) Conveyance vehicle and conveyance vehicle system
JPH11188423A (en) Coast stopping position control of transfer machine
KR20220125155A (en) Control system
JP2001005525A (en) Unmanned carriage system
JP2000099151A (en) Carrier system
JP4986139B2 (en) Positioning stop device and method
JPS63140603A (en) Stop controller for carrier equipment using linear motor
JP2002301683A (en) Carrying device
JP2001240234A (en) Stop control method for conveying device
JPH0647440A (en) Method for adjusting center height of coil
JPH06131047A (en) Travelling speed controller for package carrier
KR19990038062U (en) Unmanned carriage
JPH0211461A (en) Device and method for taking load of unmanned cargo working vehicle
JPS5952310A (en) Control method of unmanned guide truck
JP2538016Y2 (en) Automatic guided vehicle stop positioning clamp mechanism
JPH02265804A (en) Method of controlling stacker crane
JP2547854B2 (en) Transfer device

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20041115

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050506

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050727

A61 First payment of annual fees (during grant procedure)

Effective date: 20050809

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20090826

LAPS Cancellation because of no payment of annual fees