JPH11185821A - Nonaqueous electrolyte secondary battery - Google Patents
Nonaqueous electrolyte secondary batteryInfo
- Publication number
- JPH11185821A JPH11185821A JP9351746A JP35174697A JPH11185821A JP H11185821 A JPH11185821 A JP H11185821A JP 9351746 A JP9351746 A JP 9351746A JP 35174697 A JP35174697 A JP 35174697A JP H11185821 A JPH11185821 A JP H11185821A
- Authority
- JP
- Japan
- Prior art keywords
- lithium
- thickness
- secondary battery
- positive electrode
- manganese oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、リチウムマンガン
酸化物を正極活物質とする非水電解液二次電池に関する
ものである。The present invention relates to a nonaqueous electrolyte secondary battery using lithium manganese oxide as a positive electrode active material.
【0002】[0002]
【従来の技術】近年、電子技術の進歩により、電子機器
の高性能化、小型化、ポータブル化が進み、これら電子
機器には、エネルギー密度の高い二次電池が要求されて
いる。従来、これら電子機器に使用される二次電池とし
ては、ニッケル・カドミウム二次電池、鉛蓄電池、ニッ
ケル水素電池、リチウムイオン二次電池等が挙げられ
る。特に、リチウムイオン二次電池は、電池電圧が高
く、高エネルギー密度を有し、自己放電も少なく、か
つ、サイクル特性に優れ、小型軽量電池に適合できる最
も有望な電池である。2. Description of the Related Art In recent years, with the advance of electronic technology, high performance, miniaturization, and portability of electronic devices have been advanced, and secondary batteries with high energy density have been required for these electronic devices. Conventionally, as a secondary battery used in these electronic devices, a nickel-cadmium secondary battery, a lead-acid battery, a nickel-metal hydride battery, a lithium ion secondary battery, and the like are exemplified. In particular, lithium ion secondary batteries are the most promising batteries that have high battery voltage, high energy density, low self-discharge, excellent cycle characteristics, and can be adapted to small and lightweight batteries.
【0003】このようなリチウムイオン二次電池の正極
材料としては、LiCoO2、LiNiO2が用いられて
いる。しかし、コバルト化合物やニッケル化合物は、世
界的に稀少な金属材料であり、価格も高価である。した
がって、これらを使用する電池は多量生産にとても不利
な状況にあり、特に、大型電池の材料としては不適当で
ある。As a cathode material of such a lithium ion secondary battery, LiCoO 2 and LiNiO 2 are used. However, cobalt compounds and nickel compounds are rare metal materials worldwide and are expensive. Therefore, batteries using them are in a very disadvantageous situation for mass production, and are particularly unsuitable as materials for large batteries.
【0004】そのため、リチウムイオン二次電池の正極
材料として、より低コストなLiMn2O4等のリチウム
マンガン酸化物の使用が検討され、従来より、リチウム
とマンガンの混合比や混合方法、さらには熱処理温度条
件等を種々変えて充放電容量、寿命特性、保存特性等を
改良する研究が盛んに続けられている。For this reason, the use of lower-cost lithium manganese oxides such as LiMn 2 O 4 has been studied as a positive electrode material of a lithium ion secondary battery. Research for improving the charge / discharge capacity, life characteristics, storage characteristics, and the like by variously changing the heat treatment temperature conditions and the like has been actively conducted.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、未だ十
分に満足できる特性が得られていないのが実情である。
例えば、スピネル型のリチウムマンガン酸化物に異種金
属特に遷移金属を混合することが提案されている。異種
金属を添加することで、スピネル結晶構造の安定化を図
り、寿命特性を向上させることができる。しかしなが
ら、リチウムの挿入・脱離に伴うリチウムの通路が十分
に確保できないため、充放電能力が低下してしまい、実
用的な材料にならない。However, in reality, satisfactory characteristics have not yet been obtained.
For example, it has been proposed to mix a dissimilar metal, particularly a transition metal, with a spinel-type lithium manganese oxide. By adding a dissimilar metal, the spinel crystal structure can be stabilized, and the life characteristics can be improved. However, since a sufficient lithium passage cannot be ensured due to insertion / desorption of lithium, the charge / discharge capability is reduced, and the material is not a practical material.
【0006】また、リチウムマンガン酸化物の種々の合
成条件が提案されている。炭酸塩や硝酸塩等の化合物を
分解することによりリチウムとマンガンの酸化物体を得
る方法では、極めて微細な粒子形状を有する粉末体を得
ることができ、充放電特性に優れた粉末体を得ることが
できる。しかしながら、電池としての充填性は低く、電
池容量が少ないという問題がある。Various synthesis conditions for lithium manganese oxide have been proposed. In a method of obtaining an oxide of lithium and manganese by decomposing a compound such as a carbonate or a nitrate, a powder having an extremely fine particle shape can be obtained, and a powder having excellent charge / discharge characteristics can be obtained. it can. However, there is a problem that the filling property of the battery is low and the battery capacity is small.
【0007】一方、市販の電解二酸化マンガン粉末とリ
チウム化合物を混合し熱処理することにより、リチウム
とマンガンの酸化物体を得る方法では、高密度に充填で
きる粉末とすることができるが、充放電容量が低く、寿
命特性が短いという問題がある。特に、電解二酸化マン
ガンから合成されたリチウムマンガン酸化物は、大電流
放電条件において容量低下が起こり、サイクル寿命の経
過とともに性能低下が顕著となる。On the other hand, in a method of obtaining an oxide of lithium and manganese by mixing a commercially available electrolytic manganese dioxide powder with a lithium compound and heat-treating the powder, the powder can be filled at a high density, but the charge and discharge capacity is low. There is a problem that it is low and the life characteristics are short. In particular, the capacity of lithium manganese oxide synthesized from electrolytic manganese dioxide is reduced under large current discharge conditions, and the performance is significantly reduced as the cycle life elapses.
【0008】また、電池構成の点からは、正極材と負極
材の組み合わせによる最適条件も検討されている。しか
しながら、リチウムマンガン酸化物と炭素質材料の組み
合わせによる二次電池の有効な方法が未だ為されていな
いのが実情である。[0008] Further, from the viewpoint of the battery configuration, the optimum conditions for the combination of the positive electrode material and the negative electrode material have been studied. However, in reality, an effective method of a secondary battery using a combination of a lithium manganese oxide and a carbonaceous material has not yet been achieved.
【0009】そこで、本発明は、正極活物質にリチウム
マンガン酸化物を用いながら、高出力化を図り、充放電
特性、サイクル寿命特性、重負荷特性に優れた非水電解
液二次電池を提供することを目的とする。Accordingly, the present invention provides a non-aqueous electrolyte secondary battery which achieves high output while using lithium manganese oxide as a positive electrode active material and has excellent charge / discharge characteristics, cycle life characteristics, and heavy load characteristics. The purpose is to do.
【0010】[0010]
【課題を解決するための手段】本発明者らは、上記目的
を達成するため、鋭意検討を重ねた結果、所定の粒子径
を有するリチウムマンガン酸化物を用いることにより、
合剤層の厚みを従来まで不可能であった5倍以下の厚み
に設定でき、高出力化の電池システムを可能ならしめる
ことを見いだした。Means for Solving the Problems The present inventors have conducted intensive studies to achieve the above object, and as a result, by using lithium manganese oxide having a predetermined particle size,
It has been found that the thickness of the mixture layer can be set to five times or less, which has been impossible so far, and that a high-output battery system is made possible.
【0011】すなわち、本発明に係る非水電解液二次電
池は、リチウムマンガン酸化物を活物質とする正極と、
リチウム金属、リチウム合金、又はリチウムをドープ・
脱ドープ可能な材料よりなる負極と、非水電解液とを備
えてなり、上記正極は、合剤層の厚みが集電体の厚みに
対して4倍以下であり、リチウムマンガン酸化物の50
%積算粒子径が5〜15μmであることを特徴とする。That is, the non-aqueous electrolyte secondary battery according to the present invention comprises: a positive electrode comprising lithium manganese oxide as an active material;
Doped with lithium metal, lithium alloy, or lithium
The negative electrode comprises a non-aqueous electrolyte and a non-aqueous electrolyte. The positive electrode has a thickness of the mixture layer that is four times or less the thickness of the current collector.
% Integrated particle diameter is 5 to 15 μm.
【0012】さらに、上記正極に併せて、負極は、合剤
層の厚みが集電体の厚みに対して4倍以下であり、50
%積算粒子径が5〜15μmである炭素質材料であるこ
とが好ましい。In addition to the positive electrode, the negative electrode has a thickness of the mixture layer that is four times or less the thickness of the current collector.
It is preferable that the carbonaceous material has a% integrated particle diameter of 5 to 15 μm.
【0013】本発明に係る非水電解液二次電池において
は、電極の厚みを極めて薄くできることから、特に高出
力化を図ることができ、電極の構成体として、種々の電
極に、フレキシブルに対応することができる。In the non-aqueous electrolyte secondary battery according to the present invention, since the thickness of the electrode can be extremely thin, particularly high output can be achieved, and the electrode structure can be flexibly adapted to various electrodes. can do.
【0014】また、本発明に係る非水電解液二次電池に
おいては、電極の厚みを薄くことすることにより、反応
電極面積を大きくすることができるため、電極の厚み方
向での反応電位分布差を小さくでき、すなわち、電極の
表面側の層と集電体側の層との分極を小さくでき、極め
て効率的な電極反応が可能となる。その結果、大電流放
電に追従でき、サイクル経過後においても大電流放電の
性能低下を小さくすることできる。Further, in the nonaqueous electrolyte secondary battery according to the present invention, since the reaction electrode area can be increased by reducing the thickness of the electrode, the difference in the reaction potential distribution in the electrode thickness direction can be obtained. Can be reduced, that is, the polarization between the layer on the surface side of the electrode and the layer on the current collector side can be reduced, and an extremely efficient electrode reaction can be performed. As a result, it is possible to follow the large current discharge, and it is possible to reduce the performance deterioration of the large current discharge even after the lapse of the cycle.
【0015】さらに、粒子径を規制することによって、
大電流放電での分極を小さくでき、電極内部へのリチウ
ム拡散も速やかに行われ、粒子の安定化にも寄与でき、
サイクル経過後においても電極の内部の不均一化を抑制
することができ、性能低下を小さくできる。Further, by regulating the particle size,
Polarization in large current discharge can be reduced, lithium can be rapidly diffused into the electrode, and it can contribute to stabilization of particles.
Even after the lapse of the cycle, non-uniformity inside the electrode can be suppressed, and performance degradation can be reduced.
【0016】このように、電極の厚み及び粒径を規制す
ることにより、高出力化を図ることができ、かつ充放電
特性、サイクル寿命特性に優れ、水溶液系二次電池に匹
敵する重負荷特性をもった非水電解液二次電池を得るこ
とができる。As described above, by regulating the thickness and the particle size of the electrode, a high output can be achieved, and the charge / discharge characteristics and the cycle life characteristics are excellent, and the heavy load characteristics comparable to those of the aqueous secondary battery. Non-aqueous electrolyte secondary battery having
【0017】[0017]
【発明の実施の形態】以下、本発明に係る非水電解液二
次電池について詳細に説明する。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a non-aqueous electrolyte secondary battery according to the present invention will be described in detail.
【0018】本発明に係る非水電解液二次電池は、リチ
ウムマンガン酸化物を活物質とする正極と、リチウムを
ドープ及び脱ドープすることが可能である負極と、非水
電解液とを備えている。A non-aqueous electrolyte secondary battery according to the present invention comprises a positive electrode using lithium manganese oxide as an active material, a negative electrode capable of doping and undoping lithium, and a non-aqueous electrolyte. ing.
【0019】上記正極は、活物質となるリチウムマンガ
ン酸化物に加えて、導電剤、結着剤、溶剤等が添加され
てなる正極合剤を、集電体の片面或いは両面に塗布乾燥
し、加圧成型することにより作製される。The above-mentioned positive electrode is coated with a positive electrode mixture obtained by adding a conductive agent, a binder, a solvent and the like in addition to lithium manganese oxide as an active material to one or both surfaces of a current collector, and dried. It is produced by pressure molding.
【0020】本発明は、上記正極の合剤層の厚みが集電
体の厚みに対して4倍以下であることを特徴とする。さ
らに、正極合剤中のリチウムマンガン酸化物は、50%
積算粒子径が5〜15μmであることを特徴とする。こ
のリチウムマンガン酸化物は、粒子径分布が1〜40μ
mであり、最大粒子径が20〜40μmであり、1次構
成粒子が0.1〜1μmよりなる疑似凝集粒子により構
成されている。The present invention is characterized in that the thickness of the mixture layer of the positive electrode is four times or less the thickness of the current collector. Furthermore, the lithium manganese oxide in the positive electrode mixture is 50%
It is characterized in that the integrated particle diameter is 5 to 15 μm. This lithium manganese oxide has a particle size distribution of 1 to 40 μm.
m, the maximum particle diameter is 20 to 40 μm, and the primary constituent particles are composed of pseudo-agglomerated particles of 0.1 to 1 μm.
【0021】ここでリチウムマンガン酸化物は、一般式
LixMnOyで示され、例えば、LiMn2O4、Li
1+zMn2-zO4、Li4Mn5O12、或いはLiMwMn
2-wO4(但し、Mは遷移金属である。)で示されるもの
を用いることができる。Here, the lithium manganese oxide is represented by the general formula Li x MnO y , for example, LiMn 2 O 4 , Li
1 + z Mn 2-z O 4 , Li 4 Mn 5 O 12 , or LiM w Mn
2-w O 4 (where M is a transition metal) can be used.
【0022】これらリチウムマンガン酸化物の原料とな
るマンガン化合物としては、電解二酸化マンガンの他に
も、化学合成二酸化マンガン、三酸化二マンガン、四酸
化三マンガン、オキシ水酸化マンガン、硫酸マンガン、
炭酸マンガン、硝酸マンガン等が使用できる。また、リ
チウムマンガン酸化物の原料となるリチウム化合物とし
ては、硝酸リチウム、炭酸リチウム、水酸化リチウム、
酢酸リチウム、シュウ酸リチウム等が使用できる。The manganese compounds used as raw materials for these lithium manganese oxides include, in addition to electrolytic manganese dioxide, chemically synthesized manganese dioxide, dimanganese trioxide, trimanganese tetroxide, manganese oxyhydroxide, manganese sulfate,
Manganese carbonate, manganese nitrate and the like can be used. In addition, as a lithium compound serving as a raw material of lithium manganese oxide, lithium nitrate, lithium carbonate, lithium hydroxide,
Lithium acetate, lithium oxalate and the like can be used.
【0023】一方、負極としては、金属リチウム、リチ
ウム合金(例えば、リチウム−アルミ合金)、或いはリ
チウムをドープ及び脱ドープ可能なもの材料を用いるこ
とができる。このリチウムをドープ及び脱ドープ可能な
材料としては、熱分解炭素類、コークス類(ピッチコー
クス、ニードルコークス、石油コークス等)、黒鉛類、
ガラス状炭素類、有機高分子化合物焼成体(フェノール
樹脂、フラン樹脂等を適当な温度で焼成し炭素化したも
の)、炭素繊維、活性炭等の炭素質材料、その他、ポリ
アセチレン、ポリピロール等のポリマーを用いることが
できる。On the other hand, as the negative electrode, metallic lithium, a lithium alloy (for example, lithium-aluminum alloy), or a material capable of doping and undoping lithium can be used. Materials capable of doping and undoping lithium include pyrolytic carbons, cokes (pitch coke, needle coke, petroleum coke, etc.), graphites,
Glassy carbons, organic polymer compound fired bodies (phenol resin, furan resin, etc. fired at appropriate temperature and carbonized), carbonaceous materials such as carbon fiber and activated carbon, and other polymers such as polyacetylene and polypyrrole Can be used.
【0024】特に、負極としては、上述した正極と同様
に、合剤層の厚みが集電体の厚みに対して4倍以下であ
り、50%積算粒子径が5〜15μmである炭素質材料
を用いることが好ましい。この炭素質材料は、粒子径分
布が1〜40μmであり、最大粒子径が20〜40μm
であることが好ましい。In particular, as the negative electrode, as in the case of the above-described positive electrode, a carbonaceous material in which the thickness of the mixture layer is four times or less the thickness of the current collector and the 50% cumulative particle diameter is 5 to 15 μm. It is preferable to use This carbonaceous material has a particle size distribution of 1 to 40 μm and a maximum particle size of 20 to 40 μm.
It is preferred that
【0025】また、黒鉛粉末、メソフェーズマイクロビ
ーズ、熱分解炭素繊維、メソフェーズピッチ系炭素繊
維、高温処理ピッチカーボン等の材料では、種々の面間
隔を有するものが得られているが、X線回折ピークにお
いて(002)面の面間隔が0.38nm以下であるも
のが、充放電特性を高める上で好ましい。このように、
正極の合剤の厚みを集電体の厚みの4倍以下とし、リチ
ウムマンガン酸化物の50%積算粒子径を5〜15μm
とすることにより、電極の厚みを極めて薄くすることが
可能となり、電極の厚み方向での反応電位分布差を小さ
くでき、極めて効率的な電極反応が可能となる。その結
果、大電流放電に追従でき、サイクル経過後においても
大電流放電の性能低下を小さくすることできる。これに
より、これまでの非水電解液二次電池に適していなかっ
た大電流放での使用においても、水溶液系二次電池に匹
敵する重負荷特性を得ることができる。Materials having various plane spacings, such as graphite powder, mesophase microbeads, pyrolytic carbon fibers, mesophase pitch-based carbon fibers, and high-temperature treated pitch carbon, have been obtained. It is preferable that the spacing between the (002) planes is 0.38 nm or less in order to improve the charge / discharge characteristics. in this way,
The thickness of the mixture of the positive electrode is set to four times or less the thickness of the current collector, and the 50% integrated particle diameter of lithium manganese oxide is 5 to 15 μm.
By this, the thickness of the electrode can be made extremely thin, the difference in the reaction potential distribution in the thickness direction of the electrode can be made small, and an extremely efficient electrode reaction becomes possible. As a result, it is possible to follow the large current discharge, and it is possible to reduce the performance deterioration of the large current discharge even after the lapse of the cycle. As a result, a heavy load characteristic comparable to that of an aqueous secondary battery can be obtained even when used at a large current discharge, which has not been suitable for a conventional nonaqueous electrolyte secondary battery.
【0026】さらに、リチウムマンガン酸化物の50%
積算粒子径を規制することによって、大電流放電の分極
を小さくでき、電極内部へのリチウム拡散も速やかに行
われ、粒子の安定化にも寄与でき、サイクル経過後にお
いても電極の内部の不均一化を抑制することができ、性
能低下を小さくできる。Furthermore, 50% of the lithium manganese oxide
By regulating the cumulative particle size, the polarization of large current discharge can be reduced, lithium diffusion into the electrode can be performed quickly, and it can contribute to the stabilization of the particles. Can be suppressed, and performance degradation can be reduced.
【0027】本発明においては、上述した正極に併せ
て、負極の電極厚み及び粒子径を規制することにより、
さらに高性能な電池を得ることができる。特に、合剤層
の厚みが集電体の厚みに対して4倍以下であり、50%
積算粒子径が5〜15μmである炭素質材料を用いるこ
とにより、さらに高性能な電池を得ることができる。In the present invention, by regulating the electrode thickness and the particle diameter of the negative electrode in addition to the above-mentioned positive electrode,
A higher performance battery can be obtained. In particular, the thickness of the mixture layer is four times or less the thickness of the current collector,
By using a carbonaceous material having an integrated particle diameter of 5 to 15 μm, a higher-performance battery can be obtained.
【0028】なお、電解液には、リチウム塩を電解質と
し、これを0.5〜2.0モル/lなる濃度で有機溶媒
に溶解させた非水電解液が用いられる。ここで有機溶媒
としては、特に限定されるものではないが、例えば、炭
酸プロピレン、炭酸エチレン、炭酸ブチレン、炭酸ジメ
チル、炭酸エチルメチル、炭酸ジエチル、炭酸ジプロピ
ル、ぎ酸メチル、ぎ酸エチル、ぎ酸プロピル、酢酸エス
テル化合物、プロピオン酸エステル化合物、ジメトキシ
エタン、ジエトキシエタン、ジエトキシプロパン、ジオ
キソラン、ジオキサン等のエーテル化合物、γ−ブチロ
ラクトン、δ−ヘキシルラクトン等の環状エステル類、
スルホラン、ジメチルスルホラン等の有機硫黄化合物等
を用いることができる。これらは、単独溶媒もしくは2
種類以上混合した混合溶媒として用いることができる。As the electrolytic solution, a non-aqueous electrolytic solution obtained by dissolving a lithium salt as an electrolyte in an organic solvent at a concentration of 0.5 to 2.0 mol / l is used. Here, the organic solvent is not particularly limited. For example, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, dipropyl carbonate, methyl formate, ethyl formate, formic acid Propyl, acetate compounds, propionate compounds, dimethoxyethane, diethoxyethane, diethoxypropane, dioxolan, ether compounds such as dioxane, γ-butyrolactone, cyclic esters such as δ-hexyllactone,
Organic sulfur compounds such as sulfolane and dimethylsulfolane can be used. These may be single solvents or 2
It can be used as a mixed solvent of more than one kind.
【0029】電解質としては、六フッ化燐酸リチウム、
六フッ化砒酸リチウム、六フッ化アンチモン酸リチウ
ム、四フッ化硼酸リチウム、三フッ化メタンスルホン酸
リチウム、三フッ化酢酸リチウム等を用いることができ
る。As the electrolyte, lithium hexafluorophosphate,
Lithium hexafluoroarsenate, lithium hexafluoroantimonate, lithium tetrafluoroborate, lithium trifluoride methanesulfonate, lithium trifluoroacetate, or the like can be used.
【0030】さらに、本発明に係る非水電解液二次電池
の形状は、特に限定されるものではなく、コイン型電
池、ペーパー型電池、円筒状渦巻式電池、平板状角型電
池、インサイドアウト型円筒電池等、いずれの電池にも
適用可能である。Further, the shape of the non-aqueous electrolyte secondary battery according to the present invention is not particularly limited, and coin type batteries, paper type batteries, cylindrical spiral type batteries, flat rectangular type batteries, inside-out batteries, The present invention can be applied to any battery such as a cylindrical battery.
【0031】[0031]
【実施例】以下、本発明を実施例により詳細に説明す
る。図1には、本実施例で作製する円筒型二次電池を示
す。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to embodiments. FIG. 1 shows a cylindrical secondary battery manufactured in this example.
【0032】実施例1 先ず始めに、正極1を以下のように作製した。 Example 1 First, a positive electrode 1 was produced as follows.
【0033】粒子径分布が1〜29μmであり50%積
算粒子径が7μmである二酸化マンガンと、平均粒子径
が2μmである炭酸リチウムとをLi/Mn比で0.5
3となるように計量し、乳鉢で混合した。そして、この
混合物をアルミナボードに入れ、700℃で12時間熱
処理し室温まで冷却後、再び乳鉢で混合した。さらにこ
の混合物をアルミナボードに入れ800℃で12時間熱
処理して冷却し、リチウムマンガン酸化物を得た。Manganese dioxide having a particle size distribution of 1 to 29 μm and a 50% cumulative particle size of 7 μm, and lithium carbonate having an average particle size of 2 μm are mixed with Li / Mn ratio of 0.5.
3 and weighed in a mortar. Then, this mixture was put on an alumina board, heat-treated at 700 ° C. for 12 hours, cooled to room temperature, and then mixed again in a mortar. Further, this mixture was put on an alumina board, heat-treated at 800 ° C. for 12 hours, and cooled to obtain a lithium manganese oxide.
【0034】得られたリチウムマンガン酸化物は、X線
回折測定の結果、スピネル型LiMn2O4に一致するピ
ークを得ることができた。さらに、このリチウムマンガ
ン酸化物の粒子径分布を測定した結果、50%粒子径が
8μmであり、粒子径分布が1〜29μmであった。As a result of X-ray diffraction measurement, a peak corresponding to the spinel type LiMn 2 O 4 was obtained from the obtained lithium manganese oxide. Furthermore, as a result of measuring the particle size distribution of this lithium manganese oxide, the 50% particle size was 8 μm, and the particle size distribution was 1 to 29 μm.
【0035】このリチウムマンガン酸化物を90重量
%、導電剤としてグラファイトを6重量%、結着剤とし
てポリフッ化ビニリデンを4重量%混合し、溶剤として
N−メチル−2−ピロリドンを加えて正極合剤とした。
そして、この正極合剤を厚み20μmのアルミニウム箔
からなる集電体10の両面に均一に塗布し乾燥させた
後、ローラープレス機で加圧成型し、これを正極1とし
た。正極1の合剤層の厚みは、52μmとした。90% by weight of this lithium manganese oxide, 6% by weight of graphite as a conductive agent, 4% by weight of polyvinylidene fluoride as a binder, and N-methyl-2-pyrrolidone as a solvent were added to form a positive electrode. Agent.
Then, the positive electrode mixture was uniformly applied to both surfaces of a current collector 10 made of an aluminum foil having a thickness of 20 μm, dried, and then pressed and formed with a roller press to obtain a positive electrode 1. The thickness of the mixture layer of the positive electrode 1 was 52 μm.
【0036】次に、負極2は、以下のように作製した。Next, the negative electrode 2 was manufactured as follows.
【0037】石油ピッチを酸素雰囲気中で1000℃で
加熱処理し(酸素架橋を施し)、難黒鉛性炭素を得た
後、これを粉砕し、50%積算粒子径が7μmで1〜2
4μmの分布を有する炭素質材料を得た。The petroleum pitch is heat-treated at 1000 ° C. in an oxygen atmosphere (crosslinked with oxygen) to obtain non-graphitizable carbon, which is then pulverized, and has a 50% integrated particle diameter of 7 μm and 1-2 μm.
A carbonaceous material having a distribution of 4 μm was obtained.
【0038】この炭素質材料を90重量%と、結着剤と
してポリフッ化ビニリデンを10重量%混合し、溶剤と
してN−メチル−2−ピロリドンを加えて負極合剤と
し、厚み15μmの銅箔からなる集電体11の両面に均
一に塗布し乾燥させた後、ローラープレス機で加圧成型
し、これを負極2とした。負極2の合剤厚みは、46μ
mとする。90% by weight of this carbonaceous material and 10% by weight of polyvinylidene fluoride as a binder were mixed, and N-methyl-2-pyrrolidone was added as a solvent to form a negative electrode mixture. After uniformly applying and drying both surfaces of the current collector 11 to be formed, the resultant was subjected to pressure molding with a roller press machine to obtain a negative electrode 2. The mixture thickness of the negative electrode 2 is 46 μ
m.
【0039】次に、正極及び負極を所定の幅に裁断し
後、正極1の端にアルミニウムよりなる正極リード13
と溶着し、負極2の端にニッケルよりなる負極リード1
2を溶着した。そして、正極1と負極2とを微多孔性ポ
リエチレン製セパレータ3を介して積層し、多数回巻回
して、渦巻状電極素子を作製した。この電極素子の上下
にポリプロピレン製絶縁板4を載置し、鉄製電池缶5内
に入れ、負極リード12を電池缶5の底に溶接し、正極
リード13をアルミニウム製安全弁7に溶接した。その
後、電解液として炭酸プロピレンと炭酸ジメチルとの等
量混合溶媒にLiPF6を1mol/l溶解させた溶液
を注入して、安全弁7、PTC素子9(Positive Tempe
rature Coefficiency)(レイケム社製)、トップカバ
ー8を順番に載置した後、ガスケット6によりかしめ
て、外径18mm、高さ65mmの円筒型電池を作製し
た。Next, after cutting the positive electrode and the negative electrode into a predetermined width, a positive electrode lead 13 made of aluminum is attached to one end of the positive electrode 1.
Negative electrode lead 1 made of nickel at the end of negative electrode 2
2 was welded. Then, the positive electrode 1 and the negative electrode 2 were laminated with a microporous polyethylene separator 3 interposed therebetween, and wound many times to produce a spiral electrode element. The polypropylene insulating plate 4 was placed above and below the electrode element, placed in an iron battery can 5, the negative electrode lead 12 was welded to the bottom of the battery can 5, and the positive electrode lead 13 was welded to the aluminum safety valve 7. Thereafter, a solution obtained by dissolving 1 mol / l of LiPF 6 in a mixed solvent of equal amounts of propylene carbonate and dimethyl carbonate was injected as an electrolyte, and the safety valve 7 and the PTC element 9 (Positive Tempe
After the rature coefficiency (manufactured by Raychem) and the top cover 8 were placed in this order, they were caulked with the gasket 6 to produce a cylindrical battery having an outer diameter of 18 mm and a height of 65 mm.
【0040】実施例2 正極材料として、50%積算粒子径が13μmであり、
粒子径分布が2〜30μmである二酸化マンガンと、平
均粒子径が2μmである炭酸リチウムとをLi/Mn比
で0.53となるように計量し、実施例1と同様にして
リチウムマンガン酸化物を得た。 Example 2 As a positive electrode material, the 50% integrated particle diameter was 13 μm,
Manganese dioxide having a particle size distribution of 2 to 30 μm and lithium carbonate having an average particle size of 2 μm were weighed so that the Li / Mn ratio became 0.53, and lithium manganese oxide was obtained in the same manner as in Example 1. I got
【0041】得られたリチウムマンガン酸化物は、X線
回折測定の結果、スピネル型LiMn2O4に一致するピ
ークを得ることができた。さらに、このリチウムマンガ
ン酸化物の粒子径分布を測定した結果、50%粒子径が
13μmであり、粒子径分布が2〜34μmであった。As a result of X-ray diffraction measurement, a peak corresponding to the spinel type LiMn 2 O 4 was obtained from the obtained lithium manganese oxide. Furthermore, as a result of measuring the particle size distribution of this lithium manganese oxide, the 50% particle size was 13 μm, and the particle size distribution was 2 to 34 μm.
【0042】負極材料としては、難黒鉛性炭素を粉砕
し、50%積算粒子径が9μmで1〜30μmの分布を
有する炭素質材料を得た。As a negative electrode material, non-graphitizable carbon was pulverized to obtain a carbonaceous material having a 50% integrated particle diameter of 9 μm and a distribution of 1 to 30 μm.
【0043】この正極材料及び負極材料を用い、正極合
剤の厚みが54μmである正極1、負極合剤の厚みが4
7μmである負極を作製する以外は、実施例1と同様に
して円筒型二次電池を作製した。Using the positive electrode material and the negative electrode material, a positive electrode 1 having a positive electrode mixture thickness of 54 μm, and a negative electrode mixture having a thickness of 4 μm.
A cylindrical secondary battery was produced in the same manner as in Example 1, except that a negative electrode having a thickness of 7 μm was produced.
【0044】実施例3〜実施例6及び比較例1〜比較例
2 正極材料及び負極材料として、表1に示す50%積算粒
子径と粒子径分布とを有する材料を用い、表1に示す合
剤厚みを有する正極1及び負極2とした以外は、実施例
1と同様に円筒型二次電池を作製した。 Examples 3 to 6 and Comparative Examples 1 to Comparative Examples
2 Example 1 was repeated except that a material having a 50% integrated particle diameter and a particle diameter distribution shown in Table 1 was used as a positive electrode material and a negative electrode material, and a positive electrode 1 and a negative electrode 2 having a mixture thickness shown in Table 1 were used. In the same manner as described above, a cylindrical secondary battery was produced.
【0045】[0045]
【表1】 [Table 1]
【0046】特性評価 実施例及び比較例で作製された非水電解液二次電池を用
いて、先ず、電流密度0.3mA/cm2、上限電圧
4.2Vで8時間充電し、電流密度1mA/cm2で終
止電圧2.5Vまで放電させ、以降は、電流密度1Aで
上限電圧4.2Vと終止電圧2.5Vの間でそれぞれ3
時間ずつ充電・放電を5サイクル繰り返し、以下に示す
放電負荷試験とサイクル試験を行った。[0046] Characterization Examples and using the produced non-aqueous electrolyte secondary battery in Comparative Example First, a current density of 0.3 mA / cm 2, was charged for 8 hours at the upper limit voltage 4.2 V, the current density 1mA / Cm 2 to a cut-off voltage of 2.5 V, and thereafter, at a current density of 1 A, between the upper limit voltage of 4.2 V and the cut-off voltage of 2.5 V, respectively.
The charge / discharge cycle was repeated five times at a time, and the following discharge load test and cycle test were performed.
【0047】上記電池を用いて、電流密度1mA/cm
2、上限電圧4.2Vで3時間充電し、電流密度0.2
〜10mA/cm2に変えて終止電圧2.5Vまで放電
させる放電負荷試験を行った。Using the above battery, a current density of 1 mA / cm
2. Charged at an upper limit voltage of 4.2 V for 3 hours and a current density of 0.2
A discharge load test was performed in which the discharge voltage was changed to a final voltage of 2.5 V while changing to 10 mA / cm 2 .
【0048】また、別の上記電池を用いて、電流密度1
mA/cm2、上限電圧4.2Vで3時間充電し、電流
密度0.5mA/cm2で終止電圧2.5Vまで放電さ
せる充放電サイクルを200回行った。Further, using another battery, a current density of 1
mA / cm 2, was charged for 3 hours at the upper limit voltage 4.2 V, was performed 200 times the charging and discharging cycle of discharging to a final voltage of 2.5V at a current density of 0.5 mA / cm 2.
【0049】これらの結果をそれぞれ図2〜図4に示
す。The results are shown in FIGS.
【0050】表1及び図2〜図4の結果から、合剤層の
厚みを集電体の4倍以下とし、リチウムマンガン酸化物
の50%積算粒子径を5〜15μmである正極を備えた
電池(実施例1〜実施例7)では、粒子径が大きく電極
厚みが大きい電池(比較例1)に比べ、優れた重負荷放
電特性を得ることができ、サイクル経過後の劣化も少な
く、優れたサイクル寿命特性を得ることができることが
わかる。From the results shown in Table 1 and FIGS. 2 to 4, the thickness of the mixture layer was made four times or less the thickness of the current collector, and a positive electrode having a lithium manganese oxide having a 50% integrated particle diameter of 5 to 15 μm was provided. In the batteries (Examples 1 to 7), superior heavy-load discharge characteristics can be obtained, the deterioration after the lapse of the cycle is small, and the battery is excellent as compared with the battery (Comparative Example 1) having a large particle diameter and a large electrode thickness. It can be seen that improved cycle life characteristics can be obtained.
【0051】特に、実施例の電池においては、従来のリ
チウム二次電池には適していなかった大電流での使用に
おいても、水溶液系二次電池に匹敵する性能を引き出す
ことが可能となり、優れた重負荷充放電特性を得ること
ができる。これは、電極の表面側の層と集電体側の層で
の反応分極抵抗が極めて小さく、ほとんど反応遅れや抵
抗遅れが生じないことで、充放電の分極を無くし高効率
の電池とすることができるためである。In particular, in the battery of the embodiment, even when used at a large current, which was not suitable for the conventional lithium secondary battery, it is possible to bring out a performance comparable to that of the aqueous secondary battery. Heavy load charge / discharge characteristics can be obtained. This is because the reaction polarization resistance between the layer on the surface side of the electrode and the layer on the current collector side is extremely small, and there is almost no reaction delay or resistance delay. This is because it can be done.
【0052】また、実施例1〜実施例6においては、正
極のみならず負極においても合剤層の厚みが集電体の厚
みの4倍以下とされ、50%積算粒子径が5〜15μm
とされてなることから、実施例7に比べ、優れた重負荷
特性とサイクル寿命特性を得ることができる。In Examples 1 to 6, the thickness of the mixture layer is not more than four times the thickness of the current collector not only in the positive electrode but also in the negative electrode, and the 50% integrated particle diameter is 5 to 15 μm.
Therefore, superior heavy load characteristics and cycle life characteristics can be obtained as compared with the seventh embodiment.
【0053】[0053]
【発明の効果】以上の説明から明らかなように、本発明
によれば、合剤層の厚みと粒子径が最適な範囲に規制さ
れてなることから、電極厚みを極めて薄くすることがで
き高出力化の電池システムが可能となる。さらに、本発
明によれば、放電特性、寿命サイクル特性を兼ね備え、
従来の非水電解液二次電池に比べ重負荷特性に優れた非
水電解液二次電池を提供することができる。As is apparent from the above description, according to the present invention, the thickness of the mixture layer and the particle size are regulated to the optimum ranges, so that the electrode thickness can be extremely reduced and the height can be reduced. An output battery system becomes possible. Furthermore, according to the present invention, it has both discharge characteristics and life cycle characteristics,
It is possible to provide a non-aqueous electrolyte secondary battery that is more excellent in heavy load characteristics than a conventional non-aqueous electrolyte secondary battery.
【図1】本実施例の円筒型二次電池の断面図である。FIG. 1 is a cross-sectional view of a cylindrical secondary battery of the present embodiment.
【図2】本実施例の円筒型二次電池における放電電流と
放電容量の関係を示す特性図である。FIG. 2 is a characteristic diagram showing a relationship between a discharge current and a discharge capacity in the cylindrical secondary battery of this example.
【図3】本実施例の円筒型二次電池における電池容量と
サイクル数との関係を示す特性図である。FIG. 3 is a characteristic diagram showing the relationship between the battery capacity and the number of cycles in the cylindrical secondary battery of this example.
【図4】本実施例の円筒型二次電池おける放電電流と放
電容量との関係を示す特性図である。FIG. 4 is a characteristic diagram showing a relationship between a discharge current and a discharge capacity in the cylindrical secondary battery of the present embodiment.
1 正極、2 負極、3 セパレータ、4 絶縁板、5
電池缶、6 ガスケット、7 安全弁、8 トップカ
バー、9 PTC素子、10 正極集電体、11負極集
電体、12 負極リード、12 正極リード1 positive electrode, 2 negative electrode, 3 separator, 4 insulating plate, 5
Battery can, 6 gasket, 7 safety valve, 8 top cover, 9 PTC element, 10 positive electrode current collector, 11 negative electrode current collector, 12 negative electrode lead, 12 positive electrode lead
───────────────────────────────────────────────────── フロントページの続き (72)発明者 熊川 昌志 福島県郡山市日和田町高倉字下杉下1番地 の1 株式会社ソニー・エナジー・テック 内 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Masashi Kumakawa 1-1-1 Shimosugishita, Takakura, Hiwada-cho, Koriyama-shi, Fukushima Prefecture Sony Energy Tech Co., Ltd.
Claims (2)
正極と、リチウム金属、リチウム合金、又はリチウムを
ドープ・脱ドープ可能な材料よりなる負極と、非水電解
液とを備えてなり、 上記正極は、合剤層の厚みが集電体の厚みに対して4倍
以下であり、リチウムマンガン酸化物の50%積算粒子
径が5〜15μmであることを特徴とする非水電解液二
次電池。1. A positive electrode comprising: a positive electrode using a lithium manganese oxide as an active material; a negative electrode made of lithium metal, a lithium alloy, or a material capable of doping / dedoping lithium; and a non-aqueous electrolyte. Is a non-aqueous electrolyte secondary battery characterized in that the thickness of the mixture layer is four times or less the thickness of the current collector, and the 50% integrated particle diameter of lithium manganese oxide is 5 to 15 μm. .
みに対して4倍以下であり、50%積算粒子径が5〜1
5μmである炭素質材料であることを特徴とする請求項
1記載の非水電解液二次電池。2. The negative electrode, wherein the thickness of the mixture layer is four times or less the thickness of the current collector, and the 50% integrated particle diameter is 5 to 1
The non-aqueous electrolyte secondary battery according to claim 1, wherein the non-aqueous electrolyte secondary battery is a carbonaceous material having a thickness of 5 µm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9351746A JPH11185821A (en) | 1997-12-19 | 1997-12-19 | Nonaqueous electrolyte secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9351746A JPH11185821A (en) | 1997-12-19 | 1997-12-19 | Nonaqueous electrolyte secondary battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11185821A true JPH11185821A (en) | 1999-07-09 |
Family
ID=18419327
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9351746A Withdrawn JPH11185821A (en) | 1997-12-19 | 1997-12-19 | Nonaqueous electrolyte secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11185821A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001023614A (en) * | 1999-07-09 | 2001-01-26 | Sony Corp | Positive electrode and secondary battery using it |
JP2002100354A (en) * | 2000-09-21 | 2002-04-05 | Toshiba Battery Co Ltd | Non aqueous electrolyte secondary battery |
JP2003249211A (en) * | 2002-02-26 | 2003-09-05 | Nec Corp | Negative electrode for secondary battery, manufacturing method of secondary battery and negative electrode for secondary battery |
WO2005013408A1 (en) | 2003-07-31 | 2005-02-10 | Nec Lamilion Energy, Ltd. | Lithium ion secondary cell |
JP2005142165A (en) * | 1999-07-29 | 2005-06-02 | Toshiba Corp | Thin type nonaqueous electrolyte secondary battery |
WO2005098998A1 (en) | 2004-03-30 | 2005-10-20 | Kureha Corporation | Material for negative electrode of nonaqueous electrolyte secondary battery, process for producing the same, negative electrode and battery |
JP2007287622A (en) * | 2006-04-20 | 2007-11-01 | Nec Tokin Corp | Lithium ion secondary battery |
JP2011009228A (en) * | 2010-08-09 | 2011-01-13 | Nec Corp | Negative electrode for secondary battery, secondary battery, and method of manufacturing negative electrode for secondary battery |
JP2015162421A (en) * | 2014-02-28 | 2015-09-07 | 日立マクセル株式会社 | Nonaqueous electrolyte secondary battery |
WO2017110661A1 (en) * | 2015-12-25 | 2017-06-29 | 株式会社日立製作所 | Lithium ion secondary battery |
-
1997
- 1997-12-19 JP JP9351746A patent/JPH11185821A/en not_active Withdrawn
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001023614A (en) * | 1999-07-09 | 2001-01-26 | Sony Corp | Positive electrode and secondary battery using it |
JP2005142165A (en) * | 1999-07-29 | 2005-06-02 | Toshiba Corp | Thin type nonaqueous electrolyte secondary battery |
JP2002100354A (en) * | 2000-09-21 | 2002-04-05 | Toshiba Battery Co Ltd | Non aqueous electrolyte secondary battery |
JP2003249211A (en) * | 2002-02-26 | 2003-09-05 | Nec Corp | Negative electrode for secondary battery, manufacturing method of secondary battery and negative electrode for secondary battery |
WO2005013408A1 (en) | 2003-07-31 | 2005-02-10 | Nec Lamilion Energy, Ltd. | Lithium ion secondary cell |
WO2005098998A1 (en) | 2004-03-30 | 2005-10-20 | Kureha Corporation | Material for negative electrode of nonaqueous electrolyte secondary battery, process for producing the same, negative electrode and battery |
JP2007287622A (en) * | 2006-04-20 | 2007-11-01 | Nec Tokin Corp | Lithium ion secondary battery |
JP2011009228A (en) * | 2010-08-09 | 2011-01-13 | Nec Corp | Negative electrode for secondary battery, secondary battery, and method of manufacturing negative electrode for secondary battery |
JP2015162421A (en) * | 2014-02-28 | 2015-09-07 | 日立マクセル株式会社 | Nonaqueous electrolyte secondary battery |
WO2017110661A1 (en) * | 2015-12-25 | 2017-06-29 | 株式会社日立製作所 | Lithium ion secondary battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7608365B1 (en) | Positive active material composition for rechargeable lithium battery and method of preparing positive electrode using same | |
KR0134080B1 (en) | Positive electrode for lithium secondary battery and its method of manufacture, and a nonaqueous electrolyte | |
EP2337122A1 (en) | Nonaqueous electrolyte secondary battery | |
JPH0982325A (en) | Manufacture of positive active material | |
JP3460407B2 (en) | Non-aqueous electrolyte secondary battery | |
JP2000294240A (en) | Lithium composite oxide for lithium secondary battery positive electrode active material and lithium secondary battery using this | |
JPH07211311A (en) | Nonaqueous-electrolyte secondary battery | |
JP3633223B2 (en) | Positive electrode active material, method for producing the same, and nonaqueous electrolyte secondary battery | |
JP3929548B2 (en) | Method for producing non-aqueous electrolyte secondary battery | |
JPH09293508A (en) | Positive electrode material for lithium secondary battery, its manufacture and nonaqueous electrolyte secondary battery using it | |
JPH11185821A (en) | Nonaqueous electrolyte secondary battery | |
JP2001006730A (en) | Nonaqueous electrolyte battery | |
JPH1173958A (en) | Manufacture of positive electrode active material | |
JP2000268878A (en) | Lithium ion secondary battery | |
JP3111927B2 (en) | Non-aqueous electrolyte secondary battery and method of manufacturing the same | |
JPH09199172A (en) | Nonaqueous electrolyte secondary battery | |
JP2001093571A (en) | Non-aqueous electrolyte battery | |
JP4166295B2 (en) | Non-aqueous electrolyte battery | |
KR101602419B1 (en) | Cathode active material cathode comprising the same and lithium battery using the cathode | |
JPH10125324A (en) | Manufacture of nonaqueous electrolyte secondary battery and positive active material thereof | |
JP2001085009A (en) | Positive electrode active material and its manufacture | |
JP2002075444A (en) | Nonaqueous electrolyte cell | |
JPH11185822A (en) | Nonaqueous electrolyte secondary battery | |
JPH11214042A (en) | Nonaqueous electrolyte secondary battery | |
JPH09139212A (en) | Nonaqueous electrolyte secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20050301 |