JPH1118499A - Sensorless revolution control method for permanent magnet type synchronous motor and step-out detection method for the same - Google Patents

Sensorless revolution control method for permanent magnet type synchronous motor and step-out detection method for the same

Info

Publication number
JPH1118499A
JPH1118499A JP9167741A JP16774197A JPH1118499A JP H1118499 A JPH1118499 A JP H1118499A JP 9167741 A JP9167741 A JP 9167741A JP 16774197 A JP16774197 A JP 16774197A JP H1118499 A JPH1118499 A JP H1118499A
Authority
JP
Japan
Prior art keywords
axis
command
current
synchronous motor
est
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9167741A
Other languages
Japanese (ja)
Other versions
JP3797508B2 (en
Inventor
Hironobu Inazumi
祐敦 稲積
Hiroaki Sueyoshi
礼明 末吉
Ryuichi Oguro
龍一 小黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP16774197A priority Critical patent/JP3797508B2/en
Publication of JPH1118499A publication Critical patent/JPH1118499A/en
Application granted granted Critical
Publication of JP3797508B2 publication Critical patent/JP3797508B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a control method by which a magnetic axis can be appointed, even in a low revolution range and a revolution can be controlled satisfactorily. SOLUTION: A control method includes a δ-axis revolution controller 1, δ-axis and γ-axis current controllers 2 and 3, a vector control circuit 4 and an inverter circuit 5 and a motor revolution is calculated, in accordance with the currents of two phases of a synchronous motor 6. For that purpose, an α-βspace coordinate system, consisting of an α-axis which is the U-phase of the stator of the motor 6 and a β-axis which is an axis turned from the α-axis in a positive direction by an electrical angle of 90 degrees, is set. Coordinates d-q axes, consisting of the real magnetic axis of the motor 6 as a d-axis and a q-axis which leads the d-axis by 90 degrees and rotating at a motor revolution ωrm and coordinates γ-δ axes, consisting of the appointed magnetic axis of the motor as a γ-axis and a δ-axis which leads ahead the γ-axis by 90 degrees and rotating at a motor command revolution ωrm * are set in the α-β space coordinate system. By making a current command iγ* in the γ-axis direction positive, a torque by which the d-axis bound to the γ-axis is generated and a current command iδ* in the δ-axis direction is obtained, in accordance with a deviation between the revolution command and an estimated revolution ωrm *.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、永久磁石を回転子
とする永久磁石形同期電動機のセンサレス速度制御方法
及びその脱調検出方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sensorless speed control method for a permanent magnet synchronous motor using a permanent magnet as a rotor and a method for detecting a step-out of the motor.

【0002】[0002]

【従来の技術】永久磁石を回転子とするブラシレスDC
モータを同期電動機として運転する場合、回転子の絶対
値を得て、正確な電流制御を行う必要がある。回転子の
絶対値を得るためには、エンコーダやレゾルバなどの回
転し位置検出器を用いることが一般的であるが、配線や
構造の複雑さ、価格や使用環境などについて問題がある
ため、回転し位置検出器を用いないで回転子の磁極位置
を求めるセンサレスベクトル制御方法が提案されてい
る。
2. Description of the Related Art Brushless DC using a permanent magnet as a rotor
When the motor is operated as a synchronous motor, it is necessary to obtain the absolute value of the rotor and perform accurate current control. In order to obtain the absolute value of the rotor, it is common to use a rotating position detector such as an encoder or a resolver.However, since there are problems with wiring and structural complexity, price and operating environment, etc. There has been proposed a sensorless vector control method for obtaining a magnetic pole position of a rotor without using a position detector.

【0003】従来の同期電動機のセンサレスベクトル制
御としては、特開平8−308286号公報に記載され
た方法があるが、これは、回転子の磁極上に設定したγ
−δ軸座標系に変換されたステータ電流iγ、iδと、
前回推定された電流推定値iγestとiδestとの差とγ
−δ軸座標系に変換された電圧指令Vγ、Vδを入力と
し、γ−δ軸座標系における電流iγest、iδestと誘
起電圧εγest、εδe stおよび、回転子の速度ωrmest
を推定するものである。
As a conventional sensorless vector control of a synchronous motor, there is a method described in Japanese Patent Application Laid-Open No. 8-308286, which uses a γ set on a magnetic pole of a rotor.
A stator current iγ, iδ converted into a −δ-axis coordinate system;
The difference between the previously estimated current estimated values iγ est and iδ est and γ
Voltage command Vγ converted into -δ-axis coordinate system, as input V8, current i? Est in gamma-[delta]-axis coordinate system, i? Est and the induced voltage εγ est, εδ e st and the speed of the rotor omega Rmest
Is estimated.

【0004】また、前記の方法により、推定された、γ
軸誘起電圧推定値εγestと回転子の角速度推定値ω
rmestより、回転子の永久磁石上に設定したd−q座標
と前記γ−δ座標とのずれ角θを推定し、回転子位置を
修正する。
Further, γ estimated by the above method is
Estimated value of shaft induced voltage εγ est and estimated value of rotor angular velocity ω
From rmest , the deviation angle θ between the dq coordinate set on the permanent magnet of the rotor and the γ-δ coordinate is estimated, and the rotor position is corrected.

【0005】上記の方法で推定した角速度、磁軸位置情
報を用いてべクトル制御を行う。
[0005] Vector control is performed using the angular velocity and magnetic axis position information estimated by the above method.

【0006】[0006]

【発明が解決しようとする課題】ところが従来の技術で
は、同期電動機が低速速度で回転するのに従って、同期
電動機誘起電圧が低下するため、磁軸の推定精度が劣化
することにより、低速域でベクトル制御を実施すると、
磁軸を見失い、制御不能に陥る欠点があった。
However, in the prior art, as the synchronous motor rotates at a low speed, the synchronous motor induced voltage decreases, and the estimation accuracy of the magnetic axis deteriorates. When control is implemented,
There was a drawback that the magnetic axis was lost and control was lost.

【0007】さらに、上述した従来の方法では、γ−δ
軸とd−q軸のずれ角θeが大きくなって制御不能とな
った場合に、同期電動機が脱調し、同期電動機やこれに
連結する機械系の破損をまねく恐れがある。
Further, in the above-mentioned conventional method, γ-δ
When the deviation angle θ e between the shaft and the dq axis becomes large and the control becomes impossible, the synchronous motor loses synchronism, and there is a possibility that the synchronous motor and a mechanical system connected thereto may be damaged.

【0008】そこで本発明は、低速度域でも磁軸を指定
でき、良好に速度制御可能な制御方法を提供することを
第1の課題とする。
Accordingly, it is a first object of the present invention to provide a control method capable of designating a magnetic axis even in a low speed range and capable of excellent speed control.

【0009】また、本発明は、γ−δ軸に発生する誘起
電圧εγ、εδを精度よく推定し、この誘起電圧推定値
εγestとεδestを比較し脱調状態を検出することを第
2の課題とする。
Further, the present invention provides a method for accurately estimating induced voltages εγ and εδ generated on the γ-δ axis and comparing the induced voltage estimated values εγ est and εδ est to detect a step-out state. Subject.

【0010】[0010]

【課題を解決するための手段】上記第1の課題を解決す
るため、本発明は、速度指令と電動機速度との偏差信号
からδ軸電流指令を出力するδ軸速度コントローラ、δ
軸電流指令及びγ軸電流指令からδ軸電圧指令及びγ軸
電圧指令をそれぞれ演算するδ軸電流コントローラ及び
γ軸電流コントローラ、前記δ軸電圧指令及びγ軸電圧
指令に基づいて電圧指令絶対値及び電圧指令位相を出力
するベクトル制御回路、前記電圧指令絶対値及び電圧指
令位相に基づいて同期電動機に駆動電流を供給するイン
バータ回路を備え、前記電動機速度を前記同期電動機の
2相の電流に基づいて演算する永久磁石形同期電動機の
センサレス速度制御方法において、前記同期電動機の固
定子のU相をα軸、α軸から電気角90゜正回転方向に
β軸とするα−β空間座標系を設定し、前記α−β空間
座標系に、同期電動機の真の磁軸をd軸、d軸から90
゜進んだ軸をq軸とし、同期電動機回転速度ωrmで回転
する座標d−q軸と、同期電動機の指定磁軸をγ軸、γ
軸から90゜進んだ軸をδ軸とし、同期電動機回転指令
速度ωrm *で回転するγ−δ軸とを設定し、γ軸方向の
電流指令iγ*を正とすることにより、d軸をγ軸に拘
束するためのトルクを発生させ、δ軸方向電流指令iδ*
を、速度指令と、同期電動機誘起電圧外乱としたδ軸電
流方程式より作成した外乱オブザーバから導出した速度
推定値ωrm *との偏差をゲイン倍するフィードバック制
御より導出するものである。
In order to solve the first problem, the present invention provides a δ-axis speed controller for outputting a δ-axis current command from a deviation signal between a speed command and a motor speed;
A δ-axis current command and a γ-axis current controller that respectively calculate a δ-axis voltage command and a γ-axis voltage command from an axis current command and a γ-axis current command. A vector control circuit that outputs a voltage command phase, an inverter circuit that supplies a drive current to the synchronous motor based on the voltage command absolute value and the voltage command phase, and the motor speed is determined based on two-phase current of the synchronous motor. In the sensorless speed control method for a permanent magnet type synchronous motor to be operated, an α-β space coordinate system is set in which the U-phase of the stator of the synchronous motor is an α axis, and an electrical angle from the α axis is an electrical angle of 90 ° and a β axis is a positive rotation direction. In the α-β space coordinate system, the true magnetic axis of the synchronous motor
座標 The advanced axis is the q axis, the coordinate dq axis rotating at the synchronous motor rotation speed ω rm , and the designated magnetic axis of the synchronous motor are the γ axis and γ
An axis advanced by 90 ° from the axis is set as the δ axis, a γ-δ axis that rotates at the synchronous motor rotation command speed ω rm * is set, and the current command iγ * in the γ axis direction is made positive, so that the d axis is changed. Generates a torque for restricting to the γ-axis, and issues a δ-axis direction current command iδ *.
Is derived by feedback control that multiplies a gain between a speed command and a speed estimation value ω rm * derived from a disturbance observer created from a δ-axis current equation as a synchronous motor induced voltage disturbance by a gain.

【0011】また、前記第2の課題を解決するため、第
2の発明は、速度指令と電動機速度との偏差信号からδ
軸電流指令を出力するδ軸速度コントローラ、δ軸電流
指令及びγ軸電流指令からδ軸電圧指令及びγ軸電圧指
令をそれぞれ演算するδ軸電流コントローラ及びγ軸電
流コントローラ、前記δ軸電圧指令及びγ軸電圧指令に
基づいて電圧指令絶対値及び電圧指令位相を出力するベ
クトル制御回路、前記電圧指令絶対値及び電圧指令位相
に基づいて同期電動機に駆動電流を供給するインバータ
回路、前記電動機速度を前記同期電動機の2相の電流に
基づいて演算する速度演算手段を備え、回転子の真の磁
軸をd軸とするd−q座標軸に、回転子上に想定したγ
−δ軸が一致するように制御する永久磁石形同期電動機
の脱調検出方法において、時間k・Ts時(但し、k=
0,1,2,3,…,Tsはサンプリングタイム)に同
期電動機に供給される少なくとも2相分のステータ電流
を検出し、同ステータ電流をγ−δ座標系に変換するこ
とにより、γ軸電流iγ(k)及びδ軸電流iδ(k)
を導出し、これらのγ軸電流iγ(k)及びδ軸電流δ
(k)と前回の制御ループで推定されたγ軸電流iγ
est(k)及びδ軸電流iδest(k)との差iγ(k)
−iγest(k)及びiδ(k)−iδest(k)を補正
量、γ−δ軸座標系に変換された電圧指令値Vγ
*(k)とVδ*(k)を入力とし、同期電動機の回転子
が回転することにより発生するγ軸の誘起電圧εγ
(k)とδ軸の誘起電圧εδ(k)を、回転子が回転し
ていない時の電流応答に対する外乱として状態推定器を
構成し、時間(k+1)・Ts秒のγ−δ軸座標系にお
ける電流iγest(k+1)及びiδest(k+1)並び
に誘起電圧εγest(k+1)及びεδest(k+1)を
推定し、この推定された誘起電圧εγest(k+1)及
びεδest(k+1)から脱調を検出するものである。
In order to solve the second problem, a second invention provides a method for calculating δ from a deviation signal between a speed command and a motor speed.
Δ-axis speed controller that outputs a shaft current command, a δ-axis current controller and a γ-axis current controller that respectively calculate a δ-axis voltage command and a γ-axis voltage command from a δ-axis current command and a γ-axis current command, a vector control circuit that outputs a voltage command absolute value and a voltage command phase based on a γ-axis voltage command; an inverter circuit that supplies a drive current to a synchronous motor based on the voltage command absolute value and the voltage command phase; A speed calculating means for calculating based on two-phase currents of the synchronous motor; and dq coordinate axes having a true magnetic axis of the rotor as a d axis, and γ assumed on the rotor.
In the step-out detection method of the permanent magnet type synchronous motor that controls so that the -δ axis coincides, the time k · T s (where k =
0, 1, 2, 3,..., And T s are sampling times), a stator current for at least two phases supplied to the synchronous motor is detected, and the stator current is converted into a γ-δ coordinate system to obtain γ. Axis current iγ (k) and δ axis current iδ (k)
Γ-axis current iγ (k) and δ-axis current δ
(K) and the γ-axis current iγ estimated in the previous control loop
est (k) and difference iγ (k) between δ-axis current iδ est (k)
−iγ est (k) and iδ (k) −iδ est (k) are correction amounts, and the voltage command value Vγ converted to the γ-δ axis coordinate system
* (K) and Vδ * (k) as inputs, and the induced voltage εγ of the γ axis generated by the rotation of the rotor of the synchronous motor
(K) and [delta] induced voltage .epsilon..DELTA (k) of the shaft, constitutes a state estimator as disturbance to current response when the rotor is not rotating, the time (k + 1) · T s seconds gamma-[delta]-axis coordinates estimating the current iγ est (k + 1) and iδ est (k + 1) and induced voltage εγ est (k + 1) and εδ est (k + 1) in the system, from the estimated induced voltage εγ est (k + 1) and εδ est (k + 1) Step out is detected.

【0012】[0012]

【発明の実施の形態】センサレス速度制御方法において
は、任意の指定軸γ軸に正方向の直流電流iγが流れた
とき、真の磁軸d軸とγ軸より負荷角θeだけ遅れた位
相との間に位相差が存在するとすると、磁軸にiγsi
nθeに比例したγ軸方向へ向かうトルクが発生する。
このため真の磁軸は負荷トルクが0であれば、常に指定
磁軸γ軸に向かうようなトルクを受けるが、通常制動巻
線を持たない同期機は、ダンピングファクターがほぼ0
のため、d軸はγ軸周りで単振動を起こす。請求項1に
係る発明では、速度推定値フィードバックより導出した
電流指令値をδ軸電流とすることによってd軸の過渡振
動を抑制している。一方、γ軸電流方程式より導出した
外乱推定値εγestは、同期電動機の誘起電圧をεとす
るとεsinθeを推定する。このため、負荷角が小さ
いときは、εγestは負荷角に比例した値となる。本発
明ではこの外乱推定値εγestを比例積分した補正電流
指令iδθ*をδ電流指令に加算するため、εγが0す
なわちγ軸とd軸が一致するまで補正電流が流れること
になる。このため、結果としてγ軸と磁軸d軸が一致
し、γ軸は指令速度で回転しているため、真磁軸d軸も
指令速度で回転することになる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In a sensorless speed control method, when a positive direct current iγ flows through an arbitrary designated axis γ-axis, the phase is delayed by a load angle θ e from the true magnetic axis d-axis and the γ-axis. Assuming that there is a phase difference between
A torque in the γ-axis direction proportional to nθ e is generated.
For this reason, when the load torque is 0, the true magnetic axis always receives a torque directed toward the designated magnetic axis γ-axis. However, a synchronous machine having no normal braking winding has a damping factor of almost 0.
Therefore, the d axis generates a simple vibration around the γ axis. In the invention according to the first aspect, transient vibration of the d-axis is suppressed by setting the current command value derived from the speed estimation value feedback as the δ-axis current. On the other hand, the disturbance estimation value εγ est derived from the γ-axis current equation estimates ε sin θ e when the induced voltage of the synchronous motor is ε. For this reason, when the load angle is small, εγ est is a value proportional to the load angle. In the present invention, since the correction current command iδθ * obtained by proportionally integrating the disturbance estimation value εγ est is added to the δ current command, the correction current flows until εγ is 0, that is, the γ axis coincides with the d axis. Therefore, as a result, the γ axis coincides with the magnetic axis d axis, and since the γ axis rotates at the command speed, the true magnetic axis d axis also rotates at the command speed.

【0013】請求項2に係る発明においては、時間k・
s時(但し、k=0,1,2,3,…,Tsはサンプリ
ングタイム)に永久磁石形同期電動機に供給される少な
くとも2相分のステータ電流を検出し、回転子上に設定
したγ−δ座標系に変換することにより、γ軸電流iγ
(k)及びδ軸電流iδ(k)を導出し、前回導出した
γ軸電流推定値iγest(k)及びδ軸電流推定値iδ
est(k)と、電圧Vγ(k)、Vδ(k)を用い、永
久磁石形同期電動機のγ−δ軸座標系における状態方程
In the invention according to claim 2, the time k ·
T s at (where, k = 0, 1, 2, 3, ..., T s is the sampling time) to detect at least two phases of the stator current supplied to the permanent magnet synchronous motor, the setting on the rotor By converting to the γ-δ coordinate system, the γ-axis current iγ
(K) and δ-axis current iδ (k) are derived, and the previously derived γ-axis current estimated value iγ est (k) and δ-axis current estimated value iδ
Using est (k) and voltages Vγ (k), Vδ (k), a state equation in the γ-δ axis coordinate system of the permanent magnet type synchronous motor

【数1】 但し、εγ=−sinθe(ωrm/Lq)ψmag εδ=cosθe(ωm/Lq)ψmags:ステータ側抵抗、Lq:q軸インダクタンス、
d:d軸インダクタンス、θe:γ−δ軸とd−q軸と
のずれ角、ωrm:回転子角速度、ψmag:永久磁石が発
生する磁束より、εγとεδの時間変化が十分小さいと
して構成した。
(Equation 1) However, εγ = -sinθ e (ω rm / Lq) ψ mag εδ = cosθ e (ω m / Lq) ψ mag R s: stator resistance, L q: q axis inductance,
L d : d-axis inductance, θ e : shift angle between γ-δ axis and dq axis, ω rm : rotor angular velocity, ψ mag : magnetic flux generated by permanent magnet, εγ and εδ have sufficient time change. Configured as small.

【0014】状態推定器であるA state estimator

【数2】 但し、「^」は推定値を表し、添字の「est」と同じ意
味である。
(Equation 2) However, “^” represents an estimated value, and has the same meaning as the subscript “est”.

【0015】を離散値系に展開したHas been expanded to a discrete value system

【数3】 によって、時間(k+1)Ts秒時の電流推定値iγest
(k+1)、iδest(k+1)、誘起電圧推定値εγ
est(k+1)、εδest(k+1)を求め、γ−δ軸と
d−q軸のずれ角θeの許容範囲を決める係数Kθを用
いて、
(Equation 3) The current estimated value iγ est at time (k + 1) T s seconds
(K + 1), iδ est (k + 1), estimated value of induced voltage εγ
est (k + 1), determine the εδ est (k + 1), using the coefficient Kθ for determining the allowable range of the deviation angle theta e of gamma-[delta] axis and d-q axis,

【数4】 を満たした時を脱調状態とする。(Equation 4) When the condition is satisfied, the step-out state is set.

【0016】[0016]

【実施例】以下、本発明の実施例を説明する。Embodiments of the present invention will be described below.

【0017】図1は、本発明の磁極位置、速度推定方法
の一実施例が適用された同期電動機の制御システムを示
すブロック図、図2はその実施例における処理を示すフ
ローチャートである。
FIG. 1 is a block diagram showing a control system of a synchronous motor to which an embodiment of a magnetic pole position / speed estimation method according to the present invention is applied, and FIG. 2 is a flowchart showing processing in the embodiment.

【0018】図1の制御システムブロック図について説
明する。図中、1は速度コントローラ、2はδ軸電流コ
ントローラ、3はγ軸電流コントローラ、4はべクトル
制御回路、5はインバータ回路、6は同期電動機、7は
相変換器、8はγ−δ軸電流・誘起電圧推定器、9は角
速度導出器、10はずれ角導出器、11はγ−δ軸位置
補正器、12はγ軸・δ軸電流補正器、13はδ軸電流
指令補正器である。
The control system block diagram of FIG. 1 will be described. In the figure, 1 is a speed controller, 2 is a δ-axis current controller, 3 is a γ-axis current controller, 4 is a vector control circuit, 5 is an inverter circuit, 6 is a synchronous motor, 7 is a phase converter, and 8 is γ-δ. An axis current / induced voltage estimator, 9 is an angular velocity deriver, 10 is an offset angle deriver, 11 is a γ-δ axis position corrector, 12 is a γ-axis / δ-axis current corrector, and 13 is a δ-axis current command corrector. is there.

【0019】角速度指令ωrm *と角速度推定値ωrmest
速度コントローラ1に入力され、速度コントローラは、
δ軸電流指令iδ*を出力する。また、εγestがδ軸電
流指令補正器13に入力され、δ軸補正電流指令iδθ
*を出力する。δ軸電流コントローラ2はiδ*とiδθ
*とδ軸電流推定値iδest2とを入力し、δ軸電圧指令
Vδ*を出力する。一方、γ軸電流指令iγ*とγ軸電流
推定値iγest2が、制御回路4に入力され、電圧値絶対
値(Vδ2+Vγ21/2とγ軸からの電圧出力方向の位
相tan-1(Vδ/Vγ)がインバータ回路5に入力さ
れ点弧が実施される。
The angular velocity command ω rm * and the estimated angular velocity ω rmest are input to the speed controller 1, and the speed controller
δ-axis current command iδ * is output. Also, εγ est is input to the δ-axis current command corrector 13 and the δ-axis corrected current command iδθ
Output * . The δ-axis current controller 2 has iδ * and iδθ
* And the estimated δ-axis current value iδ est2 , and outputs a δ-axis voltage command Vδ * . On the other hand, the γ-axis current command * and the γ-axis current estimated value iγ est2 are input to the control circuit 4, and the absolute value of the voltage value (Vδ 2 + Vγ 2 ) 1/2 and the phase tan − in the voltage output direction from the γ-axis. 1 (Vδ / Vγ) is input to the inverter circuit 5 and firing is performed.

【0020】一方、γ−δ軸電流・誘起電圧推定器8
は、同期電動機6のステータ電流iuとivを相変換器7
を介して得られるγ軸電流iγ、δ軸電流iδと、γ−
δ軸の位置と、電圧指令Vδ*、Vγ*を入力し、(1)
式の演算を実施し、γ−δ軸電流推定値iγest、iδ
estと、γ−δ軸誘起電圧εδestを出力する。εδest
が角速度導出器9に入力され、(2)、(3)式を実行
することにより、角速度推定値ωrmestが導出される。
また、速度指令値ωrm *がγ−δ軸位置補正器11に入
力され、(4)式で、γ−δ軸の位置補正が実行され
る。
On the other hand, the γ-δ axis current / induced voltage estimator 8
Is the stator current i u and i v a phase converter 7 of the synchronous motor 6
Γ-axis current iγ and δ-axis current iδ obtained through
Input the position of the δ axis and the voltage commands Vδ * , Vγ * , and (1)
The calculation of the equation is performed, and the γ-δ axis current estimated values iγ est , iδ
est and the γ-δ axis induced voltage εδ est are output. εδ est
Is input to the angular velocity deriving unit 9 and the equations (2) and (3) are executed to derive the estimated angular velocity ω rmest .
Further, the speed command value ω rm * is input to the γ-δ axis position corrector 11, and the position correction of the γ-δ axis is executed by the equation (4).

【0021】[0021]

【数5】 (Equation 5)

【数6】 (Equation 6)

【数7】 (Equation 7)

【数8】 次に、制動動作を、図2のフローチャートにより説明す
る。k・Ts秒の時点で同期機に供給される少なくとも
2相分の電流、例えばiu(k)、iv(k)を検出し
(ステップS1)、前回ループで補正されたγ−δ軸座
標系に変換し、iγ(k)、iδ(k)を導出する(ス
テップS2)。γ−δ座標系に変換された電圧指令Vγ
*(k)、Vδ*(k)を入力し(ステップS3)、式
(5)により、(k+1)・Ts秒時の推定値iγ
est(k+1)、iδest(k+1)、εγe st(k+
1)、εδest(k+1)を導出する(ステップS
4)。推定されたεδest(k+1)の符号より、角速
度の符号判断を行い(ステップS5)、この符号と、ε
γest(k+1)とεδest(k+1)の2乗和よりω
rmest(k+1)を導出する(ステップS6)。(8)
式によってγ軸の位置を補正する。(ステップS7)。
(Equation 8) Next, the braking operation will be described with reference to the flowchart of FIG. At least k-phase currents supplied to the synchronous machine at k · T s seconds, for example, i u (k) and i v (k) are detected (step S1), and γ-δ corrected in the previous loop is detected. It is converted to an axial coordinate system to derive iγ (k) and iδ (k) (step S2). Voltage command Vγ converted to γ-δ coordinate system
* (K) and Vδ * (k) are input (step S3), and the estimated value iγ at (k + 1) · T s seconds is obtained by equation (5).
est (k + 1), iδ est (k + 1), εγ e st (k +
1) derive εδ est (k + 1) (step S
4). The sign of the angular velocity is determined from the estimated sign of εδ est (k + 1) (step S5), and this sign and ε
From the sum of squares of γ est (k + 1) and εδ est (k + 1), ω
rmest (k + 1) is derived (step S6). (8)
The position of the γ-axis is corrected by the equation. (Step S7).

【0022】図3は、本発明の脱調検出方法の一実施例
が適用された同期電動機の制御システムを示すブロック
図、図4は脱調検出のデジタル制御動作を示すフローチ
ャートである。
FIG. 3 is a block diagram showing a control system for a synchronous motor to which one embodiment of the step-out detection method of the present invention is applied, and FIG. 4 is a flowchart showing a digital control operation for step-out detection.

【0023】図3の制御システムブロック図について説
明する。図中14は脱調検出器、15は保護動作検出回
路である。図1に示す実施例と同じ構成については同じ
符号を用いて説明を省略する。
The control system block diagram of FIG. 3 will be described. In the figure, 14 is a step-out detector, and 15 is a protection operation detection circuit. The same components as those of the embodiment shown in FIG.

【0024】角速度指令ωrm *と角速度推定値ω
rmestが、速度コントローラ1に入力され、速度コント
ローラ1は、δ軸電流指令iδ*を出力する。δ軸電流
コントローラ2はiδ*とδ軸電流推定値iδest2とを
入力し、δ軸電圧指令Vδ*を出力する。一方、γ軸電
流指令iγ*とγ軸電流推定値iγest2が、γ軸電流コ
ントローラ3に入力され、γ軸電流コントローラ3はγ
軸電圧指令Vγ*を出力する。電圧指令Vδ*とVγ*
γ−δ軸位置補正器11から出力されるγ−δ軸位置が
ベクトル制御回路4に入力され、電圧値絶対値(Vδ2
+Vγ21/2とγ軸からの電圧出力方向の位相tan-1
(Vδ/Vγ)がインバータ回路5に入力され点弧が実
施される。
The angular velocity command ω rm * and the estimated angular velocity ω
rmest is input to the speed controller 1, and the speed controller 1 outputs a δ-axis current command iδ * . δ axis current controller 2 inputs the i? * and the δ-axis current estimated value i? est 2, and outputs a δ-axis voltage command V8 *. On the other hand, the γ-axis current command iγ * and the γ-axis current estimated value iγ est 2 are input to the γ-axis current controller 3, and the γ-axis current controller 3
The shaft voltage command Vγ * is output. The voltage commands Vδ * , Vγ *, and the γ-δ-axis position output from the γ-δ-axis position corrector 11 are input to the vector control circuit 4 and the voltage value absolute value (Vδ 2
+ Vγ 2 ) 1/2 and phase tan −1 in the voltage output direction from the γ axis
(Vδ / Vγ) is input to the inverter circuit 5 and firing is performed.

【0025】一方、γ−δ軸電流・誘起電圧推定器8
は、同期電動機6のステータ電流iuとivを相変換器7
を介して得られるγ軸電流iγ、δ軸電流iδと、γ−
δ軸の位置と、電圧指令Vδ*、Vγ*を入力し、(3)
式の演算を実施し、γ−δ軸電流推定値iγest、iδ
estと、γ−δ軸誘起電圧εγestとεδestを出力す
る。このεγestとεδestが脱調検出器14に入力さ
れ、(4)式を実行することにより、脱調を検出する。
脱調を検出したとき、保護動作検出回路15に異常検出
を報告する。
On the other hand, the γ-δ axis current / induced voltage estimator 8
Is the stator current i u and i v a phase converter 7 of the synchronous motor 6
Γ-axis current iγ and δ-axis current iδ obtained through
Input the position of the δ axis and the voltage commands Vδ * , Vγ * , and (3)
The calculation of the equation is performed, and the γ-δ axis current estimated values iγ est , iδ
est and the γ-δ axis induced voltages εγ est and εδ est are output. These εγ est and εδ est are input to the out-of-step detector 14, and the out-of-step is detected by executing the equation (4).
When the step-out is detected, the protection operation detection circuit 15 is notified of the abnormality detection.

【0026】次に、制御動作を図4のフローチャートに
より説明する。k・Ts秒の時点で同期機に供給される
少なくとも2相分の電流、例えばiu(k)、iv(k)
を検出し(ステップS11)、前回ループで補正された
γ−δ軸座標系に変換し、iγ(k)、iδ(k)を導
出する(ステップS12)。γ−δ座標系に変換された
電圧指令Vγ*(k)、Vδ*(k)を入力し(ステップ
S13)、式(7)により、(k+1)・Ts秒時の推
定値iγest(k+1)、iδest(k+1)、εγest
(k+1)、εδest(k+1)を導出する(ステップ
S14)。推定されたεγest(k+1)とεδest(k
+1)が式(8)を満たすかどうかを判定し(ステップ
S15)、満たされれば脱調検出を保護動作検出回路に
報告する(ステップS16)。
Next, the control operation will be described with reference to the flowchart of FIG. At least two phases of current supplied to the synchronous machine at k · T s seconds, for example, i u (k), iv (k)
Is detected (step S11), converted to the γ-δ axis coordinate system corrected in the previous loop, and iγ (k) and iδ (k) are derived (step S12). The voltage commands Vγ * (k) and Vδ * (k) converted into the γ-δ coordinate system are input (step S13), and the estimated value iγ est (k + 1) · T s seconds is obtained by equation (7). k + 1), iδ est ( k + 1), εγ est
(K + 1) and εδ est (k + 1) are derived (step S14). The estimated εγ est (k + 1) and εδ est (k
+1) satisfies Equation (8) (step S15). If so, step-out detection is reported to the protection operation detection circuit (step S16).

【0027】[0027]

【発明の効果】以上述べたように、本発明のセンサレス
速度制御方法によれば、γ軸と磁軸d軸が一致し、γ軸
は指令速度で回転しているため、真磁軸d軸も指令速度
で回転することになるため、低速度域でも良好な速度制
御が可能である。
As described above, according to the sensorless speed control method of the present invention, since the γ axis coincides with the magnetic axis d axis and the γ axis rotates at the command speed, the true magnetic axis d axis Also rotates at the command speed, so that good speed control is possible even in a low speed range.

【0028】また、本発明の脱調検出方法によれば、回
転子上に、推定速度ωrmestで回転するように設定した
γ−δ軸に発生するθeを関数とするγ軸誘起電圧、δ
軸誘起電圧を推定する状態推定器を構成しているため、
逐次2つの推定値を比較することにより同期電動機の脱
調を検出し、同期電動機やこれに連結する機械系の破損
を未然に防ぐことができる。
According to the step-out detection method of the present invention, the γ-axis induced voltage, δ, which is a function of θe generated on the γ-δ axis set on the rotor to rotate at the estimated speed ω rmest ,
Because it constitutes a state estimator that estimates the shaft induced voltage,
By sequentially comparing the two estimated values, a step-out of the synchronous motor can be detected, and damage to the synchronous motor and a mechanical system connected thereto can be prevented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施例の同期電動機の制御システ
ムを表すブロック図である。
FIG. 1 is a block diagram illustrating a control system for a synchronous motor according to an embodiment of the present invention.

【図2】 離散値系に置ける本発明のフローチャートて
ある。
FIG. 2 is a flowchart of the present invention in a discrete value system.

【図3】 本発明の一実施例の同期電動機の制御システ
ムを表すブロック線図である。
FIG. 3 is a block diagram showing a control system for a synchronous motor according to one embodiment of the present invention.

【図4】 離散値系における本発明のフローチャートで
ある。
FIG. 4 is a flowchart of the present invention in a discrete value system.

【符号の説明】[Explanation of symbols]

1 速度コントローラ、2 δ軸電流コントローラ、3
γ軸電流コントローラ、4 べクトル制御回路、5
インバータ回路、6 同期電動機、7 相変換器、8
γ−δ軸電流・誘起電圧推定器、9 角速度導出器、1
0 ずれ角導出器、11 γ−δ軸位置補正器、12
γ軸・δ軸電流補正器、13 δ軸電流指令補正器、1
4 脱調検出器、15 保護動作検出回路
1 speed controller, 2 δ-axis current controller, 3
γ-axis current controller, 4 vector control circuit, 5
Inverter circuit, 6 synchronous motor, 7-phase converter, 8
γ-δ axis current and induced voltage estimator, 9 angular velocity deriving device, 1
0 shift angle deriving device, 11 γ-δ axis position corrector, 12
γ-axis / δ-axis current corrector, 13 δ-axis current command corrector, 1
4 step-out detector, 15 protection operation detection circuit

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 速度指令と電動機速度との偏差信号から
δ軸電流指令を出力するδ軸速度コントローラ、δ軸電
流指令及びγ軸電流指令からδ軸電圧指令及びγ軸電圧
指令をそれぞれ演算するδ軸電流コントローラ及びγ軸
電流コントローラ、前記δ軸電圧指令及びγ軸電圧指令
に基づいて電圧指令絶対値及び電圧指令位相を出力する
ベクトル制御回路、前記電圧指令絶対値及び電圧指令位
相に基づいて同期電動機に駆動電流を供給するインバー
タ回路を備え、前記電動機速度を前記同期電動機の2相
の電流に基づいて演算する永久磁石形同期電動機のセン
サレス速度制御方法において、 前記同期電動機の固定子のU相をα軸、α軸から電気角
90゜正回転方向にβ軸とするα−β空間座標系を設定
し、 前記α−β空間座標系に、同期電動機の真の磁軸をd
軸、d軸から90゜進んだ軸をq軸とし、同期電動機回
転速度ωrmで回転する座標d−q軸と、同期電動機の指
定磁軸をγ軸、γ軸から90゜進んだ軸をδ軸とし、同
期電動機回転指令速度ωrm *で回転するγ−δ軸とを設
定し、 γ軸方向の電流指令iγ*を正とすることにより、d軸
をγ軸に拘束するためのトルクを発生させ、 δ軸方向電流指令iδ*を、速度指令と、同期電動機誘起
電圧外乱としたδ軸電流方程式より作成した外乱オブザ
ーバから導出した速度推定値ωrm *との偏差をゲイン倍
するフィードバック制御より導出する永久磁石型同期電
動機のセンサレス速度制御方法。
1. A δ-axis speed controller that outputs a δ-axis current command from a deviation signal between a speed command and a motor speed, and calculates a δ-axis voltage command and a γ-axis voltage command from a δ-axis current command and a γ-axis current command, respectively. δ-axis current controller and γ-axis current controller, a vector control circuit that outputs a voltage command absolute value and a voltage command phase based on the δ-axis voltage command and the γ-axis voltage command, based on the voltage command absolute value and the voltage command phase A sensorless speed control method for a permanent magnet type synchronous motor, comprising an inverter circuit for supplying a drive current to the synchronous motor, and calculating the motor speed based on two-phase currents of the synchronous motor. Set the α-β space coordinate system in which the phase is the α axis and the electric axis is 90 ° from the α axis in the positive rotation direction, and set the true magnetic axis of the synchronous motor in the α-β space coordinate system. d
Axis, an axis advanced by 90 ° from the d axis is defined as a q axis, a coordinate dq axis rotating at a synchronous motor rotation speed ω rm , and a designated magnetic axis of the synchronous motor is a γ axis, and an axis advanced by 90 ° from the γ axis is defined as Set the δ-axis, the γ-δ axis that rotates at the synchronous motor rotation command speed ω rm * , and set the current command iγ * in the γ-axis direction to be positive, so that the torque for restraining the d-axis to the γ-axis The gain is multiplied by the difference between the δ-axis current command iδ * , the speed command, and the speed estimation value ω rm * derived from the disturbance observer created from the δ-axis current equation as the synchronous motor induced voltage disturbance. A sensorless speed control method of a permanent magnet type synchronous motor derived from control.
【請求項2】 速度指令と電動機速度との偏差信号から
δ軸電流指令を出力するδ軸速度コントローラ、δ軸電
流指令及びγ軸電流指令からδ軸電圧指令及びγ軸電圧
指令をそれぞれ演算するδ軸電流コントローラ及びγ軸
電流コントローラ、前記δ軸電圧指令及びγ軸電圧指令
に基づいて電圧指令絶対値及び電圧指令位相を出力する
ベクトル制御回路、前記電圧指令絶対値及び電圧指令位
相に基づいて同期電動機に駆動電流を供給するインバー
タ回路、前記電動機速度を前記同期電動機の2相の電流
に基づいて演算する速度演算手段を備え、回転子の真の
磁軸をd軸とするd−q座標軸に、回転子上に想定した
γ−δ軸が一致するように制御する永久磁石形同期電動
機の脱調検出方法において、 時間k・Ts時(但し、k=0,1,2,3,…,Ts
はサンプリングタイム)に同期電動機に供給される少な
くとも2相分のステータ電流を検出し、同ステータ電流
をγ−δ座標系に変換することにより、γ軸電流iγ
(k)及びδ軸電流iδ(k)を導出し、これらのγ軸
電流iγ(k)及びδ軸電流δ(k)と前回の制御ルー
プで推定されたγ軸電流iγest(k)及びδ軸電流i
δest(k)との差iγ(k)−iγest(k)及びiδ
(k)−iδest(k)を補正量、γ−δ軸座標系に変
換された電圧指令値Vγ*(k)とVδ*(k)を入力と
し、同期電動機の回転子が回転することにより発生する
γ軸の誘起電圧εγ(k)とδ軸の誘起電圧εδ(k)
を、回転子が回転していない時の電流応答に対する外乱
として状態推定器を構成し、時間(k+1)・Ts秒の
γ−δ軸座標系における電流iγest(k+1)及びi
δest(k+1)並びに誘起電圧εγest(k+1)及び
εδest(k+1)を推定し、この推定された誘起電圧
εγest(k+1)及びεδest(k+1)から脱調を検
出することを特徴とする永久磁石形同期電動機の脱調検
出方法。
2. A δ-axis speed controller that outputs a δ-axis current command from a deviation signal between a speed command and a motor speed, and calculates a δ-axis voltage command and a γ-axis voltage command from the δ-axis current command and the γ-axis current command, respectively. δ-axis current controller and γ-axis current controller, a vector control circuit that outputs a voltage command absolute value and a voltage command phase based on the δ-axis voltage command and the γ-axis voltage command, based on the voltage command absolute value and the voltage command phase An inverter circuit for supplying a drive current to the synchronous motor; speed calculating means for calculating the motor speed based on a two-phase current of the synchronous motor; dq coordinate axes having a true magnetic axis of the rotor as a d axis In a step-out detection method for a permanent magnet type synchronous motor that controls the γ-δ axes assumed on the rotor to coincide with each other, a time k · Ts (where k = 0, 1, 2, 3,...) , T s
At the sampling time), a stator current for at least two phases supplied to the synchronous motor is detected, and the stator current is converted into a γ-δ coordinate system, thereby obtaining a γ-axis current iγ
(K) and the δ-axis current iδ (k) are derived, and these γ-axis currents iγ (k) and δ-axis current δ (k) and γ-axis currents iγ est (k) and δ-axis current i
Difference from δ est (k) iγ (k) −iγ est (k) and i δ
(K) −iδ est (k) is a correction amount, and the voltage command values Vγ * (k) and Vδ * (k) converted into the γ-δ axis coordinate system are input and the rotor of the synchronous motor is rotated. Induced voltage εγ (k) and δ induced voltage εδ (k)
Is constructed as a disturbance to the current response when the rotor is not rotating, and the currents iγ est (k + 1) and i in the γ-δ axis coordinate system in time (k + 1) · T s seconds
est (k + 1) and induced voltages εγ est (k + 1) and εδ est (k + 1) are estimated, and a step-out is detected from the estimated induced voltages εγ est (k + 1) and εδ est (k + 1). For detecting out-of-step of a permanent magnet synchronous motor.
JP16774197A 1997-06-24 1997-06-24 Sensorless speed control method of permanent magnet type synchronous motor and step-out detection method thereof Expired - Fee Related JP3797508B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16774197A JP3797508B2 (en) 1997-06-24 1997-06-24 Sensorless speed control method of permanent magnet type synchronous motor and step-out detection method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16774197A JP3797508B2 (en) 1997-06-24 1997-06-24 Sensorless speed control method of permanent magnet type synchronous motor and step-out detection method thereof

Publications (2)

Publication Number Publication Date
JPH1118499A true JPH1118499A (en) 1999-01-22
JP3797508B2 JP3797508B2 (en) 2006-07-19

Family

ID=15855263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16774197A Expired - Fee Related JP3797508B2 (en) 1997-06-24 1997-06-24 Sensorless speed control method of permanent magnet type synchronous motor and step-out detection method thereof

Country Status (1)

Country Link
JP (1) JP3797508B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001015311A1 (en) * 1999-08-20 2001-03-01 Mitsubishi Denki Kabushiki Kaisha Synchronous motor control device and method
WO2003005556A1 (en) * 2001-07-04 2003-01-16 Kabushiki Kaisha Yaskawa Denki Method and device for controlling currents of synchronous motor
EP1501185A2 (en) * 2003-07-15 2005-01-26 Sauter Feinmechanik GmbH Method and arrangement for positionning a rotating device
JP2007282496A (en) * 2007-05-16 2007-10-25 Hitachi Ltd Synchronous motor control device and apparatus using it
JP2008118740A (en) * 2006-11-01 2008-05-22 Yaskawa Electric Corp Permanent magnet field synchronous electric motor controller
US7679308B2 (en) 2006-06-28 2010-03-16 Sanyo Electric Co., Ltd. Motor control device
US7808203B2 (en) 2006-04-07 2010-10-05 Sanyo Electric Co., Ltd. Motor control device
JP2011131725A (en) * 2009-12-24 2011-07-07 Toyota Motor Corp Electric power steering device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5445892B2 (en) * 2007-04-26 2014-03-19 富士電機株式会社 Control device for permanent magnet type synchronous motor
US10075107B2 (en) * 2015-11-03 2018-09-11 Nxp Usa, Inc. Method and apparatus for motor lock or stall detection

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2357201B (en) * 1999-08-20 2003-07-09 Mitsubishi Electric Corp Method and apparatus for controlling a synchronous motor
GB2357201A (en) * 1999-08-20 2001-06-13 Mitsubishi Electric Corp Synchronous motor control device and method
US6344725B2 (en) * 1999-08-20 2002-02-05 Mitsubishi Denki Kabushiki Kaisha Method and apparatus for controlling a synchronous motor
WO2001015311A1 (en) * 1999-08-20 2001-03-01 Mitsubishi Denki Kabushiki Kaisha Synchronous motor control device and method
US6850030B2 (en) 2001-07-04 2005-02-01 Kabushiki Kaisha Yaskawa Denki Method and device for controlling currents of synchronous motor
WO2003005556A1 (en) * 2001-07-04 2003-01-16 Kabushiki Kaisha Yaskawa Denki Method and device for controlling currents of synchronous motor
EP1501185A2 (en) * 2003-07-15 2005-01-26 Sauter Feinmechanik GmbH Method and arrangement for positionning a rotating device
EP1501185A3 (en) * 2003-07-15 2006-07-12 Sauter Feinmechanik GmbH Method and arrangement for positionning a rotating device
EP2037568A1 (en) * 2003-07-15 2009-03-18 Sauter Feinmechanik GmbH Method for operating a motorised positioning device and corresponding positioning device
US7808203B2 (en) 2006-04-07 2010-10-05 Sanyo Electric Co., Ltd. Motor control device
US7893639B2 (en) 2006-04-07 2011-02-22 Sanyo Electric Co., Ltd. Motor control device
US7679308B2 (en) 2006-06-28 2010-03-16 Sanyo Electric Co., Ltd. Motor control device
JP2008118740A (en) * 2006-11-01 2008-05-22 Yaskawa Electric Corp Permanent magnet field synchronous electric motor controller
JP2007282496A (en) * 2007-05-16 2007-10-25 Hitachi Ltd Synchronous motor control device and apparatus using it
JP4512611B2 (en) * 2007-05-16 2010-07-28 株式会社日立製作所 Synchronous motor control device and equipment using the same
JP2011131725A (en) * 2009-12-24 2011-07-07 Toyota Motor Corp Electric power steering device

Also Published As

Publication number Publication date
JP3797508B2 (en) 2006-07-19

Similar Documents

Publication Publication Date Title
KR100455630B1 (en) Sensorless control method and apparatus of permanent magnet synchronous motor
JP5130031B2 (en) Position sensorless control device for permanent magnet motor
JP4672236B2 (en) Control device for synchronous motor
JP4198162B2 (en) Motor control device
JP4674525B2 (en) Magnetic pole position estimation method and motor control apparatus
JP3411878B2 (en) Method for estimating rotor position of synchronous motor, control method without position sensor, and control device
EP2424105B1 (en) Vector control apparatus and motor control system
KR101046802B1 (en) Control device of AC rotor and electric constant measurement method of AC rotor using this controller
KR101114739B1 (en) Stepping motor control apparatus
JP2010051078A (en) Motor control device
JP2002325481A (en) Motor controller
JP3253004B2 (en) Method of estimating speed of permanent magnet type synchronous motor, method of estimating rotor misalignment angle, and method of correcting rotor position
JP3832443B2 (en) AC motor control device
JP3707528B2 (en) AC motor control method and control apparatus therefor
CN110769981A (en) Electric tool
JP3797508B2 (en) Sensorless speed control method of permanent magnet type synchronous motor and step-out detection method thereof
JP2008220169A (en) Motor controller
JP2010035352A (en) Device for estimating rotor position of synchronous electric motor
JP3707659B2 (en) Constant identification method for synchronous motor
JP2006230200A (en) Control unit of ac motor
JP4273775B2 (en) Magnetic pole position estimation method and control device for permanent magnet type synchronous motor
JP4449419B2 (en) Control device for synchronous motor
JP6032047B2 (en) Motor control device
JP3674638B2 (en) Induction motor speed estimation method and induction motor drive device
JP4061446B2 (en) Resistance value identification method and control device for synchronous motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060413

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees