JPH1118293A - Battery charger - Google Patents

Battery charger

Info

Publication number
JPH1118293A
JPH1118293A JP9169064A JP16906497A JPH1118293A JP H1118293 A JPH1118293 A JP H1118293A JP 9169064 A JP9169064 A JP 9169064A JP 16906497 A JP16906497 A JP 16906497A JP H1118293 A JPH1118293 A JP H1118293A
Authority
JP
Japan
Prior art keywords
battery
resistor
voltage
capacitor battery
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9169064A
Other languages
Japanese (ja)
Inventor
Naoki Watabe
直樹 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP9169064A priority Critical patent/JPH1118293A/en
Publication of JPH1118293A publication Critical patent/JPH1118293A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0069Charging or discharging for charge maintenance, battery initiation or rejuvenation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent charging efficiency from degrading due to a resistor for excessive current prevention when a capacitor battery is charged from a lead acid battery, and reduce charging time. SOLUTION: When a capacitor battery 3 is charged from a lead acid battery 2, the voltage of the capacitor battery 3 is measured, based on a signal from the voltage measuring instrument 5 of a charge controller 10. When the voltage of the capacitor battery 3 increases with the progress of the charging operation, an actuator 6 is driven so that the resistance value of the resistor 4 between the lead battery 2 and the capacitor battery 3 is decreased. As a result, when the voltage of the capacitor battery 3 increases, charging time can be reduced without degrading the charging efficiency which is due to a resistor for large current prevention of a fixed and high resistance value as in the conventional cases.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、鉛バッテリからコ
ンデンサバッテリに充電するバッテリ充電装置に関す
る。
The present invention relates to a battery charger for charging a capacitor battery from a lead battery.

【0002】[0002]

【従来の技術】従来、自動車等の車両の電源としては鉛
バッテリが広く採用されているが、この鉛バッテリに加
え、例えば電気加熱触媒等の電源として電気二重層コン
デンサ等からなるコンデンサバッテリを搭載するシステ
ムがある。
2. Description of the Related Art Conventionally, lead batteries have been widely used as power sources for vehicles such as automobiles. In addition to such lead batteries, for example, a capacitor battery such as an electric double layer capacitor is mounted as a power source for an electric heating catalyst or the like. There is a system to do.

【0003】この鉛バッテリとコンデンサバッテリとを
搭載するシステムでは、通常、電源容量の大きい鉛バッ
テリから電源容量の小さいコンデンサバッテリを充電す
るようにしており、その充電系統では、鉛バッテリとコ
ンデンサバッテリとの間に抵抗を挿入し、コンデンサバ
ッテリの電圧が低下した状況での充電時に過大電流が流
れるのを防止するようにしている。
In a system in which a lead battery and a capacitor battery are mounted, usually, a lead battery having a large power supply capacity is charged to a capacitor battery having a small power supply capacity. A resistor is inserted between the capacitors to prevent an excessive current from flowing during charging when the voltage of the capacitor battery is reduced.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、鉛バッ
テリとコンデンサバッテリの間に挿入する抵抗は、過大
電流防止の見地から抵抗値を大きく設定するのが一般的
であるため、コンデンサバッテリの充電が進行してコン
デンサバッテリの電圧が上昇したとき、充電効率を低下
させる原因となっており、充電時間短縮の妨げとなって
いる。
However, since the resistance inserted between the lead battery and the capacitor battery is generally set to a large value from the viewpoint of preventing an excessive current, the charging of the capacitor battery proceeds. As a result, when the voltage of the capacitor battery rises, it causes a reduction in charging efficiency, which hinders a reduction in charging time.

【0005】本発明は上記事情に鑑みてなされたもの
で、鉛バッテリからコンデンサバッテリを充電する際
に、過大電流防止用の抵抗による充電効率の低下を防止
し、充電時間の短縮を図ることのできるバッテリ充電装
置を提供することを目的としている。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and when charging a capacitor battery from a lead battery, it is possible to prevent a reduction in charging efficiency due to a resistor for preventing an excessive current and to shorten a charging time. It is an object of the present invention to provide a battery charging device that can be used.

【0006】[0006]

【課題を解決するための手段】請求項1記載の発明は、
鉛バッテリとコンデンサバッテリとを備え、上記鉛バッ
テリによって上記コンデンサバッテリを充電する電源シ
ステムのバッテリ充電装置であって、上記鉛バッテリと
上記コンデンサバッテリとの間に介装され、操作入力に
よって抵抗値が可変可能な抵抗器と、上記コンデンサバ
ッテリの電圧を計測し、上記コンデンサバッテリの電圧
上昇に応じて上記抵抗器の抵抗値を減少させる操作出力
を行う制御手段とを備えたことを特徴とする。
According to the first aspect of the present invention,
A battery charger for a power supply system comprising a lead battery and a capacitor battery, wherein the lead battery charges the capacitor battery. The battery charger is interposed between the lead battery and the capacitor battery, and has a resistance value according to an operation input. A variable resistor, and control means for measuring the voltage of the capacitor battery and performing an operation output for reducing the resistance value of the resistor in accordance with a rise in the voltage of the capacitor battery.

【0007】請求項2記載の発明は、請求項1記載の発
明において、上記抵抗器の抵抗値が連続的に可変可能で
あることを特徴とする。
According to a second aspect of the present invention, in the first aspect, the resistance value of the resistor is continuously variable.

【0008】請求項3記載の発明は、請求項1記載の発
明において、上記抵抗器の抵抗値が段階的に可変可能で
あることを特徴とする。
According to a third aspect of the present invention, in the first aspect of the present invention, the resistance value of the resistor can be changed stepwise.

【0009】すなわち、本発明では、鉛バッテリによっ
てコンデンサバッテリを充電する際、鉛バッテリとコン
デンサバッテリとの間に介装された抵抗器の抵抗値を、
コンデンサバッテリの電圧上昇に応じて減少させ、充電
の進行に対する充電電流の減少を防止して充電効率の低
下を回避する。その際、抵抗器は、抵抗値を連続的に可
変可能なもの、あるいは、抵抗値を段階的に可変可能な
ものを使用することが望ましい。
That is, according to the present invention, when charging a capacitor battery with a lead battery, the resistance value of a resistor interposed between the lead battery and the capacitor battery is determined by:
The voltage is reduced in accordance with the rise in the voltage of the capacitor battery, and a decrease in the charging current with the progress of charging is prevented, thereby preventing a reduction in charging efficiency. In this case, it is desirable to use a resistor whose resistance value can be continuously changed or a resistor whose resistance value can be changed stepwise.

【0010】[0010]

【発明の実施の形態】以下、図面を参照して本発明の実
施の形態を説明する。図1〜図3は本発明の実施の第1
形態に係わり、図1は充電装置の全体構成図、図2は充
電制御ルーチンのフローチャート、図3は抵抗設定を示
す説明図である。
Embodiments of the present invention will be described below with reference to the drawings. 1 to 3 show a first embodiment of the present invention.
1 is an overall configuration diagram of a charging device, FIG. 2 is a flowchart of a charging control routine, and FIG. 3 is an explanatory diagram showing resistance setting.

【0011】図1において、符号1は、鉛バッテリ2と
コンデンサバッテリ3とを備え、上記鉛バッテリ2によ
って上記コンデンサバッテリ3を充電する電源システム
の充電装置であり、この充電装置1には、充電時の過大
電流を防止する抵抗器4、上記コンデンサバッテリ3の
電圧を計測するための電圧計測器5、及び、充電を制御
する充電コントローラ10等が備えられている。
In FIG. 1, reference numeral 1 denotes a charging device of a power supply system that includes a lead battery 2 and a capacitor battery 3 and charges the capacitor battery 3 with the lead battery 2. The charging device 1 includes a charging device. A resistor 4 for preventing excessive current at the time, a voltage measuring device 5 for measuring the voltage of the capacitor battery 3, a charge controller 10 for controlling charging, and the like are provided.

【0012】上記鉛バッテリ2と上記コンデンサバッテ
リ3とは、各−極端子が互いに共通接続されるととも
に、各+極端子が上記抵抗器4を介して互いに接続され
ており、上記コンデンサバッテリ3に上記電圧計測器5
が並列接続されている。また、上記抵抗器4は、例え
ば、スライダック型の可変抵抗器であり、その摺動子が
上記充電コントローラ10によって駆動されるアクチュ
エータ6によって動かされ、抵抗値が連続的に可変可能
となっている。
The lead battery 2 and the capacitor battery 3 have respective negative electrode terminals commonly connected to each other, and respective positive electrode terminals connected to each other via the resistor 4. The above voltage measuring device 5
Are connected in parallel. Further, the resistor 4 is, for example, a variable resistor of the Slackack type, and its slider is moved by an actuator 6 driven by the charge controller 10 so that the resistance value can be continuously varied. .

【0013】また、上記充電コントローラ10は、上記
鉛バッテリ2から上記コンデンサバッテリ3を充電する
際に、上記抵抗器4の抵抗値を上記コンデンサバッテリ
3の電圧に応じて可変制御するものであり、CPU1
1、ROM12、RAM13、A/Dコンバータ14、
I/Oインタフェース15等がバスラインを介して互い
に接続されたマイクロコンピュータを中心として構成さ
れ、A/Dコンバータ14に上記電圧計測器5が接続さ
れるとともに、I/Oインタフェース15に駆動回路1
6を介して上記アクチュエータ6が接続されている。
When charging the capacitor battery 3 from the lead battery 2, the charge controller 10 variably controls the resistance value of the resistor 4 in accordance with the voltage of the capacitor battery 3. CPU1
1, ROM 12, RAM 13, A / D converter 14,
An I / O interface 15 and the like are mainly configured by microcomputers connected to each other via a bus line. The voltage measuring device 5 is connected to the A / D converter 14, and the driving circuit 1 is connected to the I / O interface 15.
The actuator 6 is connected to the actuator 6 via the actuator 6.

【0014】以下、上記充電コントローラ10によるコ
ンデンサバッテリ3の充電制御について、図2のフロー
チャートに従って説明する。
Hereinafter, the charge control of the capacitor battery 3 by the charge controller 10 will be described with reference to the flowchart of FIG.

【0015】この充電制御ルーチンでは、ステップS101
で電圧計測器5からの信号をA/D変換してコンデンサ
バッテリ3の電圧Vcを検出し、ステップS102でコンデ
ンサバッテリ電圧Vcと、鉛バッテリ2からコンデンサ
バッテリ3への充電が行われる充電電開始電圧Vmin
とを比較する。
In this charge control routine, step S101
A / D-converts the signal from the voltage measuring device 5 to detect the voltage Vc of the capacitor battery 3, and in step S102, starts the charging of the capacitor battery voltage Vc and the charging of the lead battery 2 to the capacitor battery 3. Voltage Vmin
Compare with

【0016】そして、上記ステップS102でVc≧Vmi
nであり、コンデンサバッテリ3の電圧が低下していな
いときにはルーチンを抜ける。尚、このとき、抵抗器4
は、初期状態で抵抗値が最小値となっており、コンデン
サバッテリ3から図示しない負荷への放電時の電力損失
を最小限になるようにしている。
Then, in step S102, Vc ≧ Vmi
If n, and the voltage of the capacitor battery 3 has not dropped, the routine exits. At this time, the resistor 4
Has a minimum resistance value in an initial state, so as to minimize power loss at the time of discharging from the capacitor battery 3 to a load (not shown).

【0017】一方、上記ステップS102でVc<Vmin
のときには、ステップS103へ進んでコンデンサバッテリ
電圧Vcに基づいてテーブル参照により抵抗器4の抵抗
設定値RSETを設定すると、ステップS104でアクチュエ
ータ6を駆動して抵抗器4を抵抗設定値RSETにセット
し、コンデンサバッテリ3の電圧に応じた抵抗値の抵抗
器4を介して鉛バッテリ2からコンデンサバッテリ3へ
充電をさせる。
On the other hand, in step S102, Vc <Vmin
In step S103, the process proceeds to step S103, where the resistance set value RSET of the resistor 4 is set by referring to the table based on the capacitor battery voltage Vc. In step S104, the actuator 6 is driven to set the resistor 4 to the resistance set value RSET. Then, the capacitor battery 3 is charged from the lead battery 2 via the resistor 4 having a resistance value corresponding to the voltage of the capacitor battery 3.

【0018】上記抵抗設定値RSETは、図3(a)に示
すように、コンデンサバッテリ3の電圧低下時の充電過
大電流を防止する抵抗値を最大値として、この最大値か
らコンデンサバッテリ電圧Vcの上昇に従って直線的に
減少する特性に予め設定されており、図3(b)に示す
ような一次元テーブルをコンデンサバッテリ電圧Vcに
基づいて参照し、補間計算等により抵抗設定値RSETを
設定する。
As shown in FIG. 3A, the resistance setting value RSET is a resistance value for preventing an excessive charging current when the voltage of the capacitor battery 3 is lowered. The resistance is set in advance so as to decrease linearly with the rise. A one-dimensional table as shown in FIG. 3B is referred to based on the capacitor battery voltage Vc, and the resistance set value RSET is set by interpolation calculation or the like.

【0019】その後、上記ステップS104からステップS1
05へ進み、再びコンデンサバッテリ3の電圧Vcを検出
し、充電中のコンデンサバッテリ電圧Vcとフル充電時
の電圧Vmaxとを比較して充電完了か否かを調べる。
そして、コンデンサバッテリ電圧Vcがフル充電時の電
圧Vmaxに達していないときには、上記ステップS105
から前述のステップS103へ戻って抵抗器4の抵抗設定値
RSETを再設定することで、コンデンサバッテリ電圧V
cの上昇に応じて抵抗値を減少させて充電を継続する。
Thereafter, the steps S104 to S1 are performed.
Proceeding to 05, the voltage Vc of the capacitor battery 3 is detected again, and it is checked whether the charging is completed by comparing the capacitor battery voltage Vc during charging with the voltage Vmax during full charging.
If the capacitor battery voltage Vc has not reached the voltage Vmax at the time of full charge, the above-described step S105
By returning to step S103 from above, the resistance set value RSET of the resistor 4 is reset, so that the capacitor battery voltage V
The charging is continued by decreasing the resistance value according to the rise of c.

【0020】以上の過程を繰り返して抵抗器4の抵抗値
が最終的に初期状態の最小値まで減少させられ、充電が
進行してコンデンサバッテリ電圧Vcがフル充電時の電
圧Vmaxに達すると、充電完了として上記ステップS1
05からルーチンを抜ける。
By repeating the above process, the resistance value of the resistor 4 is finally reduced to the minimum value in the initial state. When the charging proceeds and the capacitor battery voltage Vc reaches the voltage Vmax at the time of full charging, the charging is performed. Step S1 above as completion
Exit the routine from 05.

【0021】これにより、コンデンサバッテリ3の充電
進行に伴って鉛バッテリ2とコンデンサバッテリ3との
間の抵抗器4の抵抗値が減少させられるため、コンデン
サバッテリ3の電圧が上昇したとき、従来のように過大
電流防止のための大きな抵抗によって充電効率が低下す
ることなく、充電時間を短縮することができる。
As a result, the resistance value of the resistor 4 between the lead battery 2 and the capacitor battery 3 is reduced as the charging of the capacitor battery 3 progresses. As described above, the charging time can be shortened without lowering the charging efficiency due to the large resistance for preventing the excessive current.

【0022】図4及び図5は本発明の実施の第2形態に
係わり、図4は充電装置の全体構成図、図5は抵抗設定
を示す説明図である。
FIGS. 4 and 5 relate to a second embodiment of the present invention. FIG. 4 is an overall configuration diagram of a charging device, and FIG. 5 is an explanatory diagram showing resistance setting.

【0023】本形態は、前述の第1形態に対し、連続的
に抵抗値を可変可能な抵抗器4に代えて、抵抗値を段階
的に切り換える抵抗器4Aを採用するものである。
The present embodiment differs from the first embodiment in that a resistor 4A for changing the resistance stepwise is employed instead of the resistor 4 capable of continuously changing the resistance value.

【0024】すなわち、図4に示すように、本形態の抵
抗器4Aは、複数の並列抵抗R1,R2,…,Rnの回路を
ロータリスイッチSWで切り換える形式の抵抗器であ
り、一部の回路は抵抗を介さずに鉛バッテリ2とコンデ
ンサ3とが直結可能となっている。そして、充電コント
ローラ10によって制御されるアクチュエータ6Aで上
記ロータリスイッチSWの接続位置を切換え、抵抗器4
の全体の抵抗値を段階的に可変する。
That is, as shown in FIG. 4, the resistor 4A of the present embodiment is of a type in which a circuit of a plurality of parallel resistors R1, R2,..., Rn is switched by a rotary switch SW. The lead battery 2 and the capacitor 3 can be directly connected without using a resistor. Then, the connection position of the rotary switch SW is switched by the actuator 6A controlled by the charge controller 10, and the resistor 4
Is stepwise varied.

【0025】本形態の充電制御は、前述の第1形態と同
様であるが、図5(a)に示すように、充電によるコン
デンサバッテリ電圧Vcの上昇に従って段階的に抵抗設
定値Riが減少するよう、予め、図5(b)に示すよう
な一次元テーブルにコンデンサバッテリ電圧Vcに対す
る抵抗器4Aの抵抗設定値Riが格納されており、抵抗
器4Aの抵抗設定値Riを設定する際、この一次元テー
ブルをコンデンサバッテリ電圧Vcに基づいて参照し、
抵抗器4Aの抵抗設定値Riを設定する。
The charge control of this embodiment is the same as that of the first embodiment, but as shown in FIG. 5A, the resistance set value Ri decreases stepwise as the capacitor battery voltage Vc rises due to charging. As described above, the resistance set value Ri of the resistor 4A with respect to the capacitor battery voltage Vc is stored in advance in a one-dimensional table as shown in FIG. 5B, and when setting the resistance set value Ri of the resistor 4A, Referring to the one-dimensional table based on the capacitor battery voltage Vc,
The resistance set value Ri of the resistor 4A is set.

【0026】上記抵抗器4Aを構成する各抵抗R1,R2,
…,Rnは、例えば、抵抗R1が充電時の過大電流を制限
可能な最大抵抗値、抵抗R2,…,Rnが一定値づつ低い抵
抗値となっており、充電開始時にロータリスイッチSW
を抵抗R1に接続し、コンデンサバッテリ3の電圧が上
昇するに従ってロータリスイッチSWを抵抗R2,…,Rn
へ切り換えることで、抵抗器4Aの抵抗値を図5(a)
に示すように段階的に減少させることができる。
Each of the resistors R1, R2,
, Rn are, for example, the maximum resistance value at which the resistor R1 can limit an excessive current at the time of charging, and the resistance values of the resistors R2,.
Is connected to the resistor R1, and as the voltage of the capacitor battery 3 rises, the rotary switch SW is connected to the resistors R2,.
5A, the resistance of the resistor 4A is changed to the value shown in FIG.
As shown in FIG.

【0027】そして、コンデンサバッテリ電圧Vcの上
昇に応じて抵抗値を段階的に減少させ、最終的に抵抗器
4AのロータリスイッチSWを抵抗を介さずに鉛バッテ
リ2とコンデンサバッテリ3とが直結となる初期位置に
切換えて充電を継続し、コンデンサバッテリ電圧Vcが
フル充電時の電圧Vmaxに達したとき、充電完了とす
る。
Then, the resistance value is reduced stepwise according to the rise of the capacitor battery voltage Vc, and finally, the lead battery 2 and the capacitor battery 3 are directly connected without turning the rotary switch SW of the resistor 4A through a resistor. When the capacitor battery voltage Vc reaches the voltage Vmax at the time of full charge, the charging is completed.

【0028】本形態においても、前述の第1形態と同
様、充電効率の低下を防止して充電時間を短縮すること
ができるが、本形態では、コンデンサバッテリ3の充電
進行に伴って単体の抵抗を切換えて抵抗値を下げるた
め、前述の第1形態における抵抗器4のようなスライダ
ック型の可変抵抗器に対し、耐熱性、耐久性の点で有利
であり、第1形態に比較し、より大電流の電源システム
に対応することができる。また、コンデンサバッテリ3
が充電完了の電圧のときには、抵抗器4Aは実質的に抵
抗0とすることができ、コンデンサバッテリ3の電力を
最大限に使用することができる。
In this embodiment, similarly to the above-described first embodiment, it is possible to prevent a decrease in charging efficiency and to shorten the charging time. Is switched to reduce the resistance value, which is advantageous in terms of heat resistance and durability compared to a sliding-type variable resistor such as the resistor 4 in the first embodiment described above. It can correspond to a large current power supply system. In addition, the capacitor battery 3
Is the voltage at which charging is completed, the resistor 4A can be set to substantially zero resistance, and the power of the capacitor battery 3 can be used to the maximum.

【0029】尚、図6あるいは図7に示すように、コン
デンサバッテリ3の電圧を計測する電圧計測器5に代え
て、コンデンサバッテリ3と抵抗器4(抵抗器4A)と
の間に、ホール素子等からなる電流計測器5Aを設けて
も良く、この電流計測器5Aによって計測した電流値を
充電コントローラ10に取り込み、演算によってコンデ
ンサバッテリ3の電圧を算出する。この場合、充電時に
万一過大電流が発生しても、この過大電流をいちはやく
検出することができ、フェールセーフに寄与することが
できる。
As shown in FIG. 6 or 7, instead of a voltage measuring device 5 for measuring the voltage of the capacitor battery 3, a Hall element is provided between the capacitor battery 3 and the resistor 4 (resistor 4A). A current measuring device 5A may be provided, and the current value measured by the current measuring device 5A is taken into the charge controller 10, and the voltage of the capacitor battery 3 is calculated by calculation. In this case, even if an excessive current occurs during charging, the excessive current can be detected as soon as possible, which can contribute to fail-safe.

【0030】[0030]

【発明の効果】以上説明したように本発明によれば、鉛
バッテリによってコンデンサバッテリを充電する際、鉛
バッテリとコンデンサバッテリとの間に介装された抵抗
器の抵抗値を、コンデンサバッテリの電圧上昇に応じて
減少させるため、充電の進行に対する充電電流の減少を
防止して充電効率の低下を回避することができ、充電時
間を短縮することができる等優れた効果が得られる。
As described above, according to the present invention, when a capacitor battery is charged by a lead battery, the resistance value of a resistor interposed between the lead battery and the capacitor battery is changed by the voltage of the capacitor battery. Since the charge current is decreased in accordance with the rise, it is possible to prevent a decrease in the charging current with the progress of charging, to avoid a decrease in charging efficiency, and to obtain excellent effects such as a reduction in charging time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の第1形態に係わり、充電装置の
全体構成図
FIG. 1 is an overall configuration diagram of a charging device according to a first embodiment of the present invention.

【図2】同上、充電制御ルーチンのフローチャートFIG. 2 is a flowchart of a charging control routine according to the first embodiment;

【図3】同上、抵抗設定を示す説明図FIG. 3 is an explanatory diagram showing resistance setting according to the first embodiment;

【図4】本発明の実施の第2形態に係わり、充電装置の
全体構成図
FIG. 4 is an overall configuration diagram of a charging device according to a second embodiment of the present invention.

【図5】同上、抵抗設定を示す説明図FIG. 5 is an explanatory diagram showing resistance setting according to the first embodiment;

【図6】電流計測器を用いた充電装置の全体構成図FIG. 6 is an overall configuration diagram of a charging device using a current measuring device.

【図7】電流計測器を用いた他の充電装置の全体構成図FIG. 7 is an overall configuration diagram of another charging device using a current measuring device.

【符号の説明】[Explanation of symbols]

1 …充電装置 2 …鉛バッテリ 3 …コンデンサバッテリ 4,4A…抵抗器 5 …電圧計測器 10 …充電コントローラ DESCRIPTION OF SYMBOLS 1 ... Charging device 2 ... Lead battery 3 ... Capacitor battery 4,4A ... Resistor 5 ... Voltage measuring instrument 10 ... Charge controller

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 鉛バッテリとコンデンサバッテリとを備
え、上記鉛バッテリによって上記コンデンサバッテリを
充電する電源システムのバッテリ充電装置であって、 上記鉛バッテリと上記コンデンサバッテリとの間に介装
され、操作入力によって抵抗値が可変可能な抵抗器と、 上記コンデンサバッテリの電圧を計測し、上記コンデン
サバッテリの電圧上昇に応じて上記抵抗器の抵抗値を減
少させる操作出力を行う制御手段とを備えたことを特徴
とするバッテリ充電装置。
1. A battery charging device for a power supply system comprising a lead battery and a capacitor battery, wherein the capacitor battery is charged by the lead battery, the battery charger being interposed between the lead battery and the capacitor battery, A resistor whose resistance value can be changed by an input; and control means for measuring the voltage of the capacitor battery and performing an operation output for decreasing the resistance value of the resistor in accordance with an increase in the voltage of the capacitor battery. A battery charger characterized by the above-mentioned.
【請求項2】 上記抵抗器の抵抗値が連続的に可変可能
であることを特徴とする請求項1記載のバッテリ充電装
置。
2. The battery charger according to claim 1, wherein a resistance value of the resistor is continuously variable.
【請求項3】 上記抵抗器の抵抗値が段階的に可変可能
であることを特徴とする請求項1記載のバッテリ充電装
置。
3. The battery charger according to claim 1, wherein a resistance value of the resistor is variable in a stepwise manner.
JP9169064A 1997-06-25 1997-06-25 Battery charger Pending JPH1118293A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9169064A JPH1118293A (en) 1997-06-25 1997-06-25 Battery charger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9169064A JPH1118293A (en) 1997-06-25 1997-06-25 Battery charger

Publications (1)

Publication Number Publication Date
JPH1118293A true JPH1118293A (en) 1999-01-22

Family

ID=15879676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9169064A Pending JPH1118293A (en) 1997-06-25 1997-06-25 Battery charger

Country Status (1)

Country Link
JP (1) JPH1118293A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004051821A1 (en) * 2002-11-29 2004-06-17 Max Co., Ltd. Electric dual-layered capacitor charging circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004051821A1 (en) * 2002-11-29 2004-06-17 Max Co., Ltd. Electric dual-layered capacitor charging circuit

Similar Documents

Publication Publication Date Title
JP6937064B1 (en) Battery charging / discharging device and method
JP5020530B2 (en) Charging method, battery pack and charger thereof
JP4400536B2 (en) Capacity adjustment device and capacity adjustment method for battery pack
JP3279071B2 (en) Battery pack charging device
CN110140057B (en) Voltage detection integrated circuit and battery management system including the same
CN101953016B (en) Charging method for an assembled cell and an assembled cell system
WO2019155751A1 (en) Vehicle-mounted charging device and vehicle-mounted charging device control method
JP5617473B2 (en) Battery heating device
EP2717415A1 (en) Electricity storage system
WO2011061902A1 (en) Charge control circuit, cell pack, and charging system
US5629600A (en) Charger for use with a nickel-cadmium battery that uses charge and discharge cycles dependent on voltage and current
JP2007325324A (en) Charging system, battery pack and its charging method
JP2008021589A (en) Capacity adjustment device
EP3565101B1 (en) Switching control method for isolated bidirectional dc-dc converter
JP2019221063A5 (en)
WO2020049943A1 (en) Secondary battery temperature-raising device, computer program, and secondary battery temperature-raising method
JPH10223248A (en) Discharging device for fuel cell
JPH08308103A (en) Hybrid power source
JP2005278249A (en) Capacity adjustment device and adjusting method of battery pack
JPH1118293A (en) Battery charger
JP2008067486A (en) Charging method
JP2021023093A (en) Charge and discharge control device
JP5517965B2 (en) Battery system
JP3503313B2 (en) Battery power computing device
JP5339893B2 (en) Cell voltage equalization control circuit and capacitor module having equalization control circuit