JPH11182638A - Transmission belt design support method of cylindrical rotating body drive system - Google Patents
Transmission belt design support method of cylindrical rotating body drive systemInfo
- Publication number
- JPH11182638A JPH11182638A JP35180397A JP35180397A JPH11182638A JP H11182638 A JPH11182638 A JP H11182638A JP 35180397 A JP35180397 A JP 35180397A JP 35180397 A JP35180397 A JP 35180397A JP H11182638 A JPH11182638 A JP H11182638A
- Authority
- JP
- Japan
- Prior art keywords
- rotating body
- cylindrical rotating
- cylindrical
- drive system
- transmission belt
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Devices For Conveying Motion By Means Of Endless Flexible Members (AREA)
Abstract
Description
【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION
【0001】[0001]
【発明の属する技術分野】本発明は,複写機やレーザプ
リンタなどの画像形成装置の感光体ドラムや,各種の自
動機器および家電製品の円筒回転体ベルト駆動系に利用
でき,特に,円筒回転体軸偏心,プーリ軸偏心,摩擦負
荷,遠心力などの影響を解析し,設計の最適化を図る円
筒回転体駆動系の伝動ベルト設計支援方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is applicable to a photosensitive drum of an image forming apparatus such as a copying machine or a laser printer, and a belt rotating system of a cylindrical rotating body of various automatic devices and home electric appliances. The present invention relates to a transmission belt design support method for a cylindrical rotating body drive system that analyzes the effects of shaft eccentricity, pulley shaft eccentricity, friction load, centrifugal force, etc., and optimizes the design.
【0002】[0002]
【従来の技術】従来,複写機やレーザプリンタなどの電
子写真プロセスを用いた画像形成装置において,静電潜
像・トナー像が形成される感光体ドラムを駆動する場
合,モータ軸である駆動出力軸の動力をギヤや伝動ベル
トを介し,減速して使用するのが一般的である。その中
でも設計レイアウトの面での自由度,および高速性や伝
動効率に優れているベルト駆動方式が広く採用されてい
る。2. Description of the Related Art Conventionally, in an image forming apparatus using an electrophotographic process such as a copying machine or a laser printer, when a photosensitive drum on which an electrostatic latent image and a toner image are formed is driven, a drive output which is a motor shaft is used. It is common to use the power of the shaft at a reduced speed via a gear or a transmission belt. Among them, a belt drive system which is excellent in the degree of freedom in design layout, high speed, and transmission efficiency is widely used.
【0003】一般的に駆動モータの駆動力を駆動プーリ
および伝動ベルトを介し,感光体ドラムの駆動軸に設け
られた従動プーリに伝達する感光体駆動系をなしてい
る。この画像形成装置の感光体駆動系の概略構成を図1
8に示す。In general, a photosensitive member drive system is used in which the driving force of a drive motor is transmitted to a driven pulley provided on a drive shaft of a photosensitive drum via a drive pulley and a transmission belt. FIG. 1 shows a schematic configuration of a photoconductor driving system of the image forming apparatus.
FIG.
【0004】図18において,1は静電潜像・トナー像
が形成される感光体ドラムである。なお,感光体ドラム
1は真円度や円筒度などの部品精度で製作される円筒回
転体である。また,2はエンコーダが同軸上に設けら
れ,感光体ドラム1の駆動源となるドラム駆動モータ,
3はドラム駆動モータ2の出力軸に設けられる駆動プー
リ,4は感光体ドラム1の中心軸に設けられるドラム駆
動プーリ(従動プーリ),5は感光体ドラム1の中心軸
に設けられるフライホイール,6は駆動プーリ3の駆動
力をドラム駆動プーリ(従動プーリ)4に伝動するため
のタイミングベルト,7はたとえばポリウレタンゴム製
で厚さ2〜3mmの短幅長尺のブレード状をなし,その
先端エッジ部を感光体ドラム1表面に所定角度・所定圧
力で当接させ,感光体ドラム1上の転写後における残留
トナーや紙粉などを除去するためのクリーニングブレー
ドである。また,8は通常,タイミングベルト6の緩み
側に設けられ,ベルトの緩みを調整するためのアイドラ
プーリである。In FIG. 18, reference numeral 1 denotes a photosensitive drum on which an electrostatic latent image and a toner image are formed. Note that the photosensitive drum 1 is a cylindrical rotating body manufactured with component accuracy such as roundness and cylindricity. Reference numeral 2 denotes a drum drive motor having an encoder provided coaxially and serving as a drive source of the photosensitive drum 1,
3 is a drive pulley provided on the output shaft of the drum drive motor 2, 4 is a drum drive pulley (driven pulley) provided on the central axis of the photosensitive drum 1, 5 is a flywheel provided on the central axis of the photosensitive drum 1, Reference numeral 6 denotes a timing belt for transmitting the driving force of the driving pulley 3 to a drum driving pulley (driven pulley) 4. Reference numeral 7 denotes a polyurethane rubber made of, for example, a short and long blade having a thickness of 2 to 3 mm. A cleaning blade for bringing the edge portion into contact with the surface of the photosensitive drum 1 at a predetermined angle and a predetermined pressure to remove residual toner, paper dust, and the like after transfer on the photosensitive drum 1. Reference numeral 8 denotes an idler pulley which is normally provided on the slack side of the timing belt 6 and adjusts the slack of the belt.
【0005】次に,以上の如く構成された画像形成装置
の感光体駆動系の基本的な動作を説明する。感光体ドラ
ム1は,帯電後にレーザ光学ユニット(図示せず)の主
走査方向にスキャンし,レーザ光を受ける。感光体ドラ
ム1のドラム駆動プーリ(従動プーリ)4には,タイミ
ングベルト6を介し,駆動プーリ3によりドラム駆動モ
ータ2が回転出力する駆動力が伝動され,感光体ドラム
1が所定速度で等速回転する。この等速回転により副走
査方向のスキャンが得られ,その光照射に対応した面画
像の静電潜像が形成される。この後,静電潜像に現像を
行い,トナーを付着させ,顕像化する。このトナー像を
記録紙に転写し,さらに,定着して排紙する。この一連
の画像形成処理の後,感光体ドラム1の表面には転写後
の残留トナーなどが付着しているので,これをクリーニ
ングブレード7で除去し,次の画像形成処理に備える。
この場合,特に,上記の如く感光体ドラム7にクリーニ
ングブレード7のエッジを当接し,回転した場合,感光
体ドラム7の駆動負荷(摩擦負荷)が増大する。Next, the basic operation of the photosensitive member drive system of the image forming apparatus having the above-described structure will be described. After charging, the photosensitive drum 1 scans in the main scanning direction of a laser optical unit (not shown) and receives a laser beam. A driving force that the drum drive motor 2 rotates and outputs is transmitted to the drum driving pulley (driven pulley) 4 of the photosensitive drum 1 via the timing belt 6 via the timing belt 6 so that the photosensitive drum 1 is driven at a constant speed at a predetermined speed. Rotate. Scanning in the sub-scanning direction is obtained by this constant speed rotation, and an electrostatic latent image of a surface image corresponding to the light irradiation is formed. Thereafter, the electrostatic latent image is developed, toner is adhered, and the electrostatic latent image is visualized. This toner image is transferred to a recording sheet, and further fixed and discharged. After the series of image forming processes, residual toner and the like after transfer adhere to the surface of the photosensitive drum 1 and are removed by the cleaning blade 7 to prepare for the next image forming process.
In this case, in particular, when the edge of the cleaning blade 7 is brought into contact with the photosensitive drum 7 as described above and rotated, the driving load (friction load) of the photosensitive drum 7 increases.
【0006】ところで,一般に,伝動ベルトを用いた駆
動系を設計する際には,駆動負荷,ベルト張力,プーリ
回転数,ベルト速度,プーリ径を考慮し,主に寿命面お
よび強度面を重視して行われ,高精度に感光体ドラム1
を駆動するように設計する場合には,設計者などの経験
に頼っていた。In general, when designing a drive system using a power transmission belt, a drive load, a belt tension, a pulley rotation speed, a belt speed, and a pulley diameter are taken into consideration, and the life and strength are mainly emphasized. The photosensitive drum 1 is precisely
When designing to drive, it relied on the experience of designers.
【0007】一方,感光体ドラム1を一定速度に回転す
るための工夫の一つをして感光体ドラム1軸にフライホ
イール5を取付け,この慣性効果を利用して高精度の回
転駆動を実現している。そして,これらの駆動機構設計
が行われるようになってきてから,これを試作し,実機
を用いて駆動およびその制御系の設計チューニング,い
わゆる実機評価を行うといった製品開発を進めている。On the other hand, a flywheel 5 is mounted on the photosensitive drum 1 shaft by using one of the devices for rotating the photosensitive drum 1 at a constant speed, and a high-precision rotational drive is realized by utilizing the inertia effect. doing. After these drive mechanisms have been designed, the development of prototypes of them and the development of products, such as performing design tuning of the drive and its control system using actual machines, that is, evaluation of the actual machines, are underway.
【0008】また,最近では,複写機やレーザプリンタ
のフルカラー化および高解像度の要求が高まっている。
これを実現するには,色合わせなど駆動精度の向上,お
よび設計の迅速化が望まれている。このような要求に対
応するため,たとえばベルト駆動に関連する設計支援方
法として,ベルトのバネをテンション状態に応じて変化
させて解析する従来の技術が特開平7−226539号
公報の『ベルトの設計支援方法及び設計支援装置』に開
示されている。Recently, demands for full-color and high-resolution copiers and laser printers have been increasing.
To achieve this, it is desired to improve driving accuracy such as color matching and to speed up design. In order to respond to such a demand, for example, as a design support method related to belt driving, a conventional technique of changing a belt spring according to a tension state and analyzing the spring is disclosed in Japanese Patent Application Laid-Open No. 7-226538. Supporting Method and Design Supporting Apparatus ".
【0009】[0009]
【発明が解決しようとする課題】上記に示されるような
従来の技術は,伝導ベルト駆動系に加わるバネ性に関し
て詳細にモデル化を行っている。しかしながら,上述の
如く,感光体ドラムのような一定速度で回転駆動させる
感光体駆動系の場合,ベルトの歪みが引っ張りから圧縮
へ変化するとは考えにくく,むしろ引っ張りの領域内で
大きさが変化するため,このような感光体駆動系へのモ
デル適用が困難である。In the prior art as described above, a detailed modeling is performed with respect to the springiness applied to the transmission belt drive system. However, as described above, in the case of a photoconductor drive system such as a photoconductor drum that is driven to rotate at a constant speed, it is unlikely that the belt distortion changes from tension to compression, but rather the size changes in the tension region. Therefore, it is difficult to apply the model to such a photoconductor drive system.
【0010】また,限られた設計者の経験(ノウハウ)
を利用したのみの開発設計においては,設計者個人の調
査確認などの作業負担が大きくなるため,結果として開
発速度を鈍化させてしまうという問題点があった。さら
に,設計完了後に試作を行い,その試作機を用いて制御
系のチューニング(ゲイン調査など)の評価を行うこと
になる。換言すれば,最適化設計完了までに試行錯誤を
繰り返すことによる実機評価となるため,開発期間を長
期化させ,かつ試作台数の増加に伴う開発費用が高くな
るといった問題点もあった。[0010] Also, limited experience of designers (know-how)
However, in the development design using only the software, there is a problem that a designer's individual work load such as investigation and confirmation becomes large, and as a result, the development speed is slowed down. Furthermore, after the design is completed, a prototype is manufactured, and the tuning of the control system (e.g., gain investigation) is evaluated using the prototype. In other words, since the actual machine evaluation is performed by repeating trial and error until the optimization design is completed, there is a problem that the development period is prolonged and the development cost is increased due to an increase in the number of prototypes.
【0011】特に,感光体駆動系においては,感光体ド
ラム軸やプーリの偏心による影響(速度変動),感光体
ドラム表面に対する摩擦負荷の影響(速度変動),など
の内的/外的な変動要因を考慮したモデル解析・設計を
行う必要があった。In particular, in the photoconductor drive system, internal / external fluctuations such as the effect of eccentricity of the photoconductor drum shaft and pulley (speed fluctuation) and the effect of frictional load on the surface of the photoconductor drum (speed fluctuation). It was necessary to perform model analysis and design in consideration of the factors.
【0012】本発明は,上記に鑑みてなされたものであ
って,感光体ドラムなどの円筒回転体ベルト駆動系に及
ぼす各種の速度変動要因をモデル解析によって明らかに
し,設計時における的確な指針を行い,設計期間の短縮
化および制御設計の機構モデルとしても適用する可能と
する解析モデルを実現することを目的とする。The present invention has been made in view of the above, and clarifies various speed fluctuation factors exerted on a cylindrical rotating belt drive system such as a photosensitive drum by a model analysis, and provides an accurate guideline at the time of design. The purpose of the present invention is to shorten the design period and realize an analysis model that can be used as a mechanism model for control design.
【0013】[0013]
【課題を解決するための手段】上記の目的を達成するた
めに,請求項1に係る円筒回転体駆動系の伝動ベルト設
計支援方法にあっては,伝動ベルトを介して円筒回転体
を駆動する駆動機構であって,前記駆動機構をモデル化
し,駆動軸の動作に対する円筒回転体軸の挙動を解析
し,その結果を設計に反映・支援する円筒回転体駆動系
の伝動ベルト設計支援方法において,前記円筒回転体軸
における重心位置の偏心量および前記円筒回転体の慣性
モーメントから重力による外乱トルクを算出し,該外乱
トルクを前記円筒回転体軸のトルク負荷に加える解析モ
デルを得る第1の工程と,前記解析モデルに基づいて前
記重心位置の偏心量に応じた円筒回転体駆動系の速度変
動を解析する第2の工程と,を含むものである。According to a first aspect of the present invention, there is provided a transmission belt design support method for a cylindrical rotary body drive system, wherein the cylindrical rotary body is driven via a transmission belt. A drive mechanism, wherein the drive mechanism is modeled, the behavior of the cylindrical rotating body axis with respect to the operation of the drive shaft is analyzed, and the result is reflected and supported in the design. A first step of calculating a disturbance torque due to gravity from the amount of eccentricity of the position of the center of gravity of the cylindrical rotating body axis and the moment of inertia of the cylindrical rotating body, and obtaining an analytical model for adding the disturbance torque to the torque load of the cylindrical rotating body axis And a second step of analyzing a speed variation of the cylindrical rotating body drive system according to the eccentric amount of the position of the center of gravity based on the analysis model.
【0014】すなわち,円筒回転体軸の回転偏心量と回
転体慣性モーメントから重力による外乱トルクを算出
し,これを円筒回転体軸に加えるようにモデル化し,解
析することにより,円筒回転体軸偏心量による円筒回転
体ベルト駆動系の速度変動を解析で明確化し,この結果
に基づいて設計時における支援を行う。That is, a disturbance torque due to gravity is calculated from the amount of rotation eccentricity of the shaft of the cylindrical rotating body and the moment of inertia of the rotating body, and this is modeled so as to be added to the shaft of the cylindrical rotating body, and analyzed, whereby the eccentricity of the cylindrical rotating shaft is obtained. The speed fluctuation of the cylindrical rotating body belt drive system due to the amount is clarified by analysis, and based on this result, the design support is performed.
【0015】また,請求項2に係る円筒回転体駆動系の
伝動ベルト設計支援方法にあっては,伝動ベルトを介し
て円筒回転体を駆動する駆動機構であって,前記駆動機
構をモデル化し,駆動軸の動作に対する円筒回転体軸の
挙動を解析し,その結果を設計に反映・支援する円筒回
転体駆動系の伝動ベルト設計支援方法において,前記円
筒回転体軸上に設けられる駆動プーリの偏心量を考慮
し,前記駆動プーリの回転角に応じてプーリ半径を変更
する解析モデルを得る第1の工程と,前記解析モデルに
基づいて前記駆動プーリの偏心量に応じた円筒回転体駆
動系の速度変動を解析する第2の工程と,を含むもので
ある。According to a second aspect of the present invention, there is provided a driving mechanism for driving a cylindrical rotating body via a transmission belt, wherein the driving mechanism is modeled. In the method for supporting the design of the transmission belt of the cylindrical rotating body drive system, which analyzes the behavior of the cylindrical rotating body axis with respect to the operation of the drive shaft and reflects and supports the result in the design, the eccentricity of the driving pulley provided on the cylindrical rotating body axis A first step of obtaining an analysis model for changing the radius of the pulley according to the rotation angle of the drive pulley in consideration of the amount of rotation, and a step of driving the cylindrical rotating body drive system according to the amount of eccentricity of the drive pulley based on the analysis model. And a second step of analyzing a speed variation.
【0016】すなわち,円筒回転体軸の駆動プーリ偏心
量を考慮し,駆動プーリ回転角に応じてプーリ半径を変
更するようにモデル化し,解析することにより,円筒回
転体軸のプーリ偏心量が円筒回転体ベルト駆動系へ及ぼ
す影響(速度変動)を解析で明らかにし,この結果に基
づいて設計時における支援を行う。That is, by taking into account the amount of eccentricity of the driving pulley of the cylindrical rotating body shaft and modeling and analyzing the pulley radius in accordance with the driving pulley rotation angle, the amount of eccentricity of the pulley of the cylindrical rotating body shaft can be reduced. The effect (speed fluctuation) on the rotating belt drive system is clarified by analysis, and based on this result, design assistance is provided.
【0017】また,請求項3に係る円筒回転体駆動系の
伝動ベルト設計支援方法にあっては,伝動ベルトを介し
て円筒回転体を駆動する駆動機構であって,前記駆動機
構をモデル化し,駆動軸の動作に対する円筒回転体軸の
挙動を解析し,その結果を設計に反映・支援する円筒回
転体駆動系の伝動ベルト設計支援方法において,前記円
筒回転体の振れ量に応じ,前記円筒回転体の表面に接触
する摩擦負荷を変動させる解析モデルを得る第1の工程
と,前記解析モデルに基づいて前記円筒回転体の振れ量
による円筒回転体駆動系の速度変動を解析する第2の工
程と,を含むものである。According to a third aspect of the present invention, there is provided a drive mechanism for driving a cylindrical rotating body via a power transmission belt, wherein the drive mechanism is modeled. A method for supporting the design of a transmission belt for a cylindrical rotating body drive system that analyzes the behavior of the cylindrical rotating body axis with respect to the operation of the drive shaft and reflects and supports the result in the design. A first step of obtaining an analytical model for varying a frictional load contacting the surface of the body, and a second step of analyzing a speed variation of the cylindrical rotating body drive system due to a deflection of the cylindrical rotating body based on the analytical model. And
【0018】すなわち,円筒回転体表面の振れ量に応
じ,該円筒回転体表面に接触する摩擦負荷を変動させる
ようにモデル化し,解析することにより,円筒回転体表
面の振れに応じた接触部の摩擦負荷変動による円筒回転
体ベルト駆動系へ及ぼす影響(速度変動)を解析で明ら
かにし,この結果に基づいて設計時における支援を行
う。That is, by modeling and analyzing the friction load in contact with the surface of the cylindrical rotator so as to fluctuate according to the amount of deflection of the surface of the cylindrical rotator, the contact portion corresponding to the deflection of the surface of the cylindrical rotator can be analyzed. The effect (speed fluctuation) of the friction load fluctuation on the cylindrical rotating body belt drive system is clarified by analysis, and based on the result, the design assistance is performed.
【0019】また,請求項4に係る円筒回転体駆動系の
伝動ベルト設計支援方法にあっては,伝動ベルトを介し
て円筒回転体を駆動する駆動機構であって,前記駆動機
構をモデル化し,駆動軸の動作に対する円筒回転体軸の
挙動を解析し,その結果を設計に反映・支援する円筒回
転体駆動系の伝動ベルト設計支援方法において,前記円
筒回転体の回転偏心量,前記円筒回転体の質量,前記円
筒回転体の回転数から不釣合いによって生じる遠心力を
求め,該遠心力による前記円筒回転体の支持部変形量に
応じ,前記円筒回転体の表面に接触する摩擦負荷を変動
させる解析モデルを得る第1の工程と,前記解析モデル
に基づいて前記遠心力による円筒回転体駆動系の速度変
動を解析する第2の工程と,を含むものである。According to a fourth aspect of the present invention, there is provided a driving mechanism for driving a cylindrical rotating body via a transmission belt, wherein the driving mechanism is modeled. A method for supporting the design of a transmission belt for a cylindrical rotating body drive system that analyzes the behavior of the cylindrical rotating body axis with respect to the operation of the drive shaft and reflects and supports the result in the design. The centrifugal force generated by the imbalance is determined from the mass of the cylindrical rotor and the rotational speed of the cylindrical rotor, and the friction load in contact with the surface of the cylindrical rotor is varied according to the deformation of the support portion of the cylindrical rotor due to the centrifugal force. The method includes a first step of obtaining an analytical model and a second step of analyzing a speed fluctuation of the cylindrical rotating body drive system due to the centrifugal force based on the analytical model.
【0020】すなわち,円筒回転体軸の回転体偏心によ
って生じる遠心力から円筒回転体支持部材の変形量を求
め,該変形量に応じて接触部の摩擦負荷を変動させるよ
うにモデル化し,解析することにより,遠心力による振
れまわりに応じた接触部の摩擦負荷変動が,円筒回転体
ベルト駆動系へ及ぼす影響(速度変動)を解析で明らか
にし,この結果に基づいて設計時における支援を行う。That is, the amount of deformation of the cylindrical rotator support member is determined from the centrifugal force generated by the eccentricity of the rotator of the cylindrical rotator shaft, and the modeling and analysis are performed so that the frictional load of the contact portion is changed according to the amount of deformation. In this way, the effect (speed fluctuation) of the friction load fluctuation of the contact part in response to the whirling caused by the centrifugal force on the cylindrical rotating body belt drive system is clarified by analysis, and based on this result, the design support is performed.
【0021】また,請求項5に係る円筒回転体駆動系の
伝動ベルト設計支援方法にあっては,伝動ベルトを介し
て円筒回転体を駆動する駆動機構であって,前記駆動機
構をモデル化し,駆動軸の動作に対する円筒回転体軸の
挙動を解析し,その結果を設計に反映・支援する円筒回
転体駆動系の伝動ベルト設計支援方法において,前記円
筒回転体軸における重心位置の偏心量および前記円筒回
転体の慣性モーメントから重力による外乱トルクを算出
し,該外乱トルクを前記円筒回転体軸のトルク負荷に加
え,さらに前記円筒回転体の振れ量に応じ,前記円筒回
転体の表面に接触する摩擦負荷を変動させる解析モデル
を得る第1の工程と,前記解析モデルに基づいて前記重
心位置の偏心量および前記円筒回転体の振れ量による円
筒回転体駆動系の速度変動を解析する第2の工程と,を
含むものである。According to a fifth aspect of the present invention, there is provided a driving mechanism for driving a cylindrical rotating body via a transmission belt, wherein the driving mechanism is modeled. A method of supporting the design of a transmission belt for a cylindrical rotating body drive system that analyzes the behavior of the cylindrical rotating body axis with respect to the operation of the drive shaft and reflects and supports the result in the design. A disturbance torque due to gravity is calculated from a moment of inertia of the cylindrical rotating body, the disturbance torque is added to a torque load of the cylindrical rotating body shaft, and furthermore, a contact with a surface of the cylindrical rotating body is made in accordance with a deflection amount of the cylindrical rotating body. A first step of obtaining an analytical model for varying the frictional load, and a cylindrical rotating body drive system based on the eccentric amount of the position of the center of gravity and the deflection of the cylindrical rotating body based on the analytical model. A second step of analyzing the degree variation, is intended to include.
【0022】すなわち,円筒回転体軸の偏心による重力
外乱トルクと円筒回転体表面の振れに伴う接触部の摩擦
負荷変動を円筒回転体軸に加えるようにモデル化し,解
析することにより,偏心による重力外乱トルクと円筒回
転体表面の振れに伴う接触部の摩擦負荷変動による円筒
回転体ベルト駆動系へ及ぼす影響(速度変動)を解析で
明らかにし,この結果に基づいて設計時における支援を
行う。That is, by modeling and analyzing the gravitational disturbance torque due to the eccentricity of the axis of rotation of the cylindrical body and the fluctuation of the frictional load of the contact portion due to the run-out of the surface of the cylindrical body of rotation, the gravitational force due to the eccentricity is obtained. The effect (velocity fluctuation) on the cylindrical rotating body belt drive system caused by the fluctuation of the frictional load of the contact part due to the disturbance torque and the vibration of the cylindrical rotating body surface is clarified by analysis, and based on the results, the design assistance is performed.
【0023】また,請求項6に係る円筒回転体駆動系の
伝動ベルト設計支援方法にあっては,伝動ベルトを介し
て円筒回転体を駆動する駆動機構であって,前記駆動機
構をモデル化し,駆動軸の動作に対する円筒回転体軸の
挙動を解析し,その結果を設計に反映・支援する円筒回
転体駆動系の伝動ベルト設計支援方法において,前記円
筒回転体の回転偏心量,前記円筒回転体の質量,前記円
筒回転体の回転数から不釣合いによって生じる遠心力を
求め,該遠心力による前記円筒回転体の支持部変形量に
応じ,前記円筒回転体の表面に接触する摩擦負荷を変動
させ,かつ前記円筒回転体軸における重心位置の偏心量
および前記円筒回転体慣性モーメントから重力による外
乱トルクを算出し,該外乱トルクを前記円筒回転体軸の
トルク負荷に加え,さらに前記円筒回転体の振れ量に応
じ,前記円筒回転体の表面に接触する摩擦負荷を変動さ
せる解析モデルを得る第1の工程と,前記解析モデルに
基づいて前記遠心力による円筒回転体駆動系の速度変動
と,前記重心位置の偏心量および前記円筒回転体の振れ
量による円筒回転体駆動系の速度変動を解析する第2の
工程と,を含むものである。According to a sixth aspect of the present invention, there is provided a driving mechanism for driving a cylindrical rotating body via a transmission belt, wherein the driving mechanism is modeled. A method for supporting the design of a transmission belt for a cylindrical rotating body drive system that analyzes the behavior of the cylindrical rotating body axis with respect to the operation of the drive shaft and reflects and supports the result in the design. The centrifugal force generated by the imbalance is determined from the mass of the cylindrical rotor and the rotational speed of the cylindrical rotor, and the friction load in contact with the surface of the cylindrical rotor is varied according to the deformation of the support part of the cylindrical rotor due to the centrifugal force. And calculating a disturbance torque due to gravity from the amount of eccentricity of the position of the center of gravity of the cylindrical rotating body shaft and the inertia moment of the cylindrical rotating body, and adding the disturbance torque to the torque load of the cylindrical rotating body shaft. A first step of obtaining an analytical model for varying a frictional load in contact with the surface of the cylindrical rotary body in accordance with the amount of deflection of the cylindrical rotary body; and a cylindrical rotary body drive system based on the centrifugal force based on the analytical model. And a second step of analyzing the speed fluctuation of the cylindrical rotating body drive system due to the eccentric amount of the position of the center of gravity and the deflection amount of the cylindrical rotating body.
【0024】すなわち,円筒回転体軸の偏心による重力
外乱トルクと円筒回転体表面の振れに伴う接触部の摩擦
負荷変動と遠心力の振れまわりに伴う接触部の摩擦負荷
変動を円筒回転体軸に加えるようにモデル化し,解析す
ることにより,偏心による重力外乱トルクと円筒回転体
表面の振れと遠心力の触れまわりに伴う接触部の摩擦負
荷変動による円筒回転体ベルト駆動系へ及ぼす影響(速
度変動)を解析で明らかにし,この結果に基づいて設計
時における支援を行う。That is, the gravitational disturbance torque due to the eccentricity of the shaft of the cylindrical rotating body, the frictional load fluctuation of the contacting part due to the vibration of the surface of the cylindrical rotating body, and the fluctuation of the frictional load of the contacting part due to the whirling of the centrifugal force are applied to the cylindrical rotating body shaft. By adding a model and analyzing it, the effect on the belt drive system of the cylindrical rotating body belt due to the frictional load fluctuation of the contact part due to the contact of the gravitational disturbance torque due to eccentricity, the vibration of the cylindrical rotating body surface and the centrifugal force (speed fluctuation) ) Is clarified by analysis, and based on this result, support is provided during design.
【0025】また,請求項7に係る円筒回転体駆動系の
伝動ベルト設計支援方法にあっては,前記円筒回転体軸
の偏心量は,前記円筒回転体軸上に装着されるフライホ
イールの中心穴径と前記円筒回転体軸の軸径との隙間に
より求めるものである。According to a seventh aspect of the present invention, the eccentricity of the shaft of the cylindrical rotating body is set at the center of the flywheel mounted on the shaft of the cylindrical rotating body. It is determined from the gap between the hole diameter and the shaft diameter of the cylindrical rotating body shaft.
【0026】すなわち,円筒回転体軸の偏心量算出にお
いて,円筒回転体軸に取付けられるフライホイールの取
付け穴径と円筒回転体軸の軸径との隙間より求めること
により,円筒回転体軸偏心量を容易に算出することがで
き,軸径公差をパラメータにした際などの解析時の作業
効率が向上する。That is, in calculating the amount of eccentricity of the cylindrical rotating body shaft, the amount of eccentricity of the cylindrical rotating body shaft is obtained by calculating from the gap between the mounting hole diameter of the flywheel attached to the cylindrical rotating body shaft and the shaft diameter of the cylindrical rotating body shaft. Can be easily calculated, and the work efficiency at the time of analysis when the shaft diameter tolerance is used as a parameter is improved.
【0027】また,請求項8に係る円筒回転体駆動系の
伝動ベルト設計支援方法にあっては,前記円筒回転体の
駆動プーリの偏心量は,前記駆動プーリの中心穴径と前
記円筒回転体軸の軸径との隙間により求めるものであ
る。Further, in the method for assisting the design of a transmission belt for a cylindrical rotating body drive system according to claim 8, the eccentricity of the driving pulley of the cylindrical rotating body is determined by the center hole diameter of the driving pulley and the cylindrical rotating body. It is determined from the gap between the shaft and the shaft diameter.
【0028】すなわち,円筒回転体軸プールの偏心量の
算出において,円筒回転体軸に取り付けられるプーリの
取付け穴径と円筒回転体軸の軸径との隙間より求めるこ
とにより,円筒回転体軸プーリの偏心量を容易に算出こ
とができ,軸径公差をパラメータにした際などの解析時
の作業効率が向上する。That is, in calculating the amount of eccentricity of the cylindrical rotary shaft pool, the cylindrical rotary body shaft pulley is obtained by determining from the gap between the mounting hole diameter of the pulley mounted on the cylindrical rotary shaft and the shaft diameter of the cylindrical rotary shaft. The amount of eccentricity can be easily calculated, and the work efficiency at the time of analysis when the shaft diameter tolerance is used as a parameter is improved.
【0029】また,請求項9に係る円筒回転体駆動系の
伝動ベルト設計支援方法にあっては,前記解析モデルを
得る際に,伝動ベルトの接触角,プーリ半径,単位長さ
当たりの質量から求められるベルト慣性質量を前記円筒
回転体の慣性質量に加えるものである。According to a ninth aspect of the present invention, in the method for supporting the design of a transmission belt for a cylindrical rotating body drive system, when the analysis model is obtained, the contact angle of the transmission belt, the radius of the pulley, and the mass per unit length are used. The required belt inertial mass is added to the inertial mass of the cylindrical rotating body.
【0030】すなわち,伝動ベルトの接触角とプーリ径
と単位長さ当たりの質量から求められるベルト慣性質量
を円筒回転体慣性質量に加えてモデル化することによ
り,ベルト質量も考慮に入れた解析モデルが実現し,解
析精度の向上が図れ,かつ,ベルト質量の大きなモデル
において顕著な効果を奏する。That is, by modeling the inertial mass of the belt obtained from the contact angle of the transmission belt, the pulley diameter, and the mass per unit length in addition to the inertial mass of the cylindrical rotating body, an analysis model taking the belt mass into account is taken into account. Is realized, the analysis accuracy is improved, and a remarkable effect is exhibited in a model having a large belt mass.
【0031】また,請求項10に係る円筒回転体駆動系
の伝動ベルト設計支援方法にあっては,前記円筒回転体
は,画像形成装置における感光体ドラムである。According to a tenth aspect of the present invention, the cylindrical rotating body is a photosensitive drum in an image forming apparatus.
【0032】すなわち,円筒回転体駆動系の伝動ベルト
設計支援方法を画像形成装置における感光体ドラムの駆
動に適用することにより,感光体ドラムが作像時に受け
るクリーニングブレードなどの負荷を考慮した最適な駆
動系,つまり,高速および高精度の駆動系が実現し,カ
ラー画像の色合わせ精度や解像度の向上が可能となり,
さらにジターなどの副走査方向の回転ムラなどが排除可
能となり,かつその設計効率が向上する。That is, by applying the method for supporting the design of the transmission belt of the cylindrical rotating body drive system to the drive of the photosensitive drum in the image forming apparatus, an optimum load considering the load of the cleaning blade and the like which the photosensitive drum receives during image formation is considered. A drive system, that is, a high-speed and high-precision drive system is realized, and the color matching accuracy and resolution of a color image can be improved.
Furthermore, rotation unevenness in the sub-scanning direction such as jitter can be eliminated, and the design efficiency is improved.
【0033】[0033]
【発明の実施の形態】以下,本発明の円筒回転体駆動系
の伝動ベルト設計支援方法について添付図面を参照し,
詳細に説明する。なお,この実施の形態では,駆動対象
となる円筒回転体を前述した感光体ドラムを例にとって
説明する。また,以下に説明する実施の形態において,
上述の従来例と同一構成の部分は,上述の従来例に付し
た符号と同一の符号を付し,その説明は省略する。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of a driving system for a drive system of a cylindrical rotating body according to the present invention;
This will be described in detail. In this embodiment, a cylindrical rotating body to be driven will be described taking the above-described photosensitive drum as an example. In the embodiments described below,
The same components as those of the above-described conventional example are denoted by the same reference numerals as those of the above-described conventional example, and description thereof is omitted.
【0034】〔解析基本モデル〕まず,各実施の形態の
基本となるモデルについて説明する。図1は,実施の形
態に係る感光体ベルト駆動系における伝動ベルトの解析
基本モデル(理想モデル)を示す説明図であり,後述す
る各実施の形態の基本となる解析モデルである。まず,
図示の符号および運動方程式の符号について列挙する。[Basic Model for Analysis] First, a basic model of each embodiment will be described. FIG. 1 is an explanatory diagram showing an analysis basic model (ideal model) of a transmission belt in the photoreceptor belt drive system according to the embodiment, which is an analysis model serving as a basis of each embodiment described later. First,
The illustrated symbols and the symbols of the equations of motion are listed.
【0035】(1)ドラム駆動モータ部分 J1:モータ軸周りの慣性モーメント θ1:駆動プーリ3の回転角 r1:駆動プーリ3のプーリ半径 T1:駆動トルク (2)ドラム駆動プーリ部分 J2:感光体ドラム軸周りの慣性モーメント θ2:ドラム駆動プーリ4の回転角 r2:ドラム駆動プーリ4のプーリ半径 (3)アイドラプーリ部分 J3:アイドラプーリ8の慣性モーメント θ3:アイドラプーリ8の回転角 r3:アイドラプーリ8のプーリ半径 (4)モータ軸と感光体ドラム軸間のベルトのバネモデ
ル k1:剛性 c1:粘性 (5)感光体ドラム軸とアイドラプーリ軸間のベルトの
バネモデル k2:剛性 c2:粘性 (6)アイドラプーリ軸とモータ軸間のベルトのバネモ
デル k3:剛性 c3:粘性 (6)感光体ドラム1に加わる負荷 F0 :静摩擦負荷 Fa :粘性負荷係数(1) Drum drive motor part J1: Moment of inertia around motor axis θ1: Rotation angle of drive pulley 3 r1: Pulley radius of drive pulley 3 T1: Drive torque (2) Drum drive pulley part J2: Photosensitive drum Inertia moment around axis θ2: Rotation angle of drum drive pulley 4 r2: Pulley radius of drum drive pulley 4 (3) Idler pulley portion J3: Inertia moment of idler pulley 8 θ3: Rotation angle of idler pulley 8 r3: Idler pulley 8 (4) Belt spring model between motor shaft and photosensitive drum shaft k1: Rigidity c1: Viscosity (5) Belt spring model between photosensitive drum shaft and idler pulley shaft k2: Rigidity c2: Viscosity (6) Idler Spring model of belt between pulley shaft and motor shaft k3: rigidity c3: viscosity (6) Addition to photosensitive drum 1 Load F 0 : static friction load Fa : viscous load coefficient
【0036】図1において,各回転軸における釣合い式
に基づいて,運動方程式を求める。この基本モデルにお
ける運動方程式を数1に示す。In FIG. 1, an equation of motion is determined based on a balance equation for each rotation axis. Equation 1 shows the equation of motion in this basic model.
【0037】[0037]
【数1】 (Equation 1)
【0038】上述の運動方程式を用い,駆動に必要なト
ルクTや,この系に必要なタイミングベルト7の剛性k
を求めて,あるいは与えて,解析しながら設計する。Using the above equation of motion, the torque T required for driving and the rigidity k of the timing belt 7 required for this system
Is determined or given and designed while analyzing.
【0039】〔実施の形態1〕ところで,上述したモデ
ルは理想モデルあるので,実際の図面上の許容誤差(公
差)による部品精度のバラツキや組立精度のバラツキ
(積み上げ公差)などに起因する回転体の偏心が考慮さ
れていない。よって,高精度な駆動系を開発設計する場
合は,機構モデルに,この偏心による影響がのように現
れるのか,あらかじめ把握しておくことが重要となって
くる。また,制御系の設計においても機構系を正確にモ
デル化することは,制御設計における精度向上を促進さ
せることになる。[Embodiment 1] Since the above-described model is an ideal model, a rotating body caused by a variation in component accuracy due to an actual tolerance (tolerance) in the drawing, a variation in assembly accuracy (stacking tolerance), and the like. Eccentricity is not taken into account. Therefore, when developing and designing a high-precision drive system, it is important to know in advance whether the effect of this eccentricity appears in the mechanism model as follows. Also, in the design of the control system, accurately modeling the mechanical system promotes the improvement of the accuracy in the control design.
【0040】そこで,この実施の形態1では,感光体ド
ラム1軸の偏心による重力外乱トルクによる感光体ベル
ト駆動系へ及ぼす影響(速度変動)をモデル解析によっ
て明らかにし,設計効率の短縮化が可能な設計支援方法
を提供する例について述べる。Therefore, in the first embodiment, the effect (speed fluctuation) of the gravitational disturbance torque due to the eccentricity of one axis of the photosensitive drum on the photosensitive belt drive system is clarified by model analysis, and the design efficiency can be reduced. An example of providing a simple design support method will be described.
【0041】図2は,実施の形態1に係る感光体ベルト
駆動系における伝動ベルトの解析モデルを示す説明図で
ある。図示の符号および運動方程式の符号について列挙
すると, ε:感光体ドラム1の回転体重心位置と回転体軸受位置
の差 (重心位置の偏心量) δ:偏心の位相 g:重力加速度 m2:感光体ドラム回転体質量 j2’:重心位置が偏心した慣性モーメント (=j2+m2・ε・ε) である。FIG. 2 is an explanatory diagram showing an analytical model of the transmission belt in the photosensitive belt drive system according to the first embodiment. The codes shown in the drawing and the codes of the equations of motion are listed as follows: ε: difference between the position of the center of gravity of the photosensitive drum 1 and the position of the bearing of the rotating body (the amount of eccentricity of the position of the center of gravity) δ: eccentric phase g: gravitational acceleration m2: Drum rotating body mass j2 ′: moment of inertia (= j2 + m2 · ε · ε) in which the position of the center of gravity is eccentric.
【0042】ここでは,まず感光体ドラム1の偏心量と
その慣性質量とから重力による外乱トルクを求める。そ
して,この外乱トルクを感光体ドラム1のトルク負荷に
加える。Here, first, a disturbance torque due to gravity is obtained from the amount of eccentricity of the photosensitive drum 1 and its inertial mass. Then, the disturbance torque is applied to the torque load of the photosensitive drum 1.
【0043】この図2の解析モデルに対応する運動方程
式を数2に示す。また,ドラム駆動モータ2にステップ
入力を与えた場合における感光体ベルト駆動系の応答,
つまり感光体ドラム軸角速度[rad/sec]の解析
結果を図3に示す。The equation of motion corresponding to the analysis model of FIG. Also, the response of the photosensitive belt drive system when a step input is given to the drum drive motor 2,
That is, FIG. 3 shows the analysis result of the photosensitive drum shaft angular velocity [rad / sec].
【0044】[0044]
【数2】 (Equation 2)
【0045】このように,感光体ドラム1軸の偏心によ
る影響を考慮した感光体ベルト駆動系をモデル化し,解
析することにより,感光体ドラム1の慣性質量の大きさ
や,回転体の偏心量に応じて駆動させた場合の速度変動
量を把握することができる。よって,設計時において的
確な指針となるので設計期間の短縮化が実現すると共
に,制御設計の機構モデルとしても適用することができ
る。As described above, by modeling and analyzing the photosensitive belt drive system in consideration of the influence of the eccentricity of the photosensitive drum 1 axis, the magnitude of the inertial mass of the photosensitive drum 1 and the eccentric amount of the rotating body are determined. It is possible to grasp the speed fluctuation amount when driven in response. Therefore, since it provides an accurate guideline at the time of design, the design period can be shortened, and can be applied as a mechanism model for control design.
【0046】〔実施の形態2〕この実施の形態2では,
感光体ドラム1軸のプーリ偏心による感光体ベルト駆動
系へ及ぼす影響(速度変動)を解析で明らかにし,設計
支援および開発期間の短縮化,制御設計の機構モデルへ
の適用を実現する例について述べる。[Embodiment 2] In this embodiment 2,
Analysis of the effect (speed fluctuation) of the eccentricity of the pulley of one axis of the photoconductor drum on the photoconductor belt drive system is clarified by analysis, and an example of realizing design support, shortening the development period, and applying control design to a mechanical model is described. .
【0047】上述の実施の形態1は,感光体ドラム重心
と回転軸(軸受)の偏心を考慮した解析モデルであった
が,この実施の形態2は,感光体ドラム重心と回転軸は
一致しているが,感光体ドラム軸の取り付けたドラム駆
動プーリ4が偏心している場合についての解析モデルで
ある。The first embodiment is an analytical model in which the center of gravity of the photosensitive drum and the eccentricity of the rotating shaft (bearing) are taken into account. In the second embodiment, the center of gravity of the photosensitive drum coincides with the rotating shaft. However, this is an analysis model in the case where the drum drive pulley 4 to which the photosensitive drum shaft is attached is eccentric.
【0048】図4は,実施の形態2に係る感光体ベルト
駆動系における伝動ベルトの解析モデルを示す説明図で
ある。図示および運動方程式の符号のうち, εp:感光体ドラム1のドラム駆動プーリ4の偏心量 ψa(2ra),ψb(2rb):ドラム駆動プーリ4
の接触角位相 であり,他の符号は実施の形態1と同一である。FIG. 4 is an explanatory diagram showing an analytical model of the transmission belt in the photosensitive belt drive system according to the second embodiment. Eps: the eccentricity of the drum driving pulley 4 of the photosensitive drum 1 ψa (2ra), ψb (2rb): the drum driving pulley 4
The other signs are the same as in the first embodiment.
【0049】図4に示すように,ドラム駆動プーリ4が
回転するとタイミングベルト6までの半径r2が変化す
ることが分かる。この解析モデルに対応する運動方程式
を数3に示す。また,ドラム駆動モータ2にステップ入
力を与えた場合における感光体ベルト駆動系の応答(感
光体ドラム軸角速度[rad/sec]),および駆動
モータ軸角速度[rad/sec]の解析結果を図5に
示す。As shown in FIG. 4, when the drum driving pulley 4 rotates, the radius r2 up to the timing belt 6 changes. Equation 3 shows the equation of motion corresponding to this analysis model. FIG. 5 shows the response of the photosensitive belt drive system (photosensitive drum shaft angular velocity [rad / sec]) and the drive motor shaft angular velocity [rad / sec] when a step input is given to the drum drive motor 2. Shown in
【0050】[0050]
【数3】 (Equation 3)
【0051】上述した解析モデルにより,ドラム駆動プ
ーリ4の偏心が感光体ドラム1や駆動モータ軸に及ぼす
影響の度合いを把握することができる。ドラム駆動プー
リ4の偏心にかかわらず感光体ドラム1はフライホイー
ル効果(イナーシャー効果)によって速度変動が抑制さ
れ,プーリ偏心の影響がドラム駆動モータ2側で顕著と
なって現れている。The degree of influence of the eccentricity of the drum drive pulley 4 on the photosensitive drum 1 and the drive motor shaft can be grasped from the analysis model described above. Regardless of the eccentricity of the drum drive pulley 4, the speed fluctuation of the photosensitive drum 1 is suppressed by the flywheel effect (inertia effect), and the influence of the eccentricity of the pulley appears on the drum drive motor 2 side.
【0052】このように,解析モデル化し,解析を行う
ことにより,感光体ドラム軸に取り付けられたドラム駆
動プーリ4の偏心量に応じて駆動させた際の速度変動量
を把握することができる。よって,設計時において的確
な指針となるので設計期間の短縮化が実現すると共に,
制御設計の機構モデルとしても適用することができる。As described above, by making an analytical model and performing analysis, it is possible to grasp the amount of speed fluctuation when the drum driving pulley 4 attached to the photosensitive drum shaft is driven according to the amount of eccentricity. Therefore, it can provide an accurate guideline at the time of design, shortening the design period, and
It can also be applied as a mechanism model for control design.
【0053】〔実施の形態3〕この実施の形態3では,
感光体ドラム1の表面の振れに応じた接触部(クリーニ
ングブレード7)の摩擦負荷変動による感光体ベルト駆
動系へ及ぼす影響(速度変動)を解析により明らかに
し,設計支援および開発期間の短縮化,制御設計の機構
モデルへの適用を実現する例について述べる。[Embodiment 3] In this embodiment 3,
Analysis of the effect (speed fluctuation) on the photoconductor belt drive system due to the fluctuation of the frictional load of the contact portion (cleaning blade 7) in accordance with the fluctuation of the surface of the photoconductor drum 1 has been clarified by analysis, and the design support and the development period have been shortened. An example in which control design is applied to a mechanism model will be described.
【0054】さて,感光体ドラム1の表面には,転写後
の残留トナーや紙粉など不要物が付着している。この付
着している不要物をかき取るためにクリーニングブレー
ド7のエッジが所定圧で付勢されていることは先に述べ
た通りである。このとき,感光体ドラム1の表面振れが
なければ一定の摩擦負荷となる。しかし,部品精度のバ
ラツキおよび組立後のバラツキなどにより振れ自体をな
くすことは不可能である。つまり,振れの大きさは異な
るものの,摩擦負荷変動が発生することが避けられな
い。Unnecessary substances such as residual toner and paper dust after transfer adhere to the surface of the photosensitive drum 1. As described above, the edge of the cleaning blade 7 is urged at a predetermined pressure in order to scrape off the attached unnecessary matter. At this time, if there is no surface fluctuation of the photosensitive drum 1, a constant friction load is applied. However, it is impossible to eliminate the run-out itself due to variations in component accuracy and variations after assembly. That is, although the magnitude of the run-out is different, it is inevitable that the friction load fluctuates.
【0055】この摩擦力は,感光体ドラム1表面とクリ
ーニングブレード7との摩擦係数と,その抗力との積か
ら求められる。抗力は,クリーニングブレード7を支持
している板金・バネの剛性と振れ量とから求めることが
できる。This frictional force is obtained from the product of the coefficient of friction between the surface of the photosensitive drum 1 and the cleaning blade 7 and the resistance. The drag can be obtained from the rigidity and the amount of run-out of the sheet metal / spring supporting the cleaning blade 7.
【0056】図6は,実施の形態3に係る感光体ベルト
駆動系における伝動ベルトの解析モデルを示す説明図で
ある。図示の符号および運動方程式の符号のうち, εf:感光体ドラム1の振れ量 δf:振れ量の位相 kf:クリーニングブレード7の支持剛性 μ:感光体ドラム1表面とクリーニングブレード7との
摩擦係数 であり,他の符号は上述と同一である。FIG. 6 is an explanatory diagram showing an analysis model of the transmission belt in the photosensitive belt drive system according to the third embodiment. Of the symbols and the equations of motion shown in the drawing, εf: shake amount of the photosensitive drum 1 δf: phase of the shake amount kf: support rigidity of the cleaning blade 7 μ: friction coefficient between the surface of the photosensitive drum 1 and the cleaning blade 7 And the other symbols are the same as described above.
【0057】この解析モデルに対応する運動方程式は数
4に示す通りである。また,感光体ドラムの振れによる
摩擦変動の影響として,ドラム駆動モータ2にステップ
入力を与えた場合における感光体ベルト駆動系の応答
(感光体ドラム軸角速度[rad/sec])の解析結
果を図7に示す。The equation of motion corresponding to this analysis model is as shown in Equation 4. In addition, as an effect of friction fluctuation due to the vibration of the photosensitive drum, an analysis result of a response (photosensitive drum shaft angular velocity [rad / sec]) of the photosensitive belt drive system when a step input is given to the drum drive motor 2 is shown. FIG.
【0058】[0058]
【数4】 (Equation 4)
【0059】ところで,感光体ドラム1表面とクリーニ
ングブレード7との摩擦係数が小さいほど変動成分が小
さくなる。また,クリーニングブレード7のブレード圧
を低く設定すれば変動成分を小さくすることが可能とな
る。しかし,上記摩擦係数やブレード圧を小さくする
と,感光体ドラム1表面のトナーかき取り力,いわゆる
クリーニング性が低下し,残留トナーを完全に除去する
ことができなくなり,画像上に黒スジなどクリーニング
不良が発生しやすくなる。このため,このクリーニング
品質を確保しながら,感光体ドラム1の振れ量の許容値
やブレード圧を設定する。このように設計する際に,事
前に解析で概要を把握することにより,設計開発期間の
短縮化が可能となる。Incidentally, the smaller the coefficient of friction between the surface of the photosensitive drum 1 and the cleaning blade 7, the smaller the fluctuation component. Further, if the blade pressure of the cleaning blade 7 is set low, the fluctuation component can be reduced. However, when the friction coefficient and the blade pressure are reduced, the toner scraping force on the surface of the photosensitive drum 1, that is, the so-called cleaning property is reduced, and the residual toner cannot be completely removed. Is more likely to occur. For this reason, the allowable value of the amount of shake of the photosensitive drum 1 and the blade pressure are set while ensuring the cleaning quality. When designing in this way, it is possible to shorten the design development period by grasping the outline by analysis in advance.
【0060】〔実施の形態4〕この実施の形態4では,
感光体ドラム1が遠心力で振れまわる際,そのドラム表
面の振れまわり量に応じた接触部(クリーニングブレー
ド7)による摩擦負荷変動による感光体ベルト駆動系へ
及ぼす影響(速度変動)を解析により明らかにし,設計
支援および開発期間の短縮化,制御設計の機構モデルへ
の適用を実現する例について述べる。[Fourth Embodiment] In the fourth embodiment,
When the photosensitive drum 1 oscillates due to the centrifugal force, the effect (speed variation) on the photosensitive belt drive system due to the friction load variation by the contact portion (cleaning blade 7) according to the whirling amount of the drum surface is clarified by analysis. This section describes an example of design support, shortening the development period, and applying control design to a mechanism model.
【0061】すなわち,複写機やレーザプリンタなどの
画像形成装置の高速化を図るために感光体ドラム1の回
転数を高くすると,感光体ドラム軸の偏心による遠心力
が回転速度の2乗で大きくなる。そこで,この実施の形
態4では,上記遠心力を考慮した解析モデルを実現させ
る。That is, when the rotation speed of the photosensitive drum 1 is increased in order to increase the speed of an image forming apparatus such as a copying machine or a laser printer, the centrifugal force due to the eccentricity of the photosensitive drum shaft increases as the square of the rotation speed. Become. Therefore, in the fourth embodiment, an analysis model considering the centrifugal force is realized.
【0062】具体的には,感光体ドラム1を支持してい
る剛性と感光体ドラム質量,偏心量,回転速度から感光
体ドラムの遠心力による動的振れ量を算出しモデル化す
る。図8は,実施の形態4に係る感光体ベルト駆動系に
おける伝動ベルトの解析モデルを示す説明図である。図
示の符号および運動方程式の符号のうち, ε:感光体ドラム1の回転体重心位置と回転体軸受位置
の差 (重心位置の偏心量) δ:偏心の位相 m2:感光体ドラム回転体質量 j2’:重心位置が偏心した慣性モーメント (=j2+m2・ε・ε) kf:クリーニングブレード7の支持剛性 kd:感光体ドラム1の支持剛性 μ:感光体ドラム1表面とクリーニングブレード7との
摩擦係数 である。他の符号は上述と同一である。More specifically, a dynamic shake amount due to the centrifugal force of the photosensitive drum is calculated from the rigidity supporting the photosensitive drum 1 and the mass, eccentricity, and rotation speed of the photosensitive drum, and modeled. FIG. 8 is an explanatory diagram showing an analysis model of the transmission belt in the photosensitive belt drive system according to the fourth embodiment. Ε: difference between the rotational center of gravity of the photosensitive drum 1 and the bearing of the rotating body (the amount of eccentricity of the center of gravity) δ: eccentric phase m2: photosensitive drum rotating body mass j2 ': Moment of inertia in which the position of the center of gravity is eccentric (= j2 + m2 ・ ε ・ ε) kf: Supporting rigidity of cleaning blade 7 kd: Supporting rigidity of photosensitive drum 1 μ: Coefficient of friction between photosensitive drum 1 surface and cleaning blade 7 is there. Other symbols are the same as described above.
【0063】また,上記図8の解析モデルから導き出さ
れる運動方程式を数5に示す。The equation of motion derived from the analysis model shown in FIG.
【0064】[0064]
【数5】 (Equation 5)
【0065】このときの,感光体ドラムの遠心力の影響
として,ドラム駆動モータ2にステップ入力を与えた場
合における感光体ベルト駆動系の応答(感光体ドラム軸
角速度[rad/sec])の解析結果を図9に示す。
図9に示すように,感光体ドラム1を支持している剛性
が低い場合や,回転速度が大きくなると,この遠心力に
よる影響が顕著に現れることがわかる。よって,設計時
において的確な指針となるので設計期間の短縮化が実現
すると共に,制御設計の機構モデルとしても適用するこ
とができる。As an effect of the centrifugal force of the photosensitive drum at this time, analysis of the response (photosensitive drum shaft angular velocity [rad / sec]) of the photosensitive belt drive system when a step input is given to the drum drive motor 2 FIG. 9 shows the results.
As shown in FIG. 9, when the rigidity supporting the photosensitive drum 1 is low or when the rotation speed is increased, the effect of the centrifugal force is remarkable. Therefore, since it provides an accurate guideline at the time of design, the design period can be shortened, and can be applied as a mechanism model for control design.
【0066】〔実施の形態5〕この実施の形態5では,
感光体ドラム軸の偏心による重力外乱トルクと感光体ド
ラム1表面の振れに伴う接触部(クリーニングブレード
7)の摩擦負荷変動による感光体ベルト駆動系へ及ぼす
影響(速度変動)を解析により明らかにし,設計支援お
よび開発期間の短縮化,制御設計の機構モデルへの適用
を実現する例について述べる。[Fifth Embodiment] In the fifth embodiment,
Analysis of the influence (speed fluctuation) on the photoreceptor belt drive system due to the gravitational disturbance torque due to the eccentricity of the photoreceptor drum shaft and the frictional load fluctuation of the contact portion (cleaning blade 7) due to the fluctuation of the surface of the photoreceptor drum 1, This section describes an example of realizing design support, shortening the development period, and applying control design to a mechanism model.
【0067】すなわち,この実施の形態5は,上述した
実施の形態1と3とを組み合わせたものとなり,感光体
ドラム1が偏心していると共に,感光体ドラム表面に振
れがあった際の解析方法である。That is, the fifth embodiment is a combination of the first and third embodiments described above, and is an analysis method when the photosensitive drum 1 is eccentric and the photosensitive drum surface oscillates. It is.
【0068】図10は,実施の形態5に係る感光体ベル
ト駆動系における伝動ベルトの解析モデルを示す説明図
である。図示の符号および運動方程式の符号のうち, ε:感光体ドラム1の回転体重心位置と回転体軸受位置
の差 (重心位置の偏心量) δ:偏心の位相 εf:感光体ドラム1の振れ量 δf:振れ量の位相 m2:感光体ドラム回転体質量 j2’:重心位置が偏心した慣性モーメント (=j2+m2・ε・ε) kf:クリーニングブレード7の支持剛性 μ:感光体ドラム1表面とクリーニングブレード7との
摩擦係数 である。他の符号は上述と同一である。FIG. 10 is an explanatory diagram showing an analysis model of the transmission belt in the photosensitive belt drive system according to the fifth embodiment. Ε: difference between the rotational center of gravity of the photosensitive drum 1 and the bearing position of the rotating body (the amount of eccentricity of the center of gravity) δ: eccentric phase εf: the amount of vibration of the photosensitive drum 1 δf: phase of the amount of shake m2: mass of the rotating body of the photosensitive drum j2 ′: moment of inertia in which the position of the center of gravity is eccentric (= j2 + m2 ・ ε ・) kf: support rigidity of the cleaning blade 7 μ: surface of the photosensitive drum 1 and the cleaning blade It is the coefficient of friction with 7. Other symbols are the same as described above.
【0069】また,上記図10の解析モデルから導き出
される運動方程式を数6に示す。The equation of motion derived from the analysis model shown in FIG.
【0070】[0070]
【数6】 (Equation 6)
【0071】このときの,感光体ドラムの振れによる摩
擦変動および重心位置偏心による影響として,ドラム駆
動モータ2にステップ入力を与えた場合における感光体
ベルト駆動系の応答(感光体ドラム軸角速度[rad/
sec])の解析結果を図11に示す。At this time, as the influence of the friction fluctuation and the eccentricity of the position of the center of gravity caused by the vibration of the photosensitive drum, the response of the photosensitive belt drive system when a step input is given to the drum drive motor 2 (photosensitive drum shaft angular velocity [rad] /
[sec]) is shown in FIG.
【0072】ここでは,感光体ドラム1表面の振れによ
る接触部(クリーニングブレード7)の摩擦変動と偏心
による重力外乱トルクをそれぞれ独立させてモデル化し
ているので,それぞれの位相が干渉した場合の解析も行
うことができ,設計指針になると共に,制御設計のモデ
ルとしても利用することができる。Here, since the frictional fluctuation of the contact portion (cleaning blade 7) due to the vibration of the surface of the photosensitive drum 1 and the gravitational disturbance torque due to the eccentricity are modeled independently, an analysis in the case where the respective phases interfere with each other. This can be used as a design guideline and as a control design model.
【0073】なお,フライホイールの大きさで感光体ド
ラム回転体の質量と慣性モーメントを変化させ,解析結
果と測定結果の比較を行った評価例を図12に示す。
(a)はフライホールが大きい場合,(b)はフライホ
ールが小さい場合について示している。この図12か
ら,解析値(×印のグラフ)と測定値(実線のグラフ)
とがほぼ同様な結果となっていることが分かる。つま
り,解析により測定を一々行う必要がなく,解析の結果
で実機の評価をおおよそ検証することが可能となる。FIG. 12 shows an evaluation example in which the analysis result and the measurement result are compared by changing the mass and inertia moment of the photosensitive drum rotating body depending on the size of the flywheel.
(A) shows the case where the flyhole is large, and (b) shows the case where the flyhole is small. From FIG. 12, the analysis value (graph with a cross) and the measurement value (graph with a solid line)
It can be seen that the results are almost the same. In other words, it is not necessary to perform each measurement by analysis, and it is possible to roughly verify the evaluation of the actual device based on the analysis result.
【0074】〔実施の形態6〕感光体ドラム軸の偏心に
よる重力外乱とルクと感光体ドラム表面の振れに伴うう
接触部(クリーニングブレード7)の摩擦変動と遠心力
の振れまわりに伴う接触部(クリーニングブレード7)
の摩擦変動が,感光体ベルト駆動系へ及ぼす影響(速度
変動)を解析により明らかにし,設計支援および開発期
間の短縮化,制御設計の機構モデルへの適用を実現する
例について述べる。[Embodiment 6] The contact portion caused by the gravitational disturbance due to the eccentricity of the photosensitive drum shaft, the frictional change of the contact portion (cleaning blade 7) due to the luke and the shake of the photosensitive drum surface, and the swing around the centrifugal force. (Cleaning blade 7)
In this paper, we analyze the influence of the friction fluctuation of the photoreceptor on the photoreceptor belt drive system (speed fluctuation) by analysis, and describe an example of realizing the design support, shortening the development period, and applying the control design to the mechanism model.
【0075】すなわち,この実施の形態6は,上述した
実施の形態4と5とを組み合わせたものとなり,感光体
ドラム1が偏心していると共に,感光体ドラム表面に振
れがあり,かつ遠心力の影響を考慮する必要がある場合
の解析モデルである。That is, Embodiment 6 is a combination of Embodiments 4 and 5 described above, in which the photosensitive drum 1 is eccentric, the photosensitive drum surface has run-out, and the centrifugal force is reduced. This is an analysis model when it is necessary to consider the effects.
【0076】図13は,実施の形態6に係る感光体ベル
ト駆動系における伝動ベルトの解析モデルを示す説明図
である。図示の符号および運動方程式の符号のうち, ε:感光体ドラム1の回転体重心位置と回転体軸受位置
の差 (重心位置の偏心量) δ:偏心の位相 εf:感光体ドラム1の振れ量 δf:振れ量の位相 m2:感光体ドラム回転体質量 j2’:重心位置が偏心した慣性モーメント (=j2+m2・ε・ε) kf:クリーニングブレード7の支持剛性 kd:感光体ドラム1の支持剛性 μ:感光体ドラム1表面とクリーニングブレード7との
摩擦係数 である。他の符号は上述と同一である。FIG. 13 is an explanatory diagram showing an analysis model of the transmission belt in the photosensitive belt drive system according to the sixth embodiment. Ε: difference between the rotational center of gravity of the photosensitive drum 1 and the bearing position of the rotating body (the amount of eccentricity of the center of gravity) δ: eccentric phase εf: the amount of vibration of the photosensitive drum 1 δf: phase of shake amount m2: mass of photosensitive drum rotating body j2 ′: moment of inertia with eccentric gravity center position (= j2 + m2 · ε · ε) kf: support rigidity of cleaning blade 7 kd: support rigidity of photosensitive drum 1 μ : Coefficient of friction between the surface of the photosensitive drum 1 and the cleaning blade 7 Other symbols are the same as described above.
【0077】また,上記図13の解析モデルから導き出
される運動方程式を数7に示す。The equation of motion derived from the analysis model of FIG. 13 is shown in Expression 7.
【0078】[0078]
【数7】 (Equation 7)
【0079】このときの,遠心力+振れによる摩擦変動
と重心位置偏心による影響として,ドラム駆動モータ2
にステップ入力を与えた場合における感光体ベルト駆動
系の応答(感光体ドラム軸角速度[rad/sec])
の解析結果を図14に示す。At this time, the influence of the friction fluctuation due to the centrifugal force and the deflection and the eccentricity of the position of the center of gravity are considered as the effects of the drum driving motor
Of the photoconductor belt drive system when a step input is given to the photoconductor (photoconductor drum shaft angular velocity [rad / sec])
FIG. 14 shows the result of the analysis.
【0080】このように,この実施の形態6では,感光
体ドラム表面の振れ+遠心力による振れまわりによる接
触部(クリーニングブレード7)摩擦変動と偏心による
重力外乱トルクをそれぞれ独立させてモデル化している
ので,それぞれの位相が干渉した場合の解析も行うこと
ができ,設計指針になると共に,制御設計のモデルとし
ても利用することができる。As described above, in the sixth embodiment, the fluctuation of the friction of the contact portion (cleaning blade 7) due to the fluctuation of the surface of the photosensitive drum + the fluctuation due to the centrifugal force and the gravitational disturbance torque due to the eccentricity are modeled independently. Therefore, analysis can be performed when the phases interfere with each other, and can be used as a design guideline and a control design model.
【0081】〔実施の形態7〕この実施の形態7では,
回転体軸と回転体重心の位置ずれである偏心量の算出例
について説明する。[Seventh Embodiment] In the seventh embodiment,
An example of calculating the amount of eccentricity, which is the displacement between the rotating body axis and the center of rotation, will be described.
【0082】感光体ドラム軸部分を構成している部品の
中で,大きな質量と慣性モーメントを有するフライホイ
ール5が最も偏心に対する影響が大きい。そこで,この
フライホイール5の重心位置と回転体軸の位置ずれから
感光体ドラム回転体全体の偏心量を代用することができ
る。たとえば,ある複写機において,感光体ドラム回転
体質量の70%,慣性モーメントの約90%がフライホ
イール5によるものである。Among the components constituting the photosensitive drum shaft portion, the flywheel 5 having the large mass and the moment of inertia has the greatest influence on the eccentricity. Therefore, the amount of eccentricity of the entire rotating body of the photosensitive drum can be substituted from the displacement of the center of gravity of the flywheel 5 and the axis of the rotating body. For example, in a certain copying machine, the flywheel 5 accounts for 70% of the mass of the photosensitive drum rotating body and about 90% of the moment of inertia.
【0083】フライホイール5部分の偏心例について具
体的に説明する。図15は,フライホイール5の部品構
成および取付け状態を示す説明図である。図15(a)
に示すように,フライホイール5には取付け用穴(直径
D)が設けられ,このフライホイール5が取付けられる
フライホイール組立基準軸10は凸部(直径d)が感光
体ドラム軸上に設けられている。An example of eccentricity of the flywheel 5 will be specifically described. FIG. 15 is an explanatory diagram showing a component configuration and an attached state of the flywheel 5. FIG. 15 (a)
As shown in FIG. 2, the flywheel 5 is provided with a mounting hole (diameter D), and the flywheel assembly reference shaft 10 to which the flywheel 5 is mounted has a convex portion (diameter d) provided on the photosensitive drum shaft. ing.
【0084】そして,このフライホイール5をフライホ
イール組立基準軸10に取り付ける場合,手で持ちなが
ら取り付ける。このため,図15(b)に示すように,
重力によってフライホイール5の穴上側とフライホイー
ル組立基準軸10の上側が接するため,偏心量として
(D−d)/2の偏心量(隙間)が生じる(A部分参
照)。つまり,感光体ドラム回転体全体の偏心量はε=
(D−d)/2として求められる。When the flywheel 5 is mounted on the flywheel assembly reference shaft 10, it is mounted while being held by hand. Therefore, as shown in FIG.
Since the upper side of the hole of the flywheel 5 and the upper side of the flywheel assembly reference shaft 10 are in contact with each other due to gravity, an eccentricity (gap) of (D−d) / 2 occurs (see the portion A). That is, the eccentricity of the entire photosensitive drum rotating body is ε =
(D−d) / 2.
【0085】この偏心量は,穴径と軸径を設計時の図面
公差(はめあい公差)から求めたり,あるいは実測する
ことにより得ることができる。しかし,感光体ドラム回
転体全体の偏心量を測定するには,バランス修正装置な
どの測定装置が必要となり,実機がない場合は困難であ
る。このため上述のようにすれば容易に感光体ドラム回
転体の偏心量を知ることができる。The eccentricity can be obtained by calculating the hole diameter and the shaft diameter from drawing tolerances (fitting tolerances) at the time of design or by actually measuring them. However, measuring the eccentricity of the entire photosensitive drum rotating body requires a measuring device such as a balance correcting device, which is difficult without an actual machine. Therefore, the eccentricity of the photosensitive drum rotating body can be easily known by the above-described method.
【0086】〔実施の形態8〕この実施の形態8では,
感光体ドラム1と感光体ドラム1に取り付けられるドラ
ム駆動プーリ4と位置ずれである偏心量の算出例につい
て説明する。[Eighth Embodiment] In the eighth embodiment,
An example of calculating the amount of eccentricity, which is the positional deviation between the photosensitive drum 1 and the drum driving pulley 4 attached to the photosensitive drum 1, will be described.
【0087】感光体ベルト駆動系では感光体ドラム回転
体にトルクを伝達するためにタイミングベルト6とプー
リを用いている。上述した実施の形態2のようにプーリ
が偏心していると感光体ベルト駆動系に大きな影響を与
えることは先に述べた通りである。In the photosensitive belt drive system, a timing belt 6 and a pulley are used to transmit a torque to the photosensitive drum rotating body. As described above, when the pulley is eccentric as in the above-described second embodiment, it greatly affects the photosensitive belt driving system.
【0088】感光体ドラム1と感光体ドラム1に取り付
けられるドラム駆動プーリ4の偏心例について具体的に
説明する。図16は,感光体ドラムプーリ部分の部品構
成および取付け状態を示す説明図である。図16(a)
に示すように,感光体ドラム軸1aには取付け用軸(直
径dp)が設けられ,このドラム駆動プーリ4には取付
け穴(直径Dp)が設けられている。An example of eccentricity of the photosensitive drum 1 and the drum drive pulley 4 attached to the photosensitive drum 1 will be specifically described. FIG. 16 is an explanatory diagram showing a component configuration and an attached state of a photoconductor drum pulley portion. FIG. 16 (a)
As shown in FIG. 2, the photosensitive drum shaft 1a is provided with a mounting shaft (diameter dp), and the drum driving pulley 4 is provided with a mounting hole (diameter Dp).
【0089】そして,このドラム駆動プーリ4を感光体
ドラム軸1aに取り付ける場合,手で持ちながら取り付
ける。このため,図16(b)に示すように,重力によ
ってドラム駆動プーリ4の穴上側と感光体ドラム軸1a
の上側が接するため,偏心量として(Dp−dp)/2
の偏心量(隙間)が生じる。つまり,組み付け時の偏心
をドラム駆動プーリ4の偏心量として,εp=(Dp−
dp)/2として求められる。When the drum driving pulley 4 is mounted on the photosensitive drum shaft 1a, it is mounted by hand. For this reason, as shown in FIG. 16B, the upper side of the hole of the drum driving pulley 4 and the photosensitive drum shaft 1a are caused by gravity.
Are in contact with each other, the amount of eccentricity is (Dp−dp) / 2
The amount of eccentricity (gap) occurs. That is, the eccentricity at the time of assembly is defined as the amount of eccentricity of the drum driving pulley 4, and εp = (Dp−
dp) / 2.
【0090】付言すれば,ドラム駆動プーリ4は穴基準
で成形加工などで加工されているので,ピッチ円(タイ
ミングプーリのピッチ円)と取付け穴径との同軸度は高
く偏心自体は少ない。しかし,ドラム駆動プーリ4の偏
心は,組立時の軸と穴の隙間によって生じるので,この
隙間の量が偏心量となる。この偏心量は,穴径と軸径を
設計時の図面公差(はめあい公差)から容易に求めるこ
とができる。In addition, since the drum driving pulley 4 is formed by forming or the like on the basis of holes, the concentricity between the pitch circle (the pitch circle of the timing pulley) and the diameter of the mounting hole is high, and the eccentricity itself is small. However, since the eccentricity of the drum driving pulley 4 is caused by the gap between the shaft and the hole at the time of assembly, the amount of this gap is the amount of eccentricity. The amount of eccentricity can be easily obtained from the drawing tolerance (fitting tolerance) at the time of designing the hole diameter and the shaft diameter.
【0091】〔実施の形態9〕この実施の形態9では,
ベルト質量をプーリ慣性質量へ加算し,ベルト質量も考
慮した解析を実現し,解析精度を向上させる例について
説明する。[Embodiment 9] In this embodiment 9,
An example of adding the belt mass to the pulley inertia mass, realizing an analysis that also considers the belt mass, and improving the analysis accuracy will be described.
【0092】ベルト質量がプーリや回転体質量に比べて
小さければ問題ないが,大きくなったときにはベルト質
量を含むモデル化を行う必要がある。そこで,プーリと
接触しているタイミングベルト6の部分はプーリと同じ
動作をするので,接触長さ分を慣性モーメントに加え
る。この具体的な例を図17を用いて説明する。There is no problem if the mass of the belt is smaller than the mass of the pulley or the rotating body, but if it becomes larger, it is necessary to perform modeling including the mass of the belt. Therefore, the portion of the timing belt 6 that is in contact with the pulley performs the same operation as the pulley, so that the contact length is added to the moment of inertia. This specific example will be described with reference to FIG.
【0093】図において,b区間のタイミングベルト6
はフリーであるので,伸び縮みするバネとしてモデル化
してきた。a区間はベルト自身の質量がプーリの慣性モ
ーメントに比べて小さいときには省略することができる
が,質量が大きくなり,プーリ半径が大きくなると,こ
のa区間の慣性モーメントを考慮する必要がある。In the figure, the timing belt 6 in section b
Since is free, it has been modeled as a spring that expands and contracts. Section a can be omitted when the mass of the belt itself is smaller than the moment of inertia of the pulley, but when the mass increases and the pulley radius increases, the moment of inertia of section a must be considered.
【0094】接触部のベルト質量をmbp,プーリ半径
をrp,ーリ単体の慣性モーメントをJp,接触角をθ
p,単位長さ当たりのベルト質量をmoとすると,ベル
ト接触部を考慮した慣性モーメントjp’は次式によっ
て与えられる。 Jp’=Jp+mbp・rp2 =Jp+mo・θp・rp3 The belt mass of the contact portion is mbp, the radius of the pulley is rp, the moment of inertia of the core is Jp, and the contact angle is θ.
Assuming that p and the belt mass per unit length are mo, the moment of inertia jp ′ considering the belt contact portion is given by the following equation. Jp ′ = Jp + mbp · rp 2 = Jp + mo · θp · rp 3
【0095】このように,ベルト質量をモデル化し,こ
れを上述の解析に付加することにより,回転体の慣性モ
ーメントがより実際の値に近似され,正確な解析を行う
ことが可能となる。As described above, by modeling the belt mass and adding the model to the above-described analysis, the moment of inertia of the rotating body is approximated to an actual value, and accurate analysis can be performed.
【0096】[0096]
【発明の効果】以上説明したように,本発明に係る円筒
回転体駆動系の伝動ベルト設計支援方法(請求項1)に
よれば,円筒回転体軸の回転偏心量と回転体慣性モーメ
ントから重力による外乱トルクを算出し,これを円筒回
転体軸に加えるようにモデル化し,解析することによ
り,円筒回転体軸偏心量による円筒回転体ベルト駆動系
の速度変動を解析で明確化し,この結果に基づいて設計
時における支援を行うため,設計時において的確な指針
となるので設計期間の短縮化が実現すると共に,制御設
計の機構モデルとしても適用することができる。As described above, according to the power transmission belt design support method for a cylindrical rotating body drive system according to the present invention (claim 1), the gravity is determined from the rotational eccentricity of the cylindrical rotating body shaft and the rotating body inertia moment. By calculating the disturbance torque caused by the rotation, modeling it so as to add it to the axis of the cylindrical rotating body, and analyzing it, the speed fluctuation of the cylindrical rotating body belt drive system due to the eccentricity of the cylindrical rotating body axis is clarified by the analysis. Since support is provided at the time of design based on the information, it provides an accurate guideline at the time of design, so that the design period can be shortened and can be applied as a mechanism model for control design.
【0097】また,本発明に係る円筒回転体駆動系の伝
動ベルト設計支援方法(請求項2)によれば,円筒回転
体軸の駆動プーリ偏心量を考慮し,駆動プーリ回転角に
応じてプーリ半径を変更するようにモデル化し,解析す
ることにより,円筒回転体軸のプーリ偏心量が円筒回転
体ベルト駆動系へ及ぼす影響(速度変動)を解析で明ら
かにし,この結果に基づいて設計時における支援を行う
ため,設計時において的確な指針となるので設計期間の
短縮化が実現すると共に,制御設計の機構モデルとして
も適用することができる。Further, according to the power transmission belt design support method for a cylindrical rotating body drive system according to the present invention (claim 2), the eccentricity of the driving pulley of the cylindrical rotating body shaft is taken into consideration, and the pulley is adjusted according to the driving pulley rotation angle. By modeling and analyzing to change the radius, the effect (speed fluctuation) of the pulley eccentricity of the cylindrical rotating body shaft on the cylindrical rotating body belt drive system was clarified by analysis. Since the support is provided, it provides an accurate guideline at the time of design, so that the design period can be shortened and can be applied as a mechanism model for control design.
【0098】また,本発明に係る円筒回転体駆動系の伝
動ベルト設計支援方法(請求項3)によれば,円筒回転
体表面の振れ量に応じ,該円筒回転体表面に接触する摩
擦負荷を変動させるようにモデル化し,解析することに
より,円筒回転体表面の振れに応じた接触部の摩擦負荷
変動による円筒回転体ベルト駆動系へ及ぼす影響(速度
変動)を解析で明らかにし,この結果に基づいて設計時
における支援を行うため,設計時において的確な指針と
なるので設計期間の短縮化が実現すると共に,制御設計
の機構モデルとしても適用することができる。According to the transmission belt design support method for a cylindrical rotating body drive system according to the present invention (claim 3), the friction load in contact with the cylindrical rotating body surface is reduced in accordance with the amount of deflection of the cylindrical rotating body surface. By modeling and analyzing it to make it fluctuate, the effect (speed fluctuation) of the friction load fluctuation of the contact part on the belt driving system of the cylindrical rotating body due to the run-out of the surface of the cylindrical rotating body was clarified by analysis. Since support is provided at the time of design based on the information, it provides an accurate guideline at the time of design, so that the design period can be shortened and can be applied as a mechanism model for control design.
【0099】また,本発明に係る円筒回転体駆動系の伝
動ベルト設計支援方法(請求項4)によれば,円筒回転
体軸の回転体偏心によって生じる遠心力から円筒回転体
支持部材の変形量を求め,該変形量に応じて接触部の摩
擦負荷を変動させるようにモデル化し,解析することに
より,遠心力による振れまわりに応じた接触部の摩擦負
荷変動による円筒回転体ベルト駆動系へ及ぼす影響(速
度変動)を解析で明らかにし,この結果に基づいて設計
時における支援を行うため,設計時において的確な指針
となるので設計期間の短縮化が実現すると共に,制御設
計の機構モデルとしても適用することができる。Further, according to the transmission belt design support method for a cylindrical rotating body drive system according to the present invention (claim 4), the amount of deformation of the cylindrical rotating body supporting member is determined by the centrifugal force generated by the rotating body eccentricity of the cylindrical rotating body shaft. Is obtained, and the frictional load of the contact part is modeled so as to fluctuate according to the amount of deformation. The effects (speed fluctuations) are clarified by analysis, and based on this result, design assistance is provided. This provides an accurate guideline at design time, so that the design period can be shortened, and also as a control design mechanism model. Can be applied.
【0100】また,本発明に係る円筒回転体駆動系の伝
動ベルト設計支援方法(請求項5)によれば,円筒回転
体軸の偏心による重力外乱トルクと円筒回転体表面の振
れに伴う接触部の摩擦負荷変動を円筒回転体軸に加える
ようにモデル化し,解析することにより,偏心による重
力外乱トルクと円筒回転体表面の振れに伴う接触部の摩
擦負荷変動による円筒回転体ベルト駆動系へ及ぼす影響
(速度変動)を解析で明らかにし,この結果に基づいて
設計時における支援を行うため,設計時において的確な
指針となるので設計期間の短縮化が実現すると共に,制
御設計の機構モデルとしても適用することができる。According to the power transmission belt design support method for a cylindrical rotating body drive system according to the present invention (claim 5), the gravitational disturbance torque due to the eccentricity of the cylindrical rotating body shaft and the contact portion caused by the deflection of the cylindrical rotating body surface. By modeling and analyzing the fluctuation of the frictional load of the cylinder to be applied to the axis of rotation of the cylindrical body, the effect of the eccentricity on the gravitational disturbance torque and the fluctuation of the frictional load on the contact part due to the runout of the surface of the cylindrical body of rotation affects the belt drive system of the cylindrical body of rotation. The effects (speed fluctuations) are clarified by analysis, and based on this result, design assistance is provided. This provides an accurate guideline at design time, so that the design period can be shortened, and also as a control design mechanism model. Can be applied.
【0101】また,本発明に係る円筒回転体駆動系の伝
動ベルト設計支援方法(請求項6)によれば,円筒回転
体軸の偏心による重力外乱トルクと円筒回転体表面の振
れに伴う接触部の摩擦負荷変動と遠心力の振れまわりに
伴う接触部の摩擦負荷変動を円筒回転体軸に加えるよう
にモデル化し,解析することにより,偏心による重力外
乱トルクと円筒回転体表面の振れと遠心力の触れまわり
に伴う接触部の摩擦負荷変動による円筒回転体ベルト駆
動系へ及ぼす影響(速度変動)を解析で明らかにし,こ
の結果に基づいて設計時における支援を行うため,設計
時において的確な指針となるので設計期間の短縮化が実
現すると共に,制御設計の機構モデルとしても適用する
ことができる。Further, according to the power transmission belt design support method for a cylindrical rotating body drive system according to the present invention (claim 6), the gravitational disturbance torque due to the eccentricity of the cylindrical rotating body axis and the contact portion due to the deflection of the cylindrical rotating body surface. By modeling and analyzing the friction load fluctuation of the contact part and the fluctuation of the friction load of the contact part caused by the whirling of the centrifugal force, the gravitational disturbance torque due to the eccentricity, the vibration of the surface of the cylindrical rotating body and the centrifugal force are obtained by analyzing In order to clarify the effect (velocity fluctuation) of the friction load fluctuation of the contact part due to the touching of the contact part on the belt drive system of the cylindrical rotating body, and to provide assistance in the design based on this result, an accurate guideline in the design Therefore, the design period can be shortened, and it can be applied as a mechanism model for control design.
【0102】また,本発明に係る円筒回転体駆動系の伝
動ベルト設計支援方法(請求項7)によれば,円筒回転
体軸の偏心量算出において,円筒回転体軸に取付けられ
るフライホイールの取付け穴径と円筒回転体軸の軸径と
の隙間より求めるため,円筒回転体軸偏心量を容易に算
出することができ,軸径公差をパラメータにした際など
の解析時の作業効率が向上する。According to the transmission belt design support method for a cylindrical rotating body drive system according to the present invention (claim 7), in calculating the eccentricity of the cylindrical rotating body axis, the flywheel attached to the cylindrical rotating body axis is attached. Since it is obtained from the gap between the hole diameter and the shaft diameter of the cylindrical rotating body shaft, the amount of eccentricity of the cylindrical rotating body shaft can be easily calculated, and the work efficiency at the time of analysis when the shaft diameter tolerance is used as a parameter is improved. .
【0103】また,本発明に係る円筒回転体駆動系の伝
動ベルト設計支援方法(請求項8)によれば,円筒回転
体軸プールの偏心量の算出において,円筒回転体軸に取
り付けられるプーリの取付け穴径と円筒回転体軸の軸径
との隙間より求めるため,円筒回転体軸プーリの偏心量
を容易に算出ことができ,軸径公差をパラメータにした
際などの解析時の作業効率が向上する。Further, according to the transmission belt design support method for a cylindrical rotating body drive system according to the present invention (claim 8), in calculating the eccentricity of the cylindrical rotating body shaft pool, the pulley attached to the cylindrical rotating body shaft is calculated. Since it is obtained from the gap between the mounting hole diameter and the shaft diameter of the cylindrical rotating body shaft, the amount of eccentricity of the cylindrical rotating body shaft pulley can be easily calculated, and the work efficiency at the time of analysis when the shaft diameter tolerance is used as a parameter is reduced. improves.
【0104】また,本発明に係る円筒回転体駆動系の伝
動ベルト設計支援方法(請求項9)によれば,伝動ベル
トの接触角とプーリ径と単位長さ当たりの質量から求め
られるベルト慣性質量を円筒回転体慣性質量に加えてモ
デル化するため,ベルト質量も考慮に入れた解析モデル
が実現し,解析精度の向上が図れ,かつ,ベルト質量の
大きなモデルにおいて顕著な効果を奏する。According to the transmission belt design support method for a cylindrical rotating body drive system according to the present invention (claim 9), the belt inertia mass obtained from the contact angle of the transmission belt, the pulley diameter and the mass per unit length. Is modeled in addition to the inertial mass of the rotating body of the cylinder, so that an analysis model that also takes into account the belt mass is realized, the analysis accuracy can be improved, and a remarkable effect is achieved in a model with a large belt mass.
【0105】また,本発明に係る円筒回転体駆動系の伝
動ベルト設計支援方法(請求項10)によれば,円筒回
転体駆動系の伝動ベルト設計支援方法を画像形成装置に
おける感光体ドラムの駆動に適用するため,感光体ドラ
ムが作像時に受けるクリーニングブレードなどの負荷を
考慮した最適な駆動系,つまり,高速および高精度の駆
動系が実現し,カラー画像の色合わせ精度や解像度の向
上が可能となり,さらにジターなどの副走査方向の回転
ムラなどが排除可能となり,かつその設計効率が向上す
る。Further, according to the driving belt design support method for a cylindrical rotating body drive system according to the present invention (claim 10), the driving belt design support method for a cylindrical rotating body drive system can be used to drive a photosensitive drum in an image forming apparatus. As a result, an optimal drive system that takes into account the load on the photosensitive drum during image formation, such as the cleaning blade, is realized, that is, a high-speed and high-precision drive system, improving color matching accuracy and resolution of color images. This makes it possible to eliminate unevenness in rotation in the sub-scanning direction, such as jitter, and to improve the design efficiency.
【図1】実施の形態に係る感光体ベルト駆動系における
伝動ベルトの解析基本モデル(理想モデル)を示す説明
図である。FIG. 1 is an explanatory diagram showing an analysis basic model (ideal model) of a transmission belt in a photosensitive belt drive system according to an embodiment.
【図2】実施の形態1に係る感光体ベルト駆動系におけ
る伝動ベルトの解析モデルを示す説明図である。FIG. 2 is an explanatory diagram showing an analytical model of a transmission belt in the photosensitive belt drive system according to the first embodiment.
【図3】実施の形態1に係る重心位置偏心の影響(解析
結果)を示すグラフである。FIG. 3 is a graph showing the influence (analysis result) of the center of gravity eccentricity according to the first embodiment.
【図4】実施の形態2に係る感光体ベルト駆動系におけ
る伝動ベルトの解析モデルを示す説明図である。FIG. 4 is an explanatory diagram showing an analysis model of a transmission belt in a photosensitive belt drive system according to a second embodiment.
【図5】実施の形態2に係るプーリ偏心の影響(解析結
果)を示すグラフである。FIG. 5 is a graph showing an influence (analysis result) of pulley eccentricity according to the second embodiment.
【図6】実施の形態3に係る感光体ベルト駆動系におけ
る伝動ベルトの解析モデルを示す説明図である。FIG. 6 is an explanatory diagram showing an analysis model of a transmission belt in a photosensitive belt drive system according to a third embodiment.
【図7】実施の形態3に係るドラム振れによる摩擦変動
の影響(解析結果)を示すグラフである。FIG. 7 is a graph showing an influence (analysis result) of friction fluctuation due to drum runout according to the third embodiment.
【図8】実施の形態4に係る感光体ベルト駆動系におけ
る伝動ベルトの解析モデルを示す説明図である。FIG. 8 is an explanatory diagram showing an analysis model of a transmission belt in a photosensitive belt drive system according to a fourth embodiment.
【図9】実施の形態4に係る遠心力による摩擦変動の影
響(解析結果)を示すグラフである。FIG. 9 is a graph showing an influence (analysis result) of a friction change due to a centrifugal force according to the fourth embodiment.
【図10】実施の形態5に係る感光体ベルト駆動系にお
ける伝動ベルトの解析モデルを示す説明図である。FIG. 10 is an explanatory diagram showing an analytical model of a transmission belt in a photosensitive belt drive system according to a fifth embodiment.
【図11】実施の形態5に係るドラム振れによる摩擦変
動+重心位置偏心の影響(解析結果)を示すグラフであ
る。FIG. 11 is a graph showing the influence (analysis result) of friction fluctuation due to drum runout + center of gravity position eccentricity according to the fifth embodiment.
【図12】実施の形態5に係り,フライホイールの大き
さで感光体ドラム回転体の質量と慣性モーメントを変化
させ,解析結果と測定結果の比較を行った評価結果を示
すグラフであり,(a)はフライホールが大きい場合,
(b)はフライホールが小さい場合について示してい
る。FIG. 12 is a graph showing an evaluation result obtained by comparing the analysis result and the measurement result according to the fifth embodiment, in which the mass and the inertia moment of the photosensitive drum rotating body are changed depending on the size of the flywheel. a) When the flyhole is large,
(B) shows the case where the flyhole is small.
【図13】実施の形態6に係る感光体ベルト駆動系にお
ける伝動ベルトの解析モデルを示す説明図である。FIG. 13 is an explanatory diagram showing an analytical model of a transmission belt in a photosensitive belt drive system according to a sixth embodiment.
【図14】実施の形態6に係る遠心力+ドラム振れによ
る摩擦変動と重心位置偏心の影響(解析結果)を示すグ
ラフである。FIG. 14 is a graph showing an influence (analysis result) of frictional fluctuation due to centrifugal force + drum runout and eccentricity of the center of gravity position according to the sixth embodiment.
【図15】実施の形態7に係るフライホイールの部品構
成および取付け状態を示す説明図である。FIG. 15 is an explanatory diagram showing a component configuration and an attached state of a flywheel according to a seventh embodiment.
【図16】実施の形態8に係る感光体ドラムプーリ部分
の部品構成および取付け状態を示す説明図である。FIG. 16 is an explanatory diagram showing a component configuration and an attached state of a photosensitive drum pulley portion according to an eighth embodiment.
【図17】実施の形態9に係るベルトのプーリ接触部の
質量モデル化を示す説明図である。FIG. 17 is an explanatory diagram showing mass modeling of a pulley contact portion of a belt according to the ninth embodiment.
【図18】画像形成装置の感光体駆動系の概略構成を示
す説明図である。FIG. 18 is an explanatory diagram illustrating a schematic configuration of a photoconductor driving system of the image forming apparatus.
1 感光体ドラム 2 ドラム駆動モータ 3 駆動プーリ 4 ドラム駆動プーリ(従動ベルト) 5 フライホイール 6 タイミングベルト 7 クリーニングブレード 8 アイドラプーリ 10 フライホイール組立基準軸 1a 感光体ドラム軸 REFERENCE SIGNS LIST 1 photosensitive drum 2 drum drive motor 3 drive pulley 4 drum drive pulley (driven belt) 5 flywheel 6 timing belt 7 cleaning blade 8 idler pulley 10 flywheel assembly reference shaft 1a photosensitive drum shaft
Claims (10)
る駆動機構であって,前記駆動機構をモデル化し,駆動
軸の動作に対する円筒回転体軸の挙動を解析し,その結
果を設計に反映・支援する円筒回転体駆動系の伝動ベル
ト設計支援方法において,前記円筒回転体軸における重
心位置の偏心量および前記円筒回転体の慣性モーメント
から重力による外乱トルクを算出し,該外乱トルクを前
記円筒回転体軸のトルク負荷に加える解析モデルを得る
第1の工程と,前記解析モデルに基づいて前記重心位置
の偏心量に応じた円筒回転体駆動系の速度変動を解析す
る第2の工程と,を含むことを特徴とする円筒回転体駆
動系の伝動ベルト設計支援方法。1. A driving mechanism for driving a cylindrical rotating body via a transmission belt, wherein the driving mechanism is modeled, the behavior of the cylindrical rotating body with respect to the operation of the driving shaft is analyzed, and the result is reflected in the design. In the method for supporting a transmission belt of a cylindrical rotating body drive system to be supported, a disturbance torque due to gravity is calculated from an eccentric amount of a center of gravity position on the cylindrical rotating body axis and an inertia moment of the cylindrical rotating body, and the disturbance torque is converted into the cylindrical rotating body. A first step of obtaining an analytical model to be added to the torque load of the rotating body shaft, and a second step of analyzing a speed variation of the cylindrical rotating body drive system according to the eccentricity of the position of the center of gravity based on the analytical model; A drive belt design support method for a cylindrical rotating body drive system, comprising:
る駆動機構であって,前記駆動機構をモデル化し,駆動
軸の動作に対する円筒回転体軸の挙動を解析し,その結
果を設計に反映・支援する円筒回転体駆動系の伝動ベル
ト設計支援方法において,前記円筒回転体軸上に設けら
れる駆動プーリの偏心量を考慮し,前記駆動プーリの回
転角に応じてプーリ半径を変更する解析モデルを得る第
1の工程と,前記解析モデルに基づいて前記駆動プーリ
の偏心量に応じた円筒回転体駆動系の速度変動を解析す
る第2の工程と,を含むことを特徴とする円筒回転体駆
動系の伝動ベルト設計支援方法。2. A drive mechanism for driving a cylindrical rotary body via a transmission belt, wherein the drive mechanism is modeled, the behavior of the cylindrical rotary body axis with respect to the operation of the drive shaft is analyzed, and the result is reflected in the design. · An analysis model for changing the pulley radius according to the rotation angle of the driving pulley in consideration of the amount of eccentricity of the driving pulley provided on the cylindrical rotating body axis in the method for supporting the transmission belt design of the cylindrical rotating body drive system to be supported. And a second step of analyzing a speed variation of the cylindrical rotary body drive system according to the amount of eccentricity of the drive pulley based on the analysis model. A drive belt transmission belt design support method.
る駆動機構であって,前記駆動機構をモデル化し,駆動
軸の動作に対する円筒回転体軸の挙動を解析し,その結
果を設計に反映・支援する円筒回転体駆動系の伝動ベル
ト設計支援方法において,前記円筒回転体の振れ量に応
じ,前記円筒回転体の表面に接触する摩擦負荷を変動さ
せる解析モデルを得る第1の工程と,前記解析モデルに
基づいて前記円筒回転体の振れ量による円筒回転体駆動
系の速度変動を解析する第2の工程と,を含むことを特
徴とする円筒回転体駆動系の伝動ベルト設計支援方法。3. A drive mechanism for driving a cylindrical rotary body via a transmission belt, wherein the drive mechanism is modeled, the behavior of the cylindrical rotary body with respect to the operation of the drive shaft is analyzed, and the result is reflected in the design. A first step of obtaining an analytical model for varying a frictional load contacting the surface of the cylindrical rotating body according to the amount of deflection of the cylindrical rotating body, in the transmission belt design supporting method for the cylindrical rotating body drive system to be supported; Analyzing a speed variation of the cylindrical rotating body drive system due to the amount of deflection of the cylindrical rotating body based on the analysis model.
る駆動機構であって,前記駆動機構をモデル化し,駆動
軸の動作に対する円筒回転体軸の挙動を解析し,その結
果を設計に反映・支援する円筒回転体駆動系の伝動ベル
ト設計支援方法において,前記円筒回転体の回転偏心
量,前記円筒回転体の質量,前記円筒回転体の回転数か
ら不釣合いによって生じる遠心力を求め,該遠心力によ
る前記円筒回転体の支持部変形量に応じ,前記円筒回転
体の表面に接触する摩擦負荷を変動させる解析モデルを
得る第1の工程と,前記解析モデルに基づいて前記遠心
力による円筒回転体駆動系の速度変動を解析する第2の
工程と,を含むことを特徴とする円筒回転体駆動系の伝
動ベルト設計支援方法。4. A drive mechanism for driving a cylindrical rotary body via a transmission belt, wherein the drive mechanism is modeled, the behavior of the cylindrical rotary body with respect to the operation of the drive shaft is analyzed, and the result is reflected in the design. A method for supporting a transmission belt design of a driving system of a cylindrical rotating body to support, wherein a centrifugal force caused by imbalance is obtained from a rotational eccentricity of the cylindrical rotating body, a mass of the cylindrical rotating body, and a rotation speed of the cylindrical rotating body; A first step of obtaining an analytical model for varying a frictional load contacting the surface of the cylindrical rotating body in accordance with the amount of deformation of the support of the cylindrical rotating body due to centrifugal force; A second step of analyzing speed fluctuations of the rotating body drive system. A method for supporting the design of a transmission belt of a cylindrical rotating body drive system, the method comprising:
る駆動機構であって,前記駆動機構をモデル化し,駆動
軸の動作に対する円筒回転体軸の挙動を解析し,その結
果を設計に反映・支援する円筒回転体駆動系の伝動ベル
ト設計支援方法において,前記円筒回転体軸における重
心位置の偏心量および前記円筒回転体の慣性モーメント
から重力による外乱トルクを算出し,該外乱トルクを前
記円筒回転体軸のトルク負荷に加え,さらに前記円筒回
転体の振れ量に応じ,前記円筒回転体の表面に接触する
摩擦負荷を変動させる解析モデルを得る第1の工程と,
前記解析モデルに基づいて前記重心位置の偏心量および
前記円筒回転体の振れ量による円筒回転体駆動系の速度
変動を解析する第2の工程と,を含むことを特徴とする
円筒回転体駆動系の伝動ベルト設計支援方法。5. A drive mechanism for driving a cylindrical rotary body via a transmission belt, wherein the drive mechanism is modeled, the behavior of the cylindrical rotary body with respect to the operation of the drive shaft is analyzed, and the result is reflected in the design. In the method for supporting a transmission belt of a cylindrical rotating body drive system to be supported, a disturbance torque due to gravity is calculated from an eccentric amount of a center of gravity position on the cylindrical rotating body axis and an inertia moment of the cylindrical rotating body, and the disturbance torque is calculated by the cylindrical rotating body. A first step of obtaining an analytical model for varying a frictional load contacting the surface of the cylindrical rotating body in accordance with the amount of deflection of the cylindrical rotating body in addition to the torque load of the rotating body shaft;
Analyzing the eccentricity of the position of the center of gravity and the fluctuation of the speed of the cylindrical rotating body drive system due to the run-out amount of the cylindrical rotary body based on the analysis model. Power transmission belt design support method.
る駆動機構であって,前記駆動機構をモデル化し,駆動
軸の動作に対する円筒回転体軸の挙動を解析し,その結
果を設計に反映・支援する円筒回転体駆動系の伝動ベル
ト設計支援方法において,前記円筒回転体の回転偏心
量,前記円筒回転体の質量,前記円筒回転体の回転数か
ら不釣合いによって生じる遠心力を求め,該遠心力によ
る前記円筒回転体の支持部変形量に応じ,前記円筒回転
体の表面に接触する摩擦負荷を変動させ,かつ前記円筒
回転体軸における重心位置の偏心量および前記円筒回転
体の慣性モーメントから重力による外乱トルクを算出
し,該外乱トルクを前記円筒回転体軸のトルク負荷に加
え,さらに前記円筒回転体の振れ量に応じ,前記円筒回
転体の表面に接触する摩擦負荷を変動させる解析モデル
を得る第1の工程と,前記解析モデルに基づいて前記遠
心力による円筒回転体駆動系の速度変動と,前記重心位
置の偏心量および前記円筒回転体の振れ量による円筒回
転体駆動系の速度変動を解析する第2の工程と,を含む
ことを特徴とする円筒回転体駆動系の伝動ベルト設計支
援方法。6. A drive mechanism for driving a cylindrical rotary body via a transmission belt, wherein the drive mechanism is modeled, the behavior of the cylindrical rotary body with respect to the operation of the drive shaft is analyzed, and the result is reflected in the design. A method for supporting a transmission belt design of a driving system of a cylindrical rotating body to support, wherein a centrifugal force caused by an imbalance is obtained from a rotational eccentricity of the cylindrical rotating body, a mass of the cylindrical rotating body, and a rotation speed of the cylindrical rotating body; The frictional load contacting the surface of the cylindrical rotator is varied according to the amount of deformation of the support of the cylindrical rotator due to the centrifugal force, and the eccentricity of the position of the center of gravity on the axis of the cylindrical rotator and the moment of inertia of the cylindrical rotator , A disturbance torque due to gravity is calculated from the calculated torque, the disturbance torque is added to the torque load on the shaft of the cylindrical rotating body, and the frictional contact with the surface of the cylindrical rotating body is made according to the amount of deflection of the cylindrical rotating body. A first step of obtaining an analytical model for varying the frictional load, a speed variation of the cylindrical rotating body drive system due to the centrifugal force based on the analytical model, an eccentric amount of the position of the center of gravity, and a deflection amount of the cylindrical rotating body. A second step of analyzing a speed fluctuation of the cylindrical rotating body drive system.
回転体軸上に装着されるフライホイールの中心穴径と前
記円筒回転体軸の軸径との隙間により求めることを特徴
とする請求項1,4,5,6のいずれか1つに記載の円
筒回転体駆動系の伝動ベルト設計支援方法。7. The amount of eccentricity of the cylindrical rotating body shaft is determined by a gap between a center hole diameter of a flywheel mounted on the cylindrical rotating body shaft and a shaft diameter of the cylindrical rotating body shaft. A method for designing a transmission belt for a cylindrical rotating body drive system according to any one of claims 1, 4, 5, and 6.
は,前記駆動プーリの中心穴径と前記円筒回転体軸の軸
径との隙間により求めることを特徴とする請求項2に記
載の円筒回転体駆動系の伝動ベルト設計支援方法。8. The cylinder according to claim 2, wherein the amount of eccentricity of the driving pulley of the cylindrical rotating body is obtained from a gap between a center hole diameter of the driving pulley and a shaft diameter of the cylindrical rotating body shaft. Transmission belt design support method for rotating body drive system.
の接触角,プーリ半径,単位長さ当たりの質量から求め
られるベルト慣性質量を前記円筒回転体の慣性質量に加
えることを特徴とする請求項1ないし6のいずれか1つ
に記載の円筒回転体駆動系の伝動ベルト設計支援方法。9. The inertial mass of the cylindrical rotating body is obtained by adding a belt inertial mass obtained from a contact angle of a transmission belt, a pulley radius, and a mass per unit length when obtaining the analysis model. Item 7. A method for supporting the design of a transmission belt of a cylindrical rotating body drive system according to any one of Items 1 to 6.
ける感光体ドラムであることを特徴とする請求項1ない
し9のいずれか1つに記載の円筒回転体駆動系の伝動ベ
ルト設計支援方法。10. The method according to claim 1, wherein the cylindrical rotating body is a photosensitive drum in an image forming apparatus.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35180397A JPH11182638A (en) | 1997-12-19 | 1997-12-19 | Transmission belt design support method of cylindrical rotating body drive system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35180397A JPH11182638A (en) | 1997-12-19 | 1997-12-19 | Transmission belt design support method of cylindrical rotating body drive system |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11182638A true JPH11182638A (en) | 1999-07-06 |
Family
ID=18419718
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP35180397A Pending JPH11182638A (en) | 1997-12-19 | 1997-12-19 | Transmission belt design support method of cylindrical rotating body drive system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11182638A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001297121A (en) * | 2000-04-14 | 2001-10-26 | Ricoh Co Ltd | System and method for aiding design of drum rotation mechanism and storage medium with program for executing the method stored therein |
-
1997
- 1997-12-19 JP JP35180397A patent/JPH11182638A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001297121A (en) * | 2000-04-14 | 2001-10-26 | Ricoh Co Ltd | System and method for aiding design of drum rotation mechanism and storage medium with program for executing the method stored therein |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2010033002A (en) | Decelerator, device for driving rotation body, device for driving image carrier and image forming apparatus | |
EP0867777B1 (en) | Rotational body driving apparatus and an image forming apparatus in use therewith | |
JP3739463B2 (en) | Optical scanning device | |
JP3823474B2 (en) | Image carrier driving apparatus | |
JPH11182638A (en) | Transmission belt design support method of cylindrical rotating body drive system | |
JP5339752B2 (en) | Oscillator device and manufacturing method thereof, optical deflector, and image forming apparatus | |
JPH06264970A (en) | Drive device of rotator in picture image output apparatus | |
JP3820378B2 (en) | Belt drive modeling method | |
JP2000039807A (en) | Method for supporting drum rotating mechanism design | |
JP2000267374A (en) | Driving device for photoreceptor drum | |
US9188931B2 (en) | Vibration type driving apparatus and image forming apparatus | |
JP4968932B2 (en) | Optical deflection apparatus and optical scanning apparatus | |
JP2012229708A (en) | Planetary gear train, rotary drive device and image forming apparatus | |
JP2000207431A (en) | Support device for designing mechanism of driving belt | |
JPH06133122A (en) | Image forming output device | |
JPH11338312A (en) | Driving device for image forming body and image forming device | |
JP2000267502A (en) | Rotary drum device and image forming device | |
JPH0695562A (en) | Rotor driving device | |
JP3258393B2 (en) | Image output equipment | |
JP2016017992A (en) | Rotating body driving device and image forming apparatus | |
JP3298980B2 (en) | Optical scanning device | |
JPH0695564A (en) | Rotor driving device | |
JPH0683122A (en) | Driving device for rotating body | |
JPH0695567A (en) | Rotor driving device | |
JP2005223994A (en) | Oscillatory type actuator and image processing apparatus |