JPH11181546A - Structural steel for welding, excellent in toughness at low temperature, fracture toughness, and fatigue characteristic, and its production - Google Patents

Structural steel for welding, excellent in toughness at low temperature, fracture toughness, and fatigue characteristic, and its production

Info

Publication number
JPH11181546A
JPH11181546A JP36482797A JP36482797A JPH11181546A JP H11181546 A JPH11181546 A JP H11181546A JP 36482797 A JP36482797 A JP 36482797A JP 36482797 A JP36482797 A JP 36482797A JP H11181546 A JPH11181546 A JP H11181546A
Authority
JP
Japan
Prior art keywords
less
steel
toughness
ferrite
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP36482797A
Other languages
Japanese (ja)
Inventor
Hidesato Mabuchi
秀里 間渕
Tadashi Ishikawa
忠 石川
Riyuuji Uemori
龍治 植森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP36482797A priority Critical patent/JPH11181546A/en
Publication of JPH11181546A publication Critical patent/JPH11181546A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a steel product in which toughness at low temp. and fracture toughness of steel are remarkably improved by modification of the structure in the range from the surface layer part of steel plate to the central part into superfine grains and also fatigue characteristic is improved by the increase in the density of texture of steel, and its production. SOLUTION: This steel product has a composition consisting of, by weight, 0.04-0.2% C, 0.01-1.0% Si, 0.3-2.0% Mn, <=0.025% P, <=0.025% S, and the balance iron with inevitable impurities and also has a structure having, in the whole or >=80% of the steel, <=0.5 μm cementite phases in the grain boundaries and/or subgrain boundaries and also having <=5% pearlite fraction and composed essentially of ferrite or bainite of <=3 μm average grain size.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は造船・建築・橋梁・
タンク及び圧力容器等の大型鋼構造物向けの低温靱性・
破壊靱性・疲労特性に優れた溶接用構造用鋼及びその製
造方法に関する。更に、本発明で得られた溶接用構造用
鋼を用いた切断・加工部品又は鋼管やコラム等の二次加
工品にも適用可能である。
TECHNICAL FIELD The present invention relates to shipbuilding, architecture, bridges,
Low temperature toughness for large steel structures such as tanks and pressure vessels
The present invention relates to a structural steel for welding having excellent fracture toughness and fatigue properties and a method for producing the same. Further, the present invention can be applied to a cut / processed part using the structural steel for welding obtained in the present invention or a secondary processed product such as a steel pipe or a column.

【0002】[0002]

【従来の技術】近年の鋼構造物の軽量化又は鋼構造物の
大型化に伴って使用される鋼に対する要求は一段と厳し
くなっている。その為に低温靱性・破壊靱性及び疲労特
性の向上が望まれ、種々の従来技術が提案されているが
必ずしも期待に応えられていないのが実状である。
2. Description of the Related Art In recent years, the demand for steel used with the weight reduction of steel structures or the enlargement of steel structures has become more severe. Therefore, improvement in low-temperature toughness, fracture toughness, and fatigue properties has been desired, and various conventional techniques have been proposed but have not always met expectations.

【0003】即ち、従来技術としては鉄鋼協会・材料と
プロセス、No.6(1990)、P.1796又は特
公平6−4903号公報(吉江特許)、特公平7−59
67号公報(野見山特許)、特開平5−271861号
公報(石川特許)等がある。
[0003] That is, as the prior art, the Iron and Steel Institute, Materials and Processes, No. 6 (1990); 1796 or JP-B-6-4903 (Yoshie patent), JP-B 7-59
No. 67 (Nomiyama patent) and Japanese Patent Application Laid-Open No. 5-271861 (Ishikawa patent).

【0004】鉄鋼協会・材料とプロセス、No.6(1
990)、P.1796の技術は通常の加工熱処理の繰
り返しによって、冷却停止温度500℃の場合に限って
3μm以下の超微細ポリゴナルフェライト粒を得たもの
であるが、少量のパーライトの影響及び粗大な粒界セメ
ンタイトの存在によって低温靱性の改善は全く認められ
ていない。
The Iron and Steel Institute of Japan, Materials and Processes, No. 6 (1
990), p. The technique of 1796 obtains ultrafine polygonal ferrite grains of 3 μm or less only at the cooling stop temperature of 500 ° C. by repeating ordinary thermomechanical treatment, but the effect of a small amount of pearlite and coarse grain boundary cementite No improvement in low-temperature toughness was observed at all due to the presence of.

【0005】特公平6−4903号公報記載の厚鋼板と
その製造法は厚鋼板の両表面において1/8t以上で5
μm以下のフェライト結晶粒が面積率で50%以上存在
する事を特徴とする脆性き裂伝播停止特性(アレスト
性)の優れた厚鋼板及びその製造法であるが、鋼板中心
部においてフェライト結晶粒の微細化は全くなされてい
なかった。更に、炭化物のフェライト粒成長の抑制(ピ
ンニング)に及ぼす影響を全く考慮していない為に、厚
鋼板の両表面におけるフェライト粒の微細粒化でさえも
必ずしも確保できていなかった。一方、厚鋼板の両表面
の復熱時における圧延中又は圧延終了後にAc3を越え
る温度まで復熱させる事を技術思想とする為に、γに再
び逆変態させた事によってフェライトの微細粒化の効果
が損なわれていた。更に、パーライトの影響についての
記載が一切ないばかりか、復熱時に微細析出したセメン
タイトがγ化時に再固溶する結果、γのフェライト+パ
ーライト変態によってパーライト面積率が著しく増加し
ていたものと思料される。他方、Nb・Tiを含有する
鋳片の再加熱においてAc3以上に加熱する規定及びN
b・Tiはオーステナイト結晶粒の細粒化に有効との一
般的な記載はあるものの、厚鋼板の両表面の細粒化時に
おけるNb・Ti・Taの存在状態及びそれらの炭窒化
物のフェライト粒のピンニングに及ぼす影響についての
技術思想のみならず、その開示は全くない。
[0005] The thick steel plate described in Japanese Patent Publication No. 6-4903 and the method of manufacturing the same are disclosed in US Pat.
This is a thick steel plate excellent in brittle crack propagation arrestability (arrestability) characterized in that 50% or more of an area ratio of ferrite crystal grains of μm or less is present, and a ferrite crystal grain is formed at the center of the steel sheet. Has not been made at all. Furthermore, since no consideration is given to the effect of carbides on the suppression of ferrite grain growth (pinning), even fine ferrite grains on both surfaces of a thick steel plate cannot always be ensured. On the other hand, in order to technical idea that for recuperator to a temperature in excess of Ac 3 during or after completion of rolling the rolling at recuperated when both surfaces of the steel plate, the fine ferrite by obtained by reverse transformed again γ granulation The effect of was lost. Furthermore, not only is there no description of the effect of pearlite, but the cementite finely precipitated at the time of reheating is re-dissolved at the time of γ formation, and as a result, the pearlite area ratio is remarkably increased by γ ferrite + pearlite transformation. Is done. On the other hand, defines and N is heated to Ac 3 or more in the reheating of the slab containing Nb · Ti
Although there is a general description that b.Ti is effective in refining austenite crystal grains, the existence state of Nb.Ti.Ta and the ferrite of their carbonitrides at the time of refining both surfaces of a thick steel plate There is no disclosure, not only of the technical idea on the effect on the grain pinning.

【0006】特公平7−5967号公報記載の製造方法
は鋳片のAc3点以上の温度から水冷して鋳片の表裏面
1/3t以上をAr3以下に冷却した後に、復熱が完了
する迄に仕上げ圧延を開始してAc3点以下で仕上げ圧
延完了した後に該表裏面を更にAc3点以上に復熱する
事を特徴とする脆性亀裂伝播特性(アレスト性)に優れ
た鋼板の製造方法である。然し、該発明には鋼板中心部
においてフェライト結晶粒を微細化する技術思想が全く
ないとともに、粗圧延の思想が全くなく鋼材を製造する
現実性に欠けていた。又、鋳片の表裏面の復熱時におけ
る仕上げ圧延終了後にAc3を越える温度まで復熱させ
る事を技術思想とする為に、γに再び逆変態させた事に
よりフェライトの細粒化の効果が損なわれるばかりか、
パーライト面積率も著しく増加していた。況や、鋼板の
表裏面の微細粒化時におけるC又はNb・Ti・Taの
存在状態の記載及びセメンタイト又はそれらの炭窒化物
による微細粒フェライトのピンニングに及ぼす影響につ
いての技術思想のみならず、その記載は一切ない。
[0006] In the manufacturing method described in Japanese Patent Publication No. 7-5967, after the slab is cooled with water from a temperature of three or more points of Ac to cool more than one- third t of the front and back surfaces of the slab to Ar 3 or less, reheating is completed. The steel plate having excellent brittle crack propagation characteristics (arrestability), characterized in that the finish rolling is started before finishing and the finish rolling is completed at Ac 3 points or less, and then the front and back surfaces are further reheated to Ac 3 points or more. It is a manufacturing method. However, the invention has no technical idea to refine the ferrite crystal grains in the central part of the steel sheet, and lacks the idea of rough rolling at all, and lacks the reality of manufacturing a steel material. Further, in order to that for recuperator to a temperature in excess of Ac 3 after the end of the final rolling at recuperated on the front and back surfaces of the slab and technical idea, the effect of grain refinement of the ferrite by obtained by reverse transformed again into γ Not only is spoiled,
The pearlite area ratio also increased significantly. Not only the description of the state of the presence of C or Nb.Ti.Ta at the time of fine graining of the front and back surfaces of the steel sheet and the technical idea about the effect of cementite or their carbonitride on the fine grain ferrite pinning, There is no description.

【0007】特開平5−271861号公報記載の鋼と
その製造方法は鋼板の表裏層部2%以上で平均円相当粒
径が3μm以下のフェライトもしくはベーナイト組織を
主体として0.6μm以下の球状炭化物相より構成され
る組織を特徴とする脆性破壊伝播停止特性(アレスト
性)の良い溶接用構造用鋼とその製造方法であるが、鋼
板中心部におけるフェライト結晶粒を超微細化する技術
思想は全くなかった。又、微細な球状炭化物の形成法と
そのピンニングに及ぼす影響が不明確な為に、その表層
組織おける超微細粒化効果の安定性及び後続の熱履歴に
よる結晶粒のバラツキでさえも必ずしも満足できるもの
ではなかった。更に、パーライトの影響についての開示
が全くない上に、鋼板の表裏層部の微細粒化時における
Nb・Ti・Taの存在状態及びそれらの炭窒化物によ
る超微細粒フェライトのピンニングに及ぼす影響につい
ての技術思想ばかりかその記載は一切ない。
The steel described in Japanese Patent Application Laid-Open No. Hei 5-271861 and a method for producing the same are mainly composed of a ferrite or bainite structure having an average equivalent circle diameter of 3 μm or less and a spherical carbide having a diameter of 0.6 μm or less. This is a welding structural steel with good brittle fracture arrestability (arrestability) characterized by a structure composed of phases and a method of manufacturing the same. However, there is no technical idea to ultra-fine ferrite grains in the center of the steel sheet. Did not. In addition, since the method of forming fine spherical carbides and its influence on pinning are unclear, the stability of the ultrafine graining effect in the surface layer structure and even the variation of crystal grains due to the subsequent heat history can always be satisfied. It was not something. Furthermore, there is no disclosure of the effect of pearlite, and the existence of Nb, Ti, and Ta during the fine-graining of the front and back layers of the steel sheet and their effects on the pinning of ultrafine-grain ferrite by carbonitride. There is no description of it, not only the technical thought of the company.

【0008】上記の従来技術では、鋼板中心部おいてフ
ェライト若しくはベーナイトを中心とする組織を超細粒
化する事が全く出来ていなかった。更に鋼板の表裏層部
でさえもその組織の超微細粒化が安定して達成できない
結果、低温靱性の改善が不十分であり、脆性亀裂破壊特
性(アレスト性)の向上も不十分であるとともに疲労特
性(疲労強度・腐食疲労強度)の大幅な改善は不可能で
あった。
[0008] In the above-mentioned prior art, it was not possible at all to ultrafine-grain a structure mainly composed of ferrite or bainite at the center of the steel sheet. Further, even in the front and back layers of the steel sheet, the ultrafine graining of the structure cannot be stably achieved, resulting in insufficient improvement in low-temperature toughness and insufficient improvement in brittle crack fracture characteristics (arrestability). Significant improvement in fatigue properties (fatigue strength / corrosion fatigue strength) was not possible.

【0009】[0009]

【発明が解決しようとする課題】本発明の目的は鋼材全
体における低温靱性・破壊靱性を抜本的に改善するとと
もに併せて古くて新しい問題であった疲労特性の大幅な
向上を目指すものである。更に、鋼の表層部ばかりか中
心部を含む鋼材の全体若しくは鋼材の大部分(80%以
上)における超微細粒化を安定して達成する事を目的と
する。
SUMMARY OF THE INVENTION An object of the present invention is to drastically improve low temperature toughness and fracture toughness of a steel material as a whole, and at the same time, to greatly improve fatigue characteristics, an old and new problem. It is a further object of the present invention to stably achieve ultra-fine graining of the entire steel material including the central portion as well as the surface layer portion of the steel or most (80% or more) of the steel material.

【0010】即ち、本発明は鋼板の表層部から中心部ま
での組織を超微細粒に改質する事によって、従来技術の
欠点を効果的にを改善して、鋼の低温靱性及び破壊靱性
(脆性破壊き裂の発生特性及びアレスト性)を著しく向
上するとともに、鋼材の集合組織密度の増加によって疲
労特性(疲労強度及び腐食疲労強度)に優れた鋼材及び
その製造方法を提供する事を課題とする。
That is, the present invention effectively improves the disadvantages of the prior art by modifying the structure from the surface layer to the center of the steel sheet into ultrafine grains, thereby improving the low-temperature toughness and fracture toughness of the steel. It is an object of the present invention to provide a steel material excellent in fatigue characteristics (fatigue strength and corrosion fatigue strength) by increasing the texture density of the steel material, while significantly improving brittle fracture crack initiation characteristics and arrestability) and a method of manufacturing the same. I do.

【0011】更に、製造コストを大きく上昇させる高価
なNi等の元素を多用する事なく、低温靱性及び破壊靱
性の良好な鋼及びその製造方法を提供する事も併せて産
業上の課題とする。
Another object of the present invention is to provide a steel excellent in low-temperature toughness and fracture toughness and a method for producing the same without using a lot of expensive elements such as Ni which greatly increase the production cost.

【0012】[0012]

【課題を解決するための手段】本発明は鋼材の全体若し
くは鋼材の大部分(80%以上)における鋼組織をフェ
ライト結晶粒界及び/又は結晶亜粒界に0.5μm以下
のセメンタイト及び/又はNb・Ti・Taの炭窒化物
を析出せしめて、フェライト又はベーナイトを主体とす
る組織を平均粒径で3μm以下の超微細粒に改質すると
ともにパーライト分率を5%以下とする事によって、低
温靱性・破壊靱性及び疲労特性に優れた構造用鋼または
溶接用構造用鋼とその製造方法を提供する。
According to the present invention, a steel structure in the entire steel material or most of the steel material (80% or more) is formed at a ferrite grain boundary and / or a sub-grain boundary with cementite and / or 0.5 μm or less. By precipitating carbonitrides of Nb, Ti, and Ta to modify the structure mainly composed of ferrite or bainite to ultrafine particles having an average particle size of 3 µm or less and to reduce the pearlite fraction to 5% or less, Provided is a structural steel or a structural steel for welding having excellent low-temperature toughness, fracture toughness and fatigue properties, and a method for producing the same.

【0013】本発明の要旨とするところは以下の通りで
ある。
The gist of the present invention is as follows.

【0014】(1) 重量%で、 C:0.04〜0.2%、 Si:0.01〜1.0%、 Mn:0.3〜2.0%、 P:0.025%以下、 S:0.025%以下 の成分を有し残部鉄及び不可避的不純物からなり、鋼材
の全体若しくは80%以上において結晶粒界及び/又は
結晶亜粒界に0.5μm以下のセメンタイト相を有し、
パーライト分率が5%以下で、平均粒径が3μm以下の
フェライト若しくはベーナイトを主体とする組織で構成
される事を特徴とする低温靱性・破壊靱性及び疲労特性
に優れた溶接用構造用鋼。
(1) In weight%, C: 0.04 to 0.2%, Si: 0.01 to 1.0%, Mn: 0.3 to 2.0%, P: 0.025% or less S: 0.025% or less, the balance being iron and unavoidable impurities, and having a cementite phase of 0.5 μm or less at the crystal grain boundary and / or sub-grain boundary in the whole steel or 80% or more. And
A welding structural steel having excellent low-temperature toughness, fracture toughness, and fatigue properties, characterized by having a structure mainly composed of ferrite or bainite having a pearlite fraction of 5% or less and an average grain size of 3 μm or less.

【0015】(2) 重量%で、 C:0.04〜0.2%、 Si:0.01〜1.0%、 Mn:0.3〜2.0%、 P:0.025%以下、 S:0.025%以下、 Sol.Al:0.005〜0.2% の成分を基本成分として、 Nb:0.005〜0.1%、 Ti:0.005〜0.05%、 Ta:0.005〜0.05% の一種又は二種以上を含有し残部鉄及び不可避的不純物
からなり、鋼材の全体若しくは80%以上において結晶
粒界及び/又は結晶亜粒界に0.5μm以下のセメンタ
イト及びNb・Ti・Taの一種又は二種以上の炭窒化
物相を有し、パーライト分率が5%以下で、平均粒径が
3μm以下のフェライト若しくはベーナイトを主体とす
る組織で構成される事を特徴とする低温靱性・破壊靱性
及び疲労特性に優れた溶接用構造用鋼。
(2) By weight%, C: 0.04 to 0.2%, Si: 0.01 to 1.0%, Mn: 0.3 to 2.0%, P: 0.025% or less , S: 0.025% or less, Sol. Al: 0.005 to 0.2% as a basic component, Nb: 0.005 to 0.1%, Ti: 0.005 to 0.05%, Ta: 0.005 to 0.05% One or two or more kinds, the balance being iron and unavoidable impurities, and in the whole or 80% or more of the steel material, at least 0.5 μm of cementite and Nb · Ti · Ta at grain boundaries and / or sub-grain boundaries. Or low-temperature toughness / fracture characterized by having a structure mainly composed of ferrite or bainite having two or more carbonitride phases, a pearlite fraction of 5% or less, and an average grain size of 3 μm or less. Structural steel for welding with excellent toughness and fatigue properties.

【0016】(3) 重量%で、 Cu:0.05〜1.0%、 Ni:0.1〜10.0%、 Cr:0.03〜1.0%、 Mo:0.05〜1.0%、 V:0.01〜0.4%、 B:0.0002〜0.002% の一種又は二種以上を含有せしめた事を特徴とする前記
(1)又は(2)記載の低温靱性・破壊靱性及び疲労特
性に優れた溶接用構造用鋼。
(3) Cu: 0.05 to 1.0%, Ni: 0.1 to 10.0%, Cr: 0.03 to 1.0%, Mo: 0.05 to 1% by weight 1.0%, V: 0.01 to 0.4%, B: 0.0002 to 0.002% one or more of the above (1) or (2). Structural steel for welding with excellent low-temperature toughness, fracture toughness and fatigue properties.

【0017】(4) 重量%で、 C:0.04〜0.2%、 Si:0.01〜1.0%、 Mn:0.3〜2.0%、 P:0.025%以下、 S:0.025%以下 の成分を有し残部鉄及び不可避的不純物からなる鋼又は
鋼の素材をAc3点以上に加熱してCを固溶させた状態
で、熱間加工の前又は途中でその時点における表層から
鋼板厚の70%以上の領域を3℃/秒以上の冷却速度で
フェライト分率が50%以上となる温度まで冷却してC
を過飽和に固溶せしめたる後に、当該表層領域を再加熱
させる過程において(Ac1点−100℃)以上の温度
から熱間加工を開始又は再開して、(Ac3点−100
℃)〜Ac3点の範囲で熱間加工を終了し、引き続いて
当該表層領域をAc3点以上に復熱させる事なく冷却し
て、鋼材の全体若しくは80%以上において結晶粒界及
び/又は結晶亜粒界に0.5μm以下に析出させたセメ
ンタイト相を有し、パーライト分率が5%以下で、平均
粒径が3μm以下のフェライト若しくはベーナイトを主
体とする組織で構成される事を特徴とする低温靱性・破
壊靱性及び疲労特性に優れた溶接用構造用鋼の製造方
法。
(4) C: 0.04 to 0.2%, Si: 0.01 to 1.0%, Mn: 0.3 to 2.0%, P: 0.025% or less by weight% S: A steel or a steel material having a composition of 0.025% or less and consisting of iron and unavoidable impurities is heated to three or more Ac to form a solid solution with C before hot working or On the way, a region of 70% or more of the thickness of the steel sheet from the surface layer at that time is cooled at a cooling rate of 3 ° C./second or more to a temperature at which the ferrite fraction becomes 50% or more.
After the solid solution is supersaturated, hot working is started or restarted from a temperature of (Ac 1 point-100 ° C.) or higher in the process of reheating the surface layer region, and (Ac 3 point-100
° C.) to exit the hot working range of to Ac 3 point, subsequently the surface layer region is cooled without causing recuperation in the Ac 3 point or more, the grain boundaries and / or in the entire steel or 80% It has a cementite phase precipitated to 0.5 μm or less at the crystal sub-grain boundaries, has a pearlite fraction of 5% or less, and has a structure mainly composed of ferrite or bainite with an average grain size of 3 μm or less. For producing welding structural steel having excellent low-temperature toughness, fracture toughness and fatigue properties.

【0018】(5) 重量%で、 C:0.04〜0.2%、 Si:0.01〜1.0%、 Mn:0.3〜2.0%、 P:0.025%以下、 S:0.025%以下、 Sol.Al:0.005〜0.2% の成分を基本成分として、 Nb:0.005〜0.1%、 Ti:0.005〜0.05%、 Ta:0.005〜0.05% の一種又は二種以上を含有し残部鉄及び不可避的不純物
からなる鋼又は鋼の素材をAc3点以上に加熱してC及
びNb・Ti・Taの一種又は二種以上を固溶させた状
態で、熱間加工の前又は途中でその時点における表層か
ら鋼板厚の70%以上の領域を3℃/秒以上の冷却速度
でフェライト分率が50%以上となる温度まで冷却して
C及びNb・Ti・Taの一種又は二種以上を過飽和に
固溶せしめたる後に、当該表層領域を再加熱させる過程
において(Ac1点−100℃)以上の温度から熱間加
工を開始又は再開して、(Ac3点−100℃)〜Ac3
点の範囲で熱間加工を終了し、引き続いて当該表層領域
をAc3点以上に復熱させる事なく冷却して、鋼材の全
体若しくは80%以上において結晶粒界及び/又は結晶
亜粒界に0.5μm以下に析出させたセメンタイト及び
Nb・Ti・Taの一種又は二種以上の炭窒化物相を有
し、パーライト分率が5%以下で、平均粒径が3μm以
下のフェライト若しくはベーナイトを主体とする組織で
構成される事を特徴とする低温靱性・破壊靱性及び疲労
特性に優れた溶接用構造用鋼の製造方法。
(5) By weight%, C: 0.04 to 0.2%, Si: 0.01 to 1.0%, Mn: 0.3 to 2.0%, P: 0.025% or less , S: 0.025% or less, Sol. Al: 0.005 to 0.2% as a basic component, Nb: 0.005 to 0.1%, Ti: 0.005 to 0.05%, Ta: 0.005 to 0.05% In a state where one or two or more kinds of C and Nb, Ti, and Ta are solid-dissolved by heating a steel or a steel material containing one or more kinds and a balance of iron and unavoidable impurities to three or more points of Ac. Before or during hot working, a region of 70% or more of the steel sheet thickness from the surface layer at that time is cooled at a cooling rate of 3 ° C./second or more to a temperature at which the ferrite fraction becomes 50% or more, and C and Nb · After one or two or more of Ti and Ta are dissolved in supersaturation, hot working is started or restarted from a temperature of (Ac 1 point-100 ° C.) or more in the process of reheating the surface layer region, Ac 3 points-100 ° C)-Ac 3
The hot working is completed within the range of the point, and subsequently, the surface layer is cooled without reheating to the Ac 3 point or more, and the whole or 80% or more of the steel material becomes a crystal grain boundary and / or a crystal sub-grain boundary. Ferrite or bainite having one or two or more carbonitride phases of cementite and Nb.Ti.Ta precipitated to 0.5 μm or less, having a pearlite fraction of 5% or less, and an average particle size of 3 μm or less. A method for producing a welding structural steel having excellent low-temperature toughness, fracture toughness, and fatigue characteristics, characterized by being composed of a main structure.

【0019】(6) 熱間加工の終了後、引き続いて当
該表層領域をAc3点以上に復熱させる事なく、冷却速
度が5℃/秒以上で加速冷却又は直接焼き入れする事を
特徴とする前記(4)又は(5)記載の低温靱性・破壊
靱性及び疲労特性に優れた溶接用構造用鋼の製造方法。
(6) After the completion of the hot working, the surface region is accelerated cooling or directly quenched at a cooling rate of 5 ° C./sec or more without reheating the surface region to 3 or more Ac points. The method for producing a structural steel for welding according to the above (4) or (5), which is excellent in low-temperature toughness, fracture toughness and fatigue properties.

【0020】(7) 加速冷却又は直接焼き入れ終了後
に引き続いて、焼戻しする事を特徴とする前記(6)記
載の低温靱性・破壊靱性及び疲労特性に優れた溶接用構
造用鋼の製造方法。
(7) The method for producing a structural steel for welding having excellent low-temperature toughness / fracture toughness and fatigue characteristics according to the above (6), wherein tempering is performed after accelerated cooling or direct quenching is completed.

【0021】(8) 重量%で、 Cu:0.05〜1.0%、 Ni:0.1〜10.0%、 Cr:0.03〜1.0%、 Mo:0.05〜1.0%、 V:0.01〜0.4%、 B:0.0002〜0.002% の一種又は二種以上を含有せしめた事を特徴とする前記
(4)〜(7)のいずれかに記載の低温靱性・破壊靱性
及び疲労特性に優れた溶接用構造用鋼の製造方法。
(8) By weight%, Cu: 0.05 to 1.0%, Ni: 0.1 to 10.0%, Cr: 0.03 to 1.0%, Mo: 0.05 to 1 0.04%, V: 0.01 to 0.4%, B: 0.0002 to 0.002%, any one of the above (4) to (7). A method for producing a welding structural steel having excellent low-temperature toughness, fracture toughness, and fatigue properties according to the above-described item.

【0022】[0022]

【発明の実施の形態】本発明者が溶接用構造用鋼の低温
靱性・破壊靱性及び疲労特性に関して仔細に研究したと
ころ、パーライト分率の低減及び結晶粒の超微細化は必
要条件であって、必要十分条件ではない事を見い出し
た。即ち、平均粒径が3μm以下のフェライト若しくは
ベーナイトを主体とする組織を構成するには、図1に示
す如くセメンタイト及び/又はNb・Ti・Taの一種
又は二種以上の炭窒化物相(矢印で示す)をそれらの結
晶粒界及び/又は結晶亜粒界に0.5μm以下に析出さ
せる事が必要且つ不可欠である事を知見した。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventor has conducted detailed studies on the low-temperature toughness, fracture toughness and fatigue properties of a structural steel for welding, and found that reduction of the pearlite fraction and ultra-fine grain refinement are necessary conditions. , And found that it was not a necessary and sufficient condition. That is, in order to configure a structure mainly composed of ferrite or bainite having an average particle size of 3 μm or less, as shown in FIG. 1, one or more carbonitride phases of cementite and / or Nb · Ti · Ta (arrows) ) At the crystal grain boundaries and / or crystal sub-grain boundaries of 0.5 μm or less was found to be necessary and indispensable.

【0023】更に、フェライト結晶粒界及び/又は結晶
亜粒界にセメンタイト及び/又はNb・Ti・Taの一
種又は二種以上の炭窒化物相を0.5μm以下に析出さ
せる為にはC及び/又はNb・Ti・Taの一種又は二
種以上を含有する鋼の素材又は鋼をAc3点以上に加熱
してC及び/又はNb・Ti・Taの一種又は二種以上
を固溶させた状態で、制御圧延等の熱間加工の前又は途
中でフェライト分率が50%以上となる温度まで急冷し
て、C及び/又はNb・Ti・Taの一種又は二種以上
を過飽和に固溶せしめたる後に、該鋼を復熱させる事が
必須であり、更にその復熱過程において熱間加工を開始
又は再開してAc3点以下で熱間加工を終了し、引き続
いてこれら炭窒化物を再固溶させない為にAc3点以上
に復熱させないで冷却する事が平均粒径が3μm以下の
フェライト若しくはベーナイトを主体とする組織の効果
的な確保に不可欠であるとの技術を発明するに至ったも
のである。
In order to precipitate one or two or more carbonitride phases of cementite and / or Nb.Ti.Ta at a ferrite grain boundary and / or a sub-grain boundary at a grain size of 0.5 μm or less, C and And / or heating a steel material or steel containing one or more of Nb.Ti.Ta to more than three points of Ac to form a solid solution of one or more of C and / or Nb.Ti.Ta. In this state, before or during hot working such as controlled rolling, the steel is rapidly cooled to a temperature at which the ferrite fraction becomes 50% or more, and one or more of C and / or Nb, Ti, and Ta are dissolved in a supersaturated state. After the heat treatment, it is essential to reheat the steel, and in the reheating process, hot working is started or restarted, and the hot working is completed at an Ac point of 3 or less. cold is not recuperation in more than Ac 3 point in order not to re-solid solution It has been led to invent technologies and the average particle size is essential for effective securing structure mainly the following ferrite or bainite 3μm to.

【0024】以下に本発明を詳細に説明する。Hereinafter, the present invention will be described in detail.

【0025】Cは本発明では過飽和固溶状態から0.5
μm以下にフェライト結晶粒界又は結晶亜粒界に析出さ
せたセメンタイトによって超微細粒フェライトをピンニ
ングする必須元素であり安価に強度を向上するのに最も
有効な元素であるが、0.2%を越えると溶接性(溶接
部靱性)を阻害し、0.04%未満ではピンニングに必
要なセメンタイト量が不足する為に、0.04〜0.2
%に限定する。
C is 0.5% from the supersaturated solid solution state in the present invention.
It is an essential element for pinning ultrafine grain ferrite by cementite precipitated at ferrite grain boundaries or sub-grain boundaries below μm, and is the most effective element to improve strength at low cost. If it exceeds, the weldability (weld part toughness) is impaired, and if it is less than 0.04%, the amount of cementite necessary for pinning becomes insufficient, so
%.

【0026】Siは強度向上元素として有効であり安価
な溶鋼の脱酸元素としても有用であるが、1.0%を越
えると溶接性が劣化し、0.01%未満では脱酸効果が
不十分でTiやAl等の高価な脱酸元素を多用する必要
がある為に、0.01〜1.0%に限定する。
Si is effective as a strength improving element and is also useful as an inexpensive deoxidizing element for molten steel. Since it is necessary to use a large amount of expensive deoxidizing elements such as Ti and Al, the content is limited to 0.01 to 1.0%.

【0027】Mnは強度を向上する有用な元素であ
り、、その必要下限から0.3%以上として、2.0%
超の添加は母材靱性・溶接性を阻害するとともにAr3
変態点を低下させる結果、二相域圧延等の熱間圧延をを
困難にする為に0.3〜2.0%に限定した。
Mn is a useful element for improving the strength.
Excessive addition impairs the base metal toughness and weldability, and also causes Ar 3
As a result of lowering the transformation point, it is limited to 0.3 to 2.0% in order to make hot rolling such as two-phase rolling difficult.

【0028】Pは母材靱性の観点から0.025%以下
に限定した。尚、不純物としてのPは出来るだけ低いほ
ど好ましいが、経済性も考慮する場合は溶接性の点から
0.015以下が好ましい。
P is limited to 0.025% or less from the viewpoint of base material toughness. Although P as an impurity is preferably as low as possible, it is preferably 0.015 or less from the viewpoint of weldability in consideration of economy.

【0029】Sは母材靱性の観点から0.025%以下
に限定した。尚、不純物としてのSは出来るだけ低いほ
ど好ましいが、経済性も考慮する場合は溶接性・加工性
の点から0.008%以下が好ましい。更に、大入熱溶
接性の観点からは0.0008〜0.004%が必要と
されている。
S is limited to 0.025% or less from the viewpoint of base metal toughness. It should be noted that S as an impurity is preferably as low as possible, but from the viewpoint of weldability and workability, 0.008% or less is preferable in consideration of economy. Furthermore, from the viewpoint of large heat input weldability, 0.0008 to 0.004% is required.

【0030】Nbは加工熱処理(TMCP)鋼において
Tiとともに最も有用な元素であり、NbC又はNbC
N(Carbo−Nitride)として鋼材の再加熱
時のγ粒成長の抑制・制御圧延時の未再結晶域温度域の
拡大・圧延時の変形帯における析出強化・大入熱溶接時
の溶接熱影響部(HAZ)におけるHAZ軟化の防止の
効果が一般的に知られている。更に、本発明者の仔細な
検討からフェライト粒の成長抑制効果及び超微細析出さ
せたセメンタイトの熱的な安定性が著しく増加する事を
知見した。従って、0.005%未満では過飽和固溶状
態から0.5μm以下にフェライト結晶粒界又は結晶亜
粒界に析出させるNbC又はNbCN量が不足するとと
もに0.5μm以下に析出させたセメンタイトの熱的な
安定性も不足して、0.1%以上では溶接性を損なう為
に0.005〜0.1%に限定する。
Nb is the most useful element together with Ti in thermomechanical processing (TMCP) steel, and NbC or NbC
Suppression of γ-grain growth during reheating of steel material as N (Carbo-Nitride), expansion of non-recrystallization region temperature range during controlled rolling, precipitation strengthening in deformation zone during rolling, welding heat effect during large heat input welding The effect of preventing HAZ softening in the portion (HAZ) is generally known. Further, the present inventor has found from detailed studies that the effect of suppressing the growth of ferrite grains and the thermal stability of ultrafine precipitated cementite are significantly increased. Therefore, if the content is less than 0.005%, the amount of NbC or NbCN precipitated at the ferrite crystal grain boundary or sub-grain boundary from the supersaturated solid solution state to 0.5 μm or less becomes insufficient, and the thermal behavior of cementite precipitated to 0.5 μm or less becomes insufficient. The stability is also insufficient. If the content is 0.1% or more, the weldability is impaired, so that the content is limited to 0.005 to 0.1%.

【0031】Tiも又TMCP鋼においてNbとともに
最も有用な元素であり、TiC又はTiCN(Carb
o−Nitride)として鋼材の再加熱時のγ粒成長
の抑制・制御圧延時の未再結晶域温度域の拡大・圧延時
の析出強化・大入熱溶接時のHAZ靱性向上の効果が一
般的に知られている。更に、本発明者の仔細な検討から
Nbと同様にフェライト粒の成長抑制効果及び超微細析
出させたセメンタイトの熱的な安定性が改善する事を見
出した。従って、0.005%未満では過飽和固溶状態
から0.5μm以下にフェライト結晶粒界又は結晶亜粒
界に析出させるTiC又はTiCN量が不足するととも
に0.5μm以下に析出させたセメンタイトの熱的な安
定性も不足して、0.05%以上では溶接性を損なう為
に、0.005〜0.05%に限定する。
Ti is also the most useful element together with Nb in TMCP steel, and TiC or TiCN (Carb
o-Nitride) is generally the effect of suppressing the growth of γ grains during reheating of steel materials, expanding the temperature range of the non-recrystallization region during controlled rolling, strengthening precipitation during rolling, and improving HAZ toughness during large heat input welding. Is known to. Furthermore, from the in-depth study of the present inventors, it has been found that, like Nb, the effect of suppressing the growth of ferrite grains and the thermal stability of ultrafine precipitated cementite are improved. Therefore, if the content is less than 0.005%, the amount of TiC or TiCN precipitated at the ferrite crystal grain boundary or sub-grain boundary from the supersaturated solid solution state to 0.5 μm or less becomes insufficient, and the thermal behavior of cementite precipitated to 0.5 μm or less becomes insufficient. The stability is insufficient, and if the content is 0.05% or more, the weldability is impaired. Therefore, the content is limited to 0.005 to 0.05%.

【0032】TaはTaC又はTaCN(Carbo−
Nitride)として鋼材の再加熱時のγ粒成長の抑
制・大入熱時のHAZ靱性向上の効果が知られている
が、高価な為にそれ程一般的に使われてはいない。然
し、本発明者の仔細な検討からNb・Tiと同様にフェ
ライト粒の成長抑制効果及び超微細析出させたセメンタ
イトの熱的な安定性が改善する事を見出した。従って、
0.005%未満では過飽和固溶状態から0.5μm以
下にフェライト結晶粒界又は結晶亜粒界に析出させるT
aC又はTaCN量が不足するとともに0.5μm以下
に析出させたセメンタイトの熱的な安定性も不足して、
0.05%以上では溶接性を損なう為に、0.005〜
0.05%に限定する。
Ta is TaC or TaCN (Carbo-
Nitride) is known to have the effect of suppressing the growth of γ grains at the time of reheating the steel material and to improve the HAZ toughness at the time of large heat input. However, it is not widely used because it is expensive. However, from the detailed examination of the present inventors, it has been found that, similarly to Nb.Ti, the effect of suppressing the growth of ferrite grains and the thermal stability of ultrafine precipitated cementite are improved. Therefore,
When the content is less than 0.005%, T precipitates from a supersaturated solid solution state to a ferrite grain boundary or a sub-grain boundary to 0.5 μm or less.
Insufficient aC or TaCN amount and insufficient thermal stability of cementite precipitated to 0.5 μm or less,
If it exceeds 0.05%, the weldability is impaired.
Limited to 0.05%.

【0033】AlはSi同様に脱酸上必要な元素であ
り、本発明の技術思想からTi・Ta又はNbを微量添
加する時にはその酸化を防止するのにSi単独の脱酸で
は不十分な為に0.005%以上として、0.2%以上
の過度の添加はHAZ靱性を損なう為に、0.005〜
0.2%に限定した。
Al is an element necessary for deoxidation like Si, and from the technical idea of the present invention, when a small amount of Ti.Ta or Nb is added, deoxidation of Si alone is insufficient to prevent its oxidation. To 0.005% or more, excessive addition of 0.2% or more impairs HAZ toughness.
Limited to 0.2%.

【0034】以上が本発明が対象とする鋼の基本成分で
あるが、母材強度の向上や低温靱性・溶接性の改善を目
的とした低炭素等量化の為に、鋼材の大きさ・鋼板厚に
応じて本発明で規定する合金元素(Cu、Ni、Cr、
Mo、V、B)を一種又は二種以上添加しても本発明の
効果は何ら損なわれる事はない。然し、二相域圧延の変
形抵抗を増加して熱間加工を困難にしない為には、その
添加量は少ないほど好ましく合計で5%以下にする事が
好ましいが、圧延反力の大きな圧延機のような場合には
この限りでない。更に、これ以外の元素(Ca、RE
M、Mg等)はOやSとの親和力が強く、その形態制御
によって低温靱性・溶接性・加工性を向上する為に0.
0005〜0.01%の範囲で添加する場合でも本発明
の効果が損なわれる事はない。
The above are the basic components of the steel targeted by the present invention. However, in order to improve the strength of the base material and to reduce the carbon equivalent for the purpose of improving the low temperature toughness and the weldability, the size of the steel material and the steel plate Alloy elements (Cu, Ni, Cr,
Even if one or more of Mo, V and B) are added, the effect of the present invention is not impaired at all. However, in order to increase the deformation resistance of the two-phase region rolling and not to make the hot working difficult, the addition amount is preferably as small as possible and preferably 5% or less in total, but a rolling mill having a large rolling reaction force This is not the case in cases such as Further, other elements (Ca, RE
M, Mg, etc.) have a strong affinity with O and S, and should be added in order to improve low-temperature toughness, weldability, and workability by controlling the morphology.
Even when added in the range of 0005 to 0.01%, the effect of the present invention is not impaired.

【0035】次に、本発明の技術思想である結晶組織を
規定する理由について述べる。
Next, the reason for defining the crystal structure which is the technical idea of the present invention will be described.

【0036】ベイナイトを含むフェライト・パーライト
鋼ではフェライト粒径を5μm以下にしても低温靱性・
破壊靱性は必ずしも改善しない。本発明者の仔細な調査
によりフェライト粒径が5μm以下の組織における脆性
破壊・疲労破壊は微細なパーライトコロニーを起点とし
ている事が判明した。更に、粗大なセメンタイトを含ん
でパーライト分率を5%以下にした場合にのみ、低温靱
性・破壊靱性・疲労強度はフェライト粒径の細粒化とと
もに改善して、3μm以下で特段の効果がある事も知見
した。
In a ferrite-pearlite steel containing bainite, even if the ferrite grain size is 5 μm or less, the low-temperature toughness
Fracture toughness does not always improve. Detailed investigation by the present inventors has revealed that brittle fracture / fatigue fracture in a structure having a ferrite grain size of 5 μm or less originates from a fine pearlite colony. Furthermore, low-temperature toughness, fracture toughness, and fatigue strength are improved with the reduction in ferrite grain size only when the pearlite fraction is 5% or less, including coarse cementite. I also learned the thing.

【0037】一方、単に微細なセメンタイト又は炭窒化
物相から構成される組織だけでは、フェライト若しくは
ベーナイトを主体とする組織の平均粒径を3μm以下に
安定して達成できず、フェライト結晶粒の成長抑制が必
要不可欠である事も見い出した。即ち、フェライト結晶
粒界又は結晶亜粒界に0.5μm以下のセメンタイトを
析出させる事によって初めてフェライト若しくはベーナ
イトをピンニングしてその成長を効果的に抑制できる。
又、0.5μm以下のNb・Ti・Taの炭窒化物をフ
ェライト結晶粒界又は結晶亜粒界に析出させるとセメン
タイトと同様のピンニング効果が認められるとともに、
更にフェライト結晶粒界又は結晶亜粒界に超微細に析出
させたセメンタイト自体の熱的な安定性が増す事も分か
った。
On the other hand, a structure composed mainly of fine cementite or carbonitride phase cannot stably achieve an average grain size of a structure mainly composed of ferrite or bainite of 3 μm or less, and the growth of ferrite crystal grains is not achieved. They also found that suppression was essential. That is, fermentation can be effectively suppressed by pinning ferrite or bainite for the first time by depositing cementite of 0.5 μm or less at the ferrite crystal grain boundary or crystal sub-grain boundary.
Further, when a carbonitride of Nb.Ti.Ta of 0.5 μm or less is precipitated at a ferrite crystal grain boundary or a crystal sub-grain boundary, the same pinning effect as cementite is recognized,
Furthermore, it was also found that the thermal stability of cementite itself precipitated ultrafinely at the ferrite crystal grain boundaries or crystal sub-grain boundaries increases.

【0038】次に、本発明で鋼材の全体若しくは80%
以上における超微細粒組織を実現する製造方法を規定す
る理由について述べる。
Next, in the present invention, the entire steel material or 80%
The reason for defining the manufacturing method for realizing the above ultrafine grain structure will be described.

【0039】鋼の素材又は鋼を再加熱時においてC及び
/又はNb・Ti・Taの一種又は二種以上を固溶させ
る加熱温度はAc3点以上に限定される。Nb・Ti・
Taの一種又は二種以上を充分に固溶させる加熱温度と
しては1100℃以上が好ましく、加熱時におけるγ粒
の粗大化を防止する為には加熱温度を1200℃以下と
する事が好ましい。
When the steel material or steel is reheated, the heating temperature at which one or more of C and / or Nb.Ti.Ta is dissolved is limited to three or more Ac points. Nb ・ Ti ・
The heating temperature at which one or two or more kinds of Ta are sufficiently dissolved is preferably 1100 ° C. or higher, and the heating temperature is preferably 1200 ° C. or lower in order to prevent coarsening of γ grains during heating.

【0040】鋼材の全体若しくは80%以上において結
晶粒界及び/又は結晶亜粒界に0.5μm以下のセメン
タイト及び/又はNb・Ti・Taの一種又は二種以上
の炭窒化物を析出させるには、C及び/又はNb・Ti
・Taの一種又は二種以上を鋼中に固溶させた状態で、
表層から鋼板厚の70%以上の領域を3℃/秒以上の冷
却速度で冷却する事によって該成分を鋼中に過飽和に固
溶せしめたる後に、誘導加熱等の外部熱源による昇温機
能を利用して復熱させる過程で超微細に析出させるもの
である。
In order to precipitate cementite and / or one or more carbon nitrides of Nb.Ti.Ta of 0.5 .mu.m or less at grain boundaries and / or sub-grain boundaries in the whole or 80% or more of the steel material. Is C and / or Nb.Ti
-In a state where one or two or more kinds of Ta are dissolved in steel,
After cooling the area of 70% or more of the steel sheet thickness from the surface layer at a cooling rate of 3 ° C./sec or more to dissolve the components into a supersaturated solid solution in the steel, use a heating function by an external heat source such as induction heating. In this process, ultra-fine precipitation is performed in the process of reheating.

【0041】鋼材の全体若しくは80%以上において、
フェライト又はベーナイトを主体とする組織の平均粒径
を3μm以下となすには、鋼板又は鋼の素材をAc3
以上に加熱してから熱間加工の前又は途中で表層から鋼
板厚の70%以上の領域を3℃/秒以上の冷却速度でフ
ェライト分率が50%以上となる温度まで急冷したる後
に、誘導加熱等の外部熱源を利用して復熱させる過程で
Ar1点以上の温度から熱間加工を開始又は再開すると
ともに鋼材中心部も該復熱過程で冷却せしめて前記する
条件を満足させ、鋼材の全体若しくは80%以上を(A
3点−100℃)〜Ac3点の範囲で熱間加工を終了す
る事によって、フェライトの回復・再結晶を惹起せしめ
て超微細粒化し且つAc3点以上に復熱する事なく冷却
するとともに、フェライト結晶粒界及び/又は結晶亜粒
界に析出させた0.5μm以下のセメンタイト及び/又
はNb・Ti・Taの一種又は二種以上の炭窒化物によ
るピンニングを効果的に活用してその超微細粒組織の成
長を防止するものである。
In all or more than 80% of the steel material,
In order to reduce the average grain size of the structure mainly composed of ferrite or bainite to 3 μm or less, 70% of the steel sheet thickness from the surface layer before or during hot working after heating the steel sheet or the steel material to three or more Ac points. After rapidly cooling the above region to a temperature at which the ferrite fraction becomes 50% or more at a cooling rate of 3 ° C./second or more, the temperature is reduced from the temperature of Ar1 point or more in the process of reheating using an external heat source such as induction heating. The hot working is started or restarted, and the central part of the steel material is also cooled in the reheating process to satisfy the above conditions, and the whole or 80% or more of the steel material is (A)
By finishing the hot working in the range of c 3 points-100 ° C.) to Ac 3 points, the recovery and recrystallization of ferrite is caused to form ultrafine grains, and the ferrite is cooled without being heated to 3 or more points. In addition, by effectively utilizing pinning by one or two or more carbonitrides of 0.5 μm or less of cementite and / or Nb / Ti / Ta precipitated at ferrite grain boundaries and / or sub-grain boundaries. The purpose is to prevent the growth of the ultrafine grain structure.

【0042】熱間加工としては圧延等の一般的な熱間加
工を対象とする。又、鋼の素材寸法が大きくて加熱温度
が1200℃以上に高い場合や更に低温靱性の要求が厳
しい場合には鋼材をフェライト分率が50%以上となる
温度まで冷却する前の初期γ粒を細かくしておく為に、
Nb・Ti・Taの添加及び制御圧延等の熱間加工を行
う事が好ましい。更に、鋼の加熱に引き続く冷却前に熱
間加工を行わない場合には鋼の初期γ粒を細かくしてお
く為に1150℃以下の低温加熱及びNb・Ti・Ta
の添加又は初期γ粒の細かな鋼板等の熱間加工半製品の
使用が好ましい。
The hot working is intended for general hot working such as rolling. In the case where the material size of the steel is large and the heating temperature is higher than 1200 ° C. or when the requirement of the low temperature toughness is more severe, the initial γ grains before cooling the steel material to a temperature at which the ferrite fraction becomes 50% or more are used. To keep it fine,
It is preferable to perform hot working such as addition of Nb / Ti / Ta and controlled rolling. Further, when hot working is not performed before cooling subsequent to heating of the steel, low-temperature heating of 1150 ° C. or less and Nb · Ti · Ta are performed in order to reduce the initial γ grains of the steel.
Or the use of a hot-worked semi-finished product such as a steel sheet having an initial γ grain.

【0043】鋼材の全体又は80%以上を超微細粒化し
た後に、外部熱源の昇温機能によってAc3点以上に復
熱するとその超微細粒化した効果が損なわれるばかりで
なく、フェライト結晶粒界又は結晶亜粒界に微細析出さ
せたセメンタイトがγに再固溶する為にピンニング効果
が失われるとともにパーライト分率も増加してしまう。
従って、当該微細粒組織がAc3点以上に復熱する事な
く冷却するには、鋼板厚が25mm未満の場合には空冷
で充分であり、それ以上の場合には1℃/秒以上の冷却
速度となるように加速冷却する事が好ましい。
When the entire or 80% or more of the steel material is ultra-fine-grained and then reheated to an Ac point of 3 or more by the temperature raising function of the external heat source, the effect of the ultra-fine-graining is not only impaired, but also the ferrite grain size is reduced. Cementite finely precipitated in the boundaries or sub-grain boundaries re-dissolves in γ to lose the pinning effect and increase the pearlite fraction.
Therefore, in order to cool the fine grain structure without reheating to the Ac 3 point or more, air cooling is sufficient when the thickness of the steel sheet is less than 25 mm, and cooling at 1 ° C./sec or more is performed when the thickness is more than 25 mm. It is preferable to perform accelerated cooling so as to achieve a speed.

【0044】鋼板を高強度化する為には要求強度レベル
に応じて添加成分を調整するとともに、熱間加工の終了
後に引き続いてAc3点以上に復熱させる事なく5℃/
秒以上の冷却速度でTMCP設備による加速冷却又はD
Q設備による直接焼き入れを実施すればよい。
[0044] with in order to increase the strength of the steel sheet to adjust the additive component on demand intensity levels, hot working after the end of the subsequent 5 without causing recuperation in the Ac 3 point or more by ° C. /
Accelerated cooling by TMCP equipment at a cooling rate of
What is necessary is just to implement direct quenching by Q equipment.

【0045】加速冷却又は直接焼き入れに引き続いて、
鋼又は鋼板を焼戻しするには通常の熱処理設備による焼
戻しを行う。尚、TMCP設備による加速冷却やDQ設
備による直接焼き入れの場合には加速冷却又は直接焼き
入れ時の水冷を途中停止するオートテンパーで代替して
も構わない。
Following accelerated cooling or direct quenching,
In order to temper the steel or the steel sheet, tempering is performed by a usual heat treatment equipment. In the case of accelerated cooling by the TMCP facility or direct quenching by the DQ facility, an auto-temper which stops the cooling at the time of accelerated cooling or direct quenching may be used.

【0046】[0046]

【実施例】本発明の実施例を表1に示す。鋼A〜鋼Cが
本発明例であり、鋼D及び鋼EはCが本発明の範囲外と
なる比較例である。
EXAMPLES Examples of the present invention are shown in Table 1. Steels A to C are examples of the present invention, and steels D and E are comparative examples in which C is out of the scope of the present invention.

【0047】[0047]

【表1】 本発明の実施例における製造条件を表2に示す。本発明
における全ての実施例では外部熱源として誘導加熱装置
を用いた。鋼A−1、A−2、鋼B−1、B−2、鋼C
−1、が本発明における溶接用構造用鋼板の本発明例で
あり、特に鋼B−2は100mm鋼板を再加熱して25
mm鋼板に仕上げ圧延した本発明例である。
[Table 1] Table 2 shows the manufacturing conditions in the example of the present invention. In all embodiments of the present invention, an induction heating device was used as an external heat source. Steel A-1, A-2, Steel B-1, B-2, Steel C
-1, is an example of the present invention of a steel sheet for welding in the present invention, and especially steel B-2 is obtained by reheating a 100 mm steel sheet to 25%.
1 is an example of the present invention that has been finish-rolled to a steel sheet having a thickness of 1 mm.

【0048】一方、鋼A−3は鋼板の途中冷却において
α分率がが50%以上となる領域が鋼板厚の90%であ
ったにも拘わらず、外部熱源による加熱時間が長すぎた
為に鋼材温度がAc3点以上に復熱してしまった比較例
である。又、鋼B−3は途中冷却時間が短くα分率が5
0%以上となる領域が鋼板厚の70%未満と小さかった
比較例である。更に、鋼C−2は途中冷却を実施しなか
った鋼板の比較例である。最後に鋼D−1及び鋼E−1
は本発明例の鋼B−1及び鋼A−2と概ね同じ製造条件
であるが、その主要な成分であるCが本発明の範囲から
高め又は低めに外れたそれぞれ比較例である。
On the other hand, in the case of steel A-3, the heating time by the external heat source was too long although the area where the α fraction was 50% or more during cooling of the steel sheet was 90% of the steel sheet thickness. This is a comparative example in which the temperature of the steel material was restored to three or more Ac points. Further, steel B-3 has a short cooling time on the way and an α fraction of 5%.
This is a comparative example in which the area of 0% or more was as small as less than 70% of the steel sheet thickness. Further, steel C-2 is a comparative example of a steel sheet in which cooling was not performed halfway. Finally, steel D-1 and steel E-1
Is a comparative example in which the production conditions are almost the same as those of the steel B-1 and the steel A-2 of the present invention, but C, which is a main component thereof, is higher or lower than the range of the present invention.

【0049】[0049]

【表2】 本発明例の実施例における機械的性質及び低温靱性・ア
レスト特性・疲労強度・腐食疲労強度を纏めて表3に示
す。本発明例である溶接用構造用410MPa級鋼A−
1、A−2、490MPA級鋼B−1、B−2、570
MPa級鋼C−1は鋼板の組織の状態が本発明の要件を
満足する結果、機械的性質が比較例よりも優れている。
又、板厚中心部における低温靱性・脆性亀裂伝播停止性
能であるアレスト特性・廻し溶接部の疲労強度及び腐食
疲労強度が比較例よりも格段に優れており、鋼板中心部
の低温靱性は表層部に比べても全く遜色ないレベルであ
る。更に、Nb・Ti・Taを添加した鋼B−1、B−
2、鋼C−1ではフェライト結晶粒界及び結晶亜粒界に
セメンタイト又は炭窒化物が極めて微細に析出してフェ
ライト若しくは一部ベーナイトの成長を効果的に抑制す
る結果、その平均粒径も本発明例である鋼A−1、A−
2に比べても極めて安定しており、機械的性質及びその
他特性も優れている。
[Table 2] Table 3 summarizes the mechanical properties and low-temperature toughness, arrest properties, fatigue strength, and corrosion fatigue strength of the examples of the present invention. A 410 MPa grade steel A for welding structure which is an example of the present invention.
1, A-2, 490MPA grade steel B-1, B-2, 570
As a result of the state of the structure of the steel sheet satisfying the requirements of the present invention, the mechanical properties of the MPa-grade steel C-1 are superior to those of the comparative example.
In addition, the low-temperature toughness and brittle crack propagation arrest characteristics at the center of the sheet thickness, the fatigue strength and the corrosion fatigue strength of the turning welded part are much better than those of the comparative example, and the low-temperature toughness at the center of the steel sheet It is a level comparable to that of. Further, steels B-1 and B- added with Nb.Ti.Ta
2. In steel C-1, cementite or carbonitride precipitates extremely finely at the ferrite crystal grain boundaries and crystal sub-grain boundaries, effectively suppressing the growth of ferrite or partial bainite. Inventive steels A-1 and A-
It is extremely stable compared to No. 2 and has excellent mechanical properties and other properties.

【0050】一方、比較例の鋼A−3はAc3点以上に
復熱した事によって微細化したα粒がγに逆変態すると
ともに超微細析出したセメンタイトもγに再固溶する結
果、表層部のα粒・セメンタイトが粗大化しているとと
もにパーライト分率が5%以上となって、その低温靱性
・アレスト特性・疲労強度・腐食疲労強度が本発明例に
比べて劣っている。比較例の鋼Bー3は仕上げ圧延前の
途中冷却条件が不十分で鋼板中心部の超微細粒化が不十
分で鋼板の組織状態が50%しか本発明の要件を満足せ
ず平均α粒径・析出物寸法が本発明条件よりも大きい結
果、その他特性(低温靱性・アレスト特性・疲労強度)
が本発明例よりも劣っている。途中冷却を実施しなかっ
た比較例である鋼板Cー2は当然の事ながら本発明例よ
りもその組織状態及び機械的性質やその他特性が劣って
いる。
On the other hand, in the steel A-3 of the comparative example, the α grains refined by reheating to the Ac 3 point or more are inversely transformed into γ, and the cementite precipitated ultra-finely again forms a solid solution with γ. The α grains and cementite in the part are coarsened and the pearlite fraction is 5% or more, and their low-temperature toughness, arrest properties, fatigue strength, and corrosion fatigue strength are inferior to those of the present invention. The steel B-3 of the comparative example had insufficient cooling conditions before finish rolling and insufficient ultrafine graining at the center of the steel sheet, and the microstructure of the steel sheet was only 50% and did not satisfy the requirements of the present invention. Other properties (low temperature toughness, arrest properties, fatigue strength) as a result of the diameter and precipitate size being larger than those of the present invention
Are inferior to the examples of the present invention. As a matter of course, the steel sheet C-2, which is a comparative example in which cooling was not performed on the way, is inferior in the structure state, mechanical properties, and other characteristics as compared with the examples of the present invention.

【0051】他方、本発明例の鋼B−1と製造条件が概
ね同じでありながらCが本発明から高め側に外れている
比較例の鋼D−1は平均α粒径やセメンタイト寸法も本
発明を満足しているが、パーライト分率が5%以上に高
くなった結果機械的性質やその他特性が本発明例よりも
劣っている。又、本発明例の鋼A−2と製造条件が概ね
同じでありながらCが本発明から低め側に外れている比
較例の鋼E−1はパーライト分率及びセメンタイト寸法
も本発明を満足しているが、超微細化したα粒の成長を
抑制するにはセメンタイト量が不足する結果平均α粒径
が大きくなって機械的性質やその他特性が本発明例より
も劣っている。
On the other hand, the steel D-1 of the comparative example, in which the production conditions are almost the same as the steel B-1 of the present invention, but the C is deviated from the present invention to the higher side, also has an average α grain size and a cementite size. Although it satisfies the invention, the mechanical properties and other properties are inferior to the examples of the present invention as a result of the pearlite fraction being increased to 5% or more. The steel E-1 of the comparative example, in which the production conditions were substantially the same as the steel A-2 of the present invention but the C deviated on the lower side from the present invention, also satisfied the present invention in the pearlite fraction and the cementite size. However, the amount of cementite is insufficient to suppress the growth of ultra-fine α grains, so that the average α grain size becomes large and the mechanical properties and other properties are inferior to those of the examples of the present invention.

【0052】[0052]

【表3】 [Table 3]

【0053】[0053]

【発明の効果】本発明は鋼材の全体若しくは80%以上
におけるフェライト結晶粒界及び/又は結晶亜粒界に
0.5μm以下のセメンタイト又はNb・Ti・Taの
炭窒化物相を析出させて、当該領域の平均粒径が安定し
て3μm以下のフェライト又はベーナイトを主体とする
組織で構成させる事により、溶接用構造用鋼の低温靱性
・アレスト特性・疲労特性(疲労強度・腐食疲労強度)
を大幅に向上可能ならしめた。これにより大型鋼構造物
の安全設計を施工面だけでなく、鋼材面からも可能とす
るものである。更に、本発明により安全設計と経済設計
の両立が可能となって産業界が享受可能な経済的利益は
多大なものがあると思料される。更に、本発明は新しい
鋼材開発のアイディアをも提供するものである。
According to the present invention, a carbonitride phase of 0.5 μm or less of cementite or Nb · Ti · Ta is precipitated at ferrite crystal grain boundaries and / or crystal sub-grain boundaries in 80% or more of the steel material. By forming a structure mainly composed of ferrite or bainite having a mean particle size of 3 μm or less in the region concerned, low-temperature toughness, arrest characteristics, fatigue characteristics (fatigue strength, corrosion fatigue strength) of structural steel for welding.
Could be greatly improved. This enables the safety design of large steel structures not only from the construction side but also from the steel material side. Further, it is considered that the present invention makes it possible to achieve both safety design and economic design, and that there is a great economic benefit that can be enjoyed by the industry. Further, the present invention also provides an idea for developing a new steel material.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明例における鋼B−1の顕微鏡写真で、結
晶粒界及び結晶亜粒界に析出した0.5μm以下のセメ
ンタイトを示す顕微鏡写真である。
FIG. 1 is a photomicrograph of steel B-1 according to the present invention, showing 0.5 μm or less cementite precipitated at crystal grain boundaries and crystal sub-grain boundaries.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 C:0.04〜0.2%、 Si:0.01〜1.0%、 Mn:0.3〜2.0%、 P:0.025%以下、 S:0.025%以下 の成分を有し残部鉄及び不可避的不純物からなり、鋼材
の全体若しくは80%以上において結晶粒界及び/又は
結晶亜粒界に0.5μm以下のセメンタイト相を有し、
パーライト分率が5%以下で、平均粒径が3μm以下の
フェライト若しくはベーナイトを主体とする組織で構成
される事を特徴とする低温靱性・破壊靱性及び疲労特性
に優れた溶接用構造用鋼。
1. In weight%, C: 0.04 to 0.2%, Si: 0.01 to 1.0%, Mn: 0.3 to 2.0%, P: 0.025% or less, S: 0.025% or less, the balance consisting of iron and unavoidable impurities, and having a cementite phase of 0.5 μm or less at the crystal grain boundaries and / or sub-grain boundaries in the entire steel material or in 80% or more. ,
A welding structural steel having excellent low-temperature toughness, fracture toughness, and fatigue properties, characterized by having a structure mainly composed of ferrite or bainite having a pearlite fraction of 5% or less and an average grain size of 3 μm or less.
【請求項2】 重量%で、 C:0.04〜0.2%、 Si:0.01〜1.0%、 Mn:0.3〜2.0%、 P:0.025%以下、 S:0.025%以下、 Sol.Al:0.005〜0.2% の成分を基本成分として、 Nb:0.005〜0.1%、 Ti:0.005〜0.05%、 Ta:0.005〜0.05% の一種又は二種以上を含有し残部鉄及び不可避的不純物
からなり、鋼材の全体若しくは80%以上において結晶
粒界及び/又は結晶亜粒界に0.5μm以下のセメンタ
イト及びNb・Ti・Taの一種又は二種以上の炭窒化
物相を有し、パーライト分率が5%以下で、平均粒径が
3μm以下のフェライト若しくはベーナイトを主体とす
る組織で構成される事を特徴とする低温靱性・破壊靱性
及び疲労特性に優れた溶接用構造用鋼。
2. In% by weight, C: 0.04 to 0.2%, Si: 0.01 to 1.0%, Mn: 0.3 to 2.0%, P: 0.025% or less, S: 0.025% or less, Sol. Al: 0.005 to 0.2% as a basic component, Nb: 0.005 to 0.1%, Ti: 0.005 to 0.05%, Ta: 0.005 to 0.05% One or two or more kinds, the balance being iron and unavoidable impurities, and in the whole or 80% or more of the steel material, at least 0.5 μm of cementite and Nb · Ti · Ta at grain boundaries and / or sub-grain boundaries. Or low-temperature toughness / fracture characterized by having a structure mainly composed of ferrite or bainite having two or more carbonitride phases, a pearlite fraction of 5% or less, and an average grain size of 3 μm or less. Structural steel for welding with excellent toughness and fatigue properties.
【請求項3】 重量%で、 Cu:0.05〜1.0%、 Ni:0.1〜10.0%、 Cr:0.03〜1.0%、 Mo:0.05〜1.0%、 V:0.01〜0.4%、 B:0.0002〜0.002% の一種又は二種以上を含有せしめた事を特徴とする請求
項1又は請求項2記載の低温靱性・破壊靱性及び疲労特
性に優れた溶接用構造用鋼。
3. Cu: 0.05-1.0%, Ni: 0.1-10.0%, Cr: 0.03-1.0%, Mo: 0.05-1. The low-temperature toughness according to claim 1 or 2, wherein one or more of 0%, V: 0.01 to 0.4%, and B: 0.0002 to 0.002% are contained.・ Structural steel for welding with excellent fracture toughness and fatigue properties.
【請求項4】 重量%で、 C:0.04〜0.2%、 Si:0.01〜1.0%、 Mn:0.3〜2.0%、 P:0.025%以下、 S:0.025%以下 の成分を有し残部鉄及び不可避的不純物からなる鋼又は
鋼の素材をAc3点以上に加熱してCを固溶させた状態
で、熱間加工の前又は途中でその時点における表層から
鋼板厚の70%以上の領域を3℃/秒以上の冷却速度で
フェライト分率が50%以上となる温度まで冷却してC
を過飽和に固溶せしめたる後に、当該表層領域を再加熱
させる過程において(Ac1点−100℃)以上の温度
から熱間加工を開始又は再開して、(Ac3点−100
℃)〜Ac3点の範囲で熱間加工を終了し、引き続いて
当該表層領域をAc3点以上に復熱させる事なく冷却し
て、鋼材の全体若しくは80%以上において結晶粒界及
び/又は結晶亜粒界に0.5μm以下に析出させたセメ
ンタイト相を有し、パーライト分率が5%以下で、平均
粒径が3μm以下のフェライト若しくはベーナイトを主
体とする組織で構成される事を特徴とする低温靱性・破
壊靱性及び疲労特性に優れた溶接用構造用鋼の製造方
法。
4. In% by weight, C: 0.04 to 0.2%, Si: 0.01 to 1.0%, Mn: 0.3 to 2.0%, P: 0.025% or less, S: Before or during hot working in a state where steel having a composition of 0.025% or less and consisting of iron and unavoidable impurities, or a steel material, is heated to three or more Ac to form a solid solution of C, Then, a region of 70% or more of the steel sheet thickness from the surface layer at that time is cooled at a cooling rate of 3 ° C./sec or more to a temperature at which the ferrite fraction becomes 50% or more.
After the solid solution is supersaturated, hot working is started or restarted from a temperature of (Ac 1 point-100 ° C.) or higher in the process of reheating the surface layer region, and (Ac 3 point-100
° C.) to exit the hot working range of to Ac 3 point, subsequently the surface layer region is cooled without causing recuperation in the Ac 3 point or more, the grain boundaries and / or in the entire steel or 80% It has a cementite phase precipitated to 0.5 μm or less at the crystal sub-grain boundaries, has a pearlite fraction of 5% or less, and has a structure mainly composed of ferrite or bainite with an average grain size of 3 μm or less. For producing welding structural steel having excellent low-temperature toughness, fracture toughness and fatigue properties.
【請求項5】 重量%で、 C:0.04〜0.2%、 Si:0.01〜1.0%、 Mn:0.3〜2.0%、 P:0.025%以下、 S:0.025%以下、 Sol.Al:0.005〜0.2% の成分を基本成分として、 Nb:0.005〜0.1%、 Ti:0.005〜0.05%、 Ta:0.005〜0.05% の一種又は二種以上を含有し残部鉄及び不可避的不純物
からなる鋼又は鋼の素材をAc3点以上に加熱してC及
びNb・Ti・Taの一種又は二種以上を固溶させた状
態で、熱間加工の前又は途中でその時点における表層か
ら鋼板厚の70%以上の領域を3℃/秒以上の冷却速度
でフェライト分率が50%以上となる温度まで冷却して
C及びNb・Ti・Taの一種又は二種以上を過飽和に
固溶せしめたる後に、当該表層領域を再加熱させる過程
において(Ac1点−100℃)以上の温度から熱間加
工を開始又は再開して、(Ac3点−100℃)〜Ac3
点の範囲で熱間加工を終了し、引き続いて当該表層領域
をAc3点以上に復熱させる事なく冷却して、鋼材の全
体若しくは80%以上において結晶粒界及び/又は結晶
亜粒界に0.5μm以下に析出させたセメンタイト及び
Nb・Ti・Taの一種又は二種以上の炭窒化物相を有
し、パーライト分率が5%以下で、平均粒径が3μm以
下のフェライト若しくはベーナイトを主体とする組織で
構成される事を特徴とする低温靱性・破壊靱性及び疲労
特性に優れた溶接用構造用鋼の製造方法。
5. In% by weight, C: 0.04 to 0.2%, Si: 0.01 to 1.0%, Mn: 0.3 to 2.0%, P: 0.025% or less, S: 0.025% or less, Sol. Al: 0.005 to 0.2% as a basic component, Nb: 0.005 to 0.1%, Ti: 0.005 to 0.05%, Ta: 0.005 to 0.05% In a state where one or two or more kinds of C and Nb, Ti, and Ta are solid-dissolved by heating a steel or a steel material containing one or more kinds and a balance of iron and unavoidable impurities to three or more points of Ac. Before or during hot working, a region of 70% or more of the steel sheet thickness from the surface layer at that time is cooled at a cooling rate of 3 ° C./second or more to a temperature at which the ferrite fraction becomes 50% or more, and C and Nb · After one or two or more of Ti and Ta are dissolved in supersaturation, hot working is started or restarted from a temperature of (Ac 1 point-100 ° C.) or more in the process of reheating the surface layer region, Ac 3 points-100 ° C)-Ac 3
The hot working is completed within the range of the point, and subsequently, the surface layer is cooled without reheating to the Ac 3 point or more, and the whole or 80% or more of the steel material becomes a crystal grain boundary and / or a crystal sub-grain boundary. Ferrite or bainite having one or two or more carbonitride phases of cementite and Nb.Ti.Ta precipitated to 0.5 μm or less, having a pearlite fraction of 5% or less, and an average particle size of 3 μm or less. A method for producing a welding structural steel having excellent low-temperature toughness, fracture toughness, and fatigue characteristics, characterized by being composed of a main structure.
【請求項6】 熱間加工の終了後、引き続いて当該表層
領域をAc3点以上に復熱させる事なく、冷却速度が5
℃/秒以上で加速冷却又は直接焼き入れする事を特徴と
する請求項4又は請求項5記載の低温靱性・破壊靱性及
び疲労特性に優れた溶接用構造用鋼の製造方法。
After 6. hot working ends, without thereby recuperator the surface layer region above Ac 3 point subsequently cooling rate is 5
The method for producing a structural steel for welding having excellent low-temperature toughness / fracture toughness and fatigue properties according to claim 4 or 5, wherein the steel is subjected to accelerated cooling or direct quenching at a temperature of at least ° C / sec.
【請求項7】 加速冷却又は直接焼き入れ終了後に引き
続いて、焼戻しする事を特徴とする請求項6記載の低温
靱性・破壊靱性及び疲労特性に優れた溶接用構造用鋼の
製造方法。
7. The method for producing a structural steel for welding having excellent low-temperature toughness, fracture toughness and fatigue properties according to claim 6, wherein tempering is performed after the completion of accelerated cooling or direct quenching.
【請求項8】 重量%で、 Cu:0.05〜1.0%、 Ni:0.1〜10.0%、 Cr:0.03〜1.0%、 Mo:0.05〜1.0%、 V:0.01〜0.4%、 B:0.0002〜0.002% の一種又は二種以上を含有せしめた事を特徴とする請求
項4〜請求項7のいずれかに記載の低温靱性・破壊靱性
及び疲労特性に優れた溶接用構造用鋼の製造方法。
8. Cu: 0.05-1.0%, Ni: 0.1-10.0%, Cr: 0.03-1.0%, Mo: 0.05-1. 0%, V: 0.01 to 0.4%, B: 0.0002 to 0.002%. One or more of the following: A method for producing a structural steel for welding having excellent low-temperature toughness, fracture toughness and fatigue properties as described above.
JP36482797A 1997-12-22 1997-12-22 Structural steel for welding, excellent in toughness at low temperature, fracture toughness, and fatigue characteristic, and its production Withdrawn JPH11181546A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36482797A JPH11181546A (en) 1997-12-22 1997-12-22 Structural steel for welding, excellent in toughness at low temperature, fracture toughness, and fatigue characteristic, and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36482797A JPH11181546A (en) 1997-12-22 1997-12-22 Structural steel for welding, excellent in toughness at low temperature, fracture toughness, and fatigue characteristic, and its production

Publications (1)

Publication Number Publication Date
JPH11181546A true JPH11181546A (en) 1999-07-06

Family

ID=18482760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36482797A Withdrawn JPH11181546A (en) 1997-12-22 1997-12-22 Structural steel for welding, excellent in toughness at low temperature, fracture toughness, and fatigue characteristic, and its production

Country Status (1)

Country Link
JP (1) JPH11181546A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1932934A1 (en) * 2006-12-15 2008-06-18 Kabushiki Kaisha Kobe Seiko Sho High-strenght steel plate resistant to strenght reduction resulting from stress relief annealing and excellent in weldability
JP2009115493A (en) * 2007-11-02 2009-05-28 Sumitomo Metal Ind Ltd Arresting characteristic evaluation method of steel plate, and steel plate for arresting characteristic evaluation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1932934A1 (en) * 2006-12-15 2008-06-18 Kabushiki Kaisha Kobe Seiko Sho High-strenght steel plate resistant to strenght reduction resulting from stress relief annealing and excellent in weldability
US8361249B2 (en) 2006-12-15 2013-01-29 Kobe Steel, Ltd. High-strength steel plate resistant to strength reduction resulting from stress relief annealing and excellent in weldability
JP2009115493A (en) * 2007-11-02 2009-05-28 Sumitomo Metal Ind Ltd Arresting characteristic evaluation method of steel plate, and steel plate for arresting characteristic evaluation

Similar Documents

Publication Publication Date Title
JP5233020B2 (en) Yield strength 800 MPa class low weld crack sensitive steel plate and method for producing the same
US4521258A (en) Method of making wrought high tension steel having superior low temperature toughness
US20070193666A1 (en) High Strength Dual Phase Steel With Low Yield Ratio, High Toughness and Superior Weldability
KR100957963B1 (en) Steel for a structure having excellent low temperature toughnetss, tensile strength and low yield ratio, of heat affected zone and manufacturing method for the same
JP2002256386A (en) High strength galvanized steel sheet and production method therefor
JP2009127069A (en) High toughness steel plate for line pipe, and its manufacturing method
JP2008045174A (en) High-strength thick steel plate for structural purpose having excellent brittle crack propagation property and its production method
JP7411072B2 (en) High-strength, extra-thick steel material with excellent low-temperature impact toughness and method for producing the same
JP5181496B2 (en) Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same
JPH10306316A (en) Production of low yield ratio high tensile-strength steel excellent in low temperature toughness
JP2913426B2 (en) Manufacturing method of thick high strength steel sheet with excellent low temperature toughness
JP5034392B2 (en) Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same
JP2003321727A (en) Low yield ratio high-tensile steel plate of excellent bendability and method for manufacturing the same
JP3474661B2 (en) Sour-resistant steel plate with excellent crack arrestability
CN110629001A (en) Manufacturing method of steel plate for extra-thick pipeline steel
JPH1171615A (en) Production of thick steel plate excellent in low temperature toughness
JP4692519B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP7265008B2 (en) Steel material for pressure vessel excellent in resistance to hydrogen-induced cracking and its manufacturing method
JPH11140584A (en) Steel for welded structure excellent in toughness at low temperature, fracture toughness, and fatigue characteristic, and its production
JPH11181546A (en) Structural steel for welding, excellent in toughness at low temperature, fracture toughness, and fatigue characteristic, and its production
JPH11181543A (en) Structural steel excellent in toughness at low temperature and fatigue characteristic, and its production
JP3526740B2 (en) Low yield ratio high strength steel excellent in weldability and low temperature toughness and method for producing the same
JP3212344B2 (en) Manufacturing method of structural steel plate for welding with excellent toughness at low temperature
JPH05148544A (en) Production of high-strength high-toughness steel plate having uniform hardness distribution in thickness direction
JP3009568B2 (en) Manufacturing method of high strength steel sheet with excellent hydrogen induced cracking resistance and low temperature toughness

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050301