JPH11181507A - Production of iron base si-mn alloy powder good in pulverizability - Google Patents

Production of iron base si-mn alloy powder good in pulverizability

Info

Publication number
JPH11181507A
JPH11181507A JP9354398A JP35439897A JPH11181507A JP H11181507 A JPH11181507 A JP H11181507A JP 9354398 A JP9354398 A JP 9354398A JP 35439897 A JP35439897 A JP 35439897A JP H11181507 A JPH11181507 A JP H11181507A
Authority
JP
Japan
Prior art keywords
alloy
iron
pulverizability
alloy powder
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9354398A
Other languages
Japanese (ja)
Inventor
Noriyasu Satou
教容 佐藤
Kuniteru Suzuki
邦輝 鈴木
Shizuo Kawaguchi
静雄 川口
Toshiji Kikuchi
俊士 菊池
Koichi Aoki
宏一 青木
Masao Kamata
政男 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Metals and Chemical Co Ltd
Nippon Steel Welding and Engineering Co Ltd
Original Assignee
Japan Metals and Chemical Co Ltd
Nippon Steel Welding and Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Metals and Chemical Co Ltd, Nippon Steel Welding and Engineering Co Ltd filed Critical Japan Metals and Chemical Co Ltd
Priority to JP9354398A priority Critical patent/JPH11181507A/en
Publication of JPH11181507A publication Critical patent/JPH11181507A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a nonmagnetic iron base Si-Mn alloy powder excellent in pulverizability. SOLUTION: An alloy raw material is melted so as to form an iron alloy contg., by weight, 0.40 to 1.20% C, 5.0 to 12.0% Si, 19.0 to 42.0% Mn, and the balance Fe, after solidification, it is cooled in such a manner that the cooling time T (sec) at 1150 to 400 deg.C is regulated to the range of T<=3.41×10<-5> (X-6)<9.21> , and thereafter, it is mechanically pulverized to a prescribed grain size, where X is variables depending on the components, defined as X=Si+2.92C+0.077 Mn. Moreover, the alloy powder is the one satisfying Si<=8.3C+0.14 Mn and relative permeability (μ)<=1.10.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、特に粉砕性の優れ
た鉄系Si−Mn合金粉の製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an iron-based Si-Mn alloy powder having particularly excellent pulverizability.

【0002】[0002]

【従来の技術】従来、主として鉄鋼製造時の脱酸、脱
硫、造滓及び合金成分添加剤として用いられるフェロマ
ンガン、フェロシリコン及びシリコマンガンは、そのJ
IS規格(G2301,G2302,G2304−19
86)に規定されているように、何れも合金成分が高く
[例えば、Mn≧73%、(Mn+Si)≧74%
等]、かつ炭素含有量も極めて高い(例えば、FMnM
2:C≦2.0%,SiMn0:C≦1.5%)。そし
てこれらの合金鉄はその用途上、規定されている粒度に
従って、合金粉または粒として供給されることになって
いる。すなわち、これらの合金鉄はJISの中のロット
の作り方にも示されているように、大量に、かつ粉粒状
で供給されるという性状の特徴があり、これは夫々の合
金鉄の中の合金量と炭素量が高いために、溶解後の冷却
にて容易に粉粒状の形状が得られることによって実現し
ている。
2. Description of the Related Art Conventionally, ferromanganese, ferrosilicon and silicomanganese, which are mainly used as deoxidation, desulfurization, slag-making and alloying components additives in steel production, are known as J
IS standard (G2301, G2302, G2304-19
86), the alloy components are high [Mn ≧ 73%, (Mn + Si) ≧ 74%, for example]
And the carbon content is extremely high (for example, FMnM
2: C ≦ 2.0%, SiMn0: C ≦ 1.5%). Then, these ferromagnetic irons are to be supplied as alloy powders or granules according to the prescribed particle size for the purpose of use. In other words, these ferromagnetic irons are characterized in that they are supplied in a large amount and in the form of powder and granules, as shown in the production method of lots in JIS. This is realized by the fact that the powder and the granular shape can be easily obtained by cooling after melting due to the high amount of carbon and the amount of carbon.

【0003】一方、近年、鉄鋼成品の多様化に伴い、従
来のJIS規格よりも、Si,Mn等の合金量、さらに
は炭素含有量のより少ない粉状合金鉄の必要性が高くな
って来ている。例えば、構造物の溶接に適用するアーク
溶接用フラックス入りワイヤのフラックスには、目的に
応じてスラグ形成剤、脱酸剤、合金剤、鉄粉等の種々の
粉末原料が含まれ、具体的には上記の粉末のフェロマン
ガン、フェロシリコン、シリコマンガン及び鉄粉等が合
計で数10%も含まれている。この混合合金フラックス
から生ずる成分の偏析は、鋼材溶接時の溶接品質に悪影
響を及ぼす場合がある。
On the other hand, in recent years, with the diversification of steel products, the necessity of powdered ferromagnetic iron having a smaller amount of alloys such as Si and Mn and a lower carbon content than conventional JIS standards has been increasing. ing. For example, the flux of the flux-cored wire for arc welding applied to welding of structures includes various powder raw materials such as slag forming agents, deoxidizing agents, alloying agents, and iron powder depending on the purpose. Contains several tens% in total of the above powders of ferromanganese, ferrosilicon, silicomanganese, iron powder and the like. The segregation of the components generated from the mixed alloy flux may adversely affect the welding quality at the time of welding the steel material.

【0004】従って、上記数種類の粉末原料を配合し
て、揃えた成分と同じ成分を持った単一合金鉄粉を予め
製造し、これをフラックス中に使用する方法が強く望ま
れるところである。しかしながら、一般的にフェロアロ
イ中のSi,MnさらにはC等を下げてゆくと、その延
性、靱性が次第に良くなり、通常の生産設備では、なか
なか粉粒状の製品を得ることが難しくなる。また、これ
を改善するための成分調整を行うと、磁性を帯びやすく
なり、磁性を帯びた合金粉を混合したフラックスを用い
て、例えば特公平4−72840号公報の提案に見られ
るような、帯鋼の成形とフラックスの充填、シーム溶接
を連続に行って、フラックス入りワイヤを作る場合に
は、その製造作業条件によっては、成分の偏析、シーム
部の融合不良等が発生し、フラックス入りワイヤの製造
歩留及び鋼材溶接時の溶接品質に悪影響を及ぼす場合が
ある。
[0004] Therefore, there is a strong demand for a method of blending the above several kinds of powdery raw materials to produce in advance a single alloyed iron powder having the same components as the aligned components and using the same in a flux. However, in general, when Si, Mn and C in ferroalloys are reduced, their ductility and toughness are gradually improved, and it is difficult to obtain powdery products with ordinary production equipment. In addition, when component adjustment for improving this is performed, it becomes easy to take on magnetism, and using a flux mixed with magnetized alloy powder, for example, as shown in the proposal of Japanese Patent Publication No. 4-72840, When a flux-cored wire is made by continuously forming a strip, filling with a flux, and seam welding, depending on the manufacturing conditions, segregation of components, poor fusion of the seam, etc. may occur, resulting in a flux-cored wire. May adversely affect the production yield of steel and the welding quality when welding steel.

【0005】[0005]

【発明が解決しようとする課題】そこで、上記のような
鉄分を多く含有する鉄系Si−Mn合金鉄を製造するに
あたり、粉体として大量生産するためには、製造過程に
おいて容易に粉砕が可能であることが必要である。鉄分
含有量の多い合金粉として、特公平4−62838号公
報、特開平5−31594号公報に、Fe−Mn系合金
粉が記載されているが、それらは常法の機械的粉砕では
粉砕性が極めて悪いという難点があり、従来において
は、これら合金であって、しかも容易に粉砕して多量生
産が可能な鉄系Si−Mn合金粉体は存在していないの
が実状である。また、その合金粉が非磁性であること
は、さらに種々の用途拡大が可能となる。そこで、本発
明は、従来では容易に粉砕できないと考えられてきた鉄
系Si−Mn合金を容易に粉砕出来る製造方法を提供す
ることを目的とする。
Therefore, in producing iron-based Si-Mn alloy iron containing a large amount of iron as described above, in order to mass-produce the powder, it is possible to easily pulverize it in the production process. It is necessary to be. As alloy powders having a high iron content, Fe-Mn alloy powders are described in Japanese Patent Publication No. 4-62838 and Japanese Patent Laid-Open Publication No. Hei 5-31594. In fact, there is no iron-based Si-Mn alloy powder which is an alloy of these types and which can be easily pulverized and mass-produced. In addition, the fact that the alloy powder is non-magnetic can further expand various uses. Therefore, an object of the present invention is to provide a production method capable of easily pulverizing an iron-based Si-Mn alloy, which has conventionally been considered not to be easily pulverized.

【0006】本発明者らは、主として凝固途中の冷却速
度と粉砕し易さの関係を解明し、粉砕性の良好な鉄系S
i−Mn合金粉を得ることに成功したものである。各種
冷却速度の組織を比較したところ、凝固中の冷却速度に
よって、デンドライトの成長状態が大きく異なり、デン
ドライトが中位の組織は、粉砕性が良好になることが判
った。デンドライトが中位になる条件は、冷却速度にお
いても中位の速度の場合に得られることが判った。さら
に、従来、容易に粉砕できないと考えられてきた高Mn
系オーステナイト合金に類似した組成の非磁性の鉄系S
i−Mn合金についても粉砕性良好な製造条件が存在す
ることを究明したものである。なお、水アトマイズのよ
うな速い冷却速度の場合には、微細なデンドライト組織
が発達し、一応粉砕は可能であるが、デンドライトが中
位のものと比較して粉砕しにくくなるので本発明の範囲
から除外した。
The present inventors have mainly clarified the relationship between the cooling rate during solidification and the easiness of pulverization, and
It succeeded in obtaining i-Mn alloy powder. When the structures at various cooling rates were compared, it was found that the growth state of the dendrite was greatly different depending on the cooling rate during solidification, and that the structure having a medium dendrite had good pulverizability. It has been found that the condition that the dendrite becomes medium can be obtained even at the medium cooling speed. Furthermore, high Mn, which has conventionally been considered not to be easily pulverized,
Nonmagnetic iron-based S with composition similar to that of austenitic alloys
It has been clarified that manufacturing conditions with good pulverizability also exist for the i-Mn alloy. In the case of a high cooling rate such as water atomization, a fine dendrite structure develops and can be crushed for the time being, but the dendrite is harder to grind than a medium dendrite, so the scope of the present invention Excluded from.

【0007】[0007]

【課題を解決するための手段】その発明の要旨とすると
ころは、 (1)重量%で、C:0.40〜1.20%、Si:
5.0〜12.0%、Mn:19.0〜42.0%を含
み、残部Feからなる鉄合金となるように、該合金原料
を溶解し、凝固後、1150℃から400℃までの冷却
時間T(sec)が、T≦3.41×10-5(X−6)
9.21の範囲となるように冷却し、その後所定の粒度まで
機械的粉砕することを特徴とする粉砕性の良好な鉄系S
i−Mn合金粉の製造方法。ただし、X=Si+2.9
2C+0.077Mnで得られる成分依存変数。
The gist of the invention is as follows: (1) C: 0.40 to 1.20% by weight, Si:
The alloy raw material is melted and solidified to form an iron alloy containing 5.0 to 12.0% and Mn: 19.0 to 42.0% with the balance being Fe. When the cooling time T (sec) is T ≦ 3.41 × 10 −5 (X−6)
9. Cooling to a range of 9.21 , and then mechanically pulverizing to a predetermined particle size.
Method for producing i-Mn alloy powder. Where X = Si + 2.9
Component dependent variable obtained at 2C + 0.077Mn.

【0008】(2)重量%で、C:0.40〜1.20
%、Si:5.0〜12.0%、Mn:19.0〜4
2.0%を含み、残部Feからなり、かつ、Si≦8.
3C+0.14Mnおよび比透磁率(μ)≦1.10を
満たす鉄合金となるように、該合金原料を溶解し、凝固
後、1150℃から400℃までの冷却時間T(se
c)が、T≦3.41×10-5(X−6)9.21の範囲と
なるように冷却し、その後所定の粒度まで機械的粉砕す
ることを特徴とする粉砕性の良好な鉄系Si−Mn合金
粉の製造方法。ただし、X=Si+2.92C+0.0
77Mnで得られる成分依存変数。
(2) C: 0.40 to 1.20 by weight%
%, Si: 5.0 to 12.0%, Mn: 19.0 to 4
2.0%, with the balance being Fe and Si ≦ 8.
The alloy material is melted so that the iron alloy satisfies 3C + 0.14Mn and the relative magnetic permeability (μ) ≦ 1.10. After solidification, a cooling time T (sec) from 1150 ° C. to 400 ° C.
c) is cooled so that T ≦ 3.41 × 10 −5 (X−6) 9.21 , and then mechanically pulverized to a predetermined particle size. -Method for producing Mn alloy powder. Where X = Si + 2.92C + 0.0
Component dependent variable obtained at 77Mn.

【0009】(3)重量%で、P:0.10〜0.40
%を含有することを特徴とする前記(1)または(2)
記載の良好な鉄系Si−Mn合金粉の製造方法。 (4)粒径212μm以下であることを特徴とする前記
(1)〜(3)記載の鉄系Si−Mn合金粉の製造方法
にある。
(3) By weight%, P: 0.10 to 0.40
(1) or (2) above,
A method for producing an excellent iron-based Si-Mn alloy powder according to the above description. (4) The method for producing an iron-based Si-Mn alloy powder according to the above (1) to (3), wherein the particle diameter is 212 μm or less.

【0010】[0010]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明者らは、鉄系Si−Mn合金の組成及び冷却時間
を種々変えて溶解実験を行った。溶解は高周波炉で行い
アルミナ坩堝(溶解量2kg)を用いた。溶解後、高周
波炉の負荷調整にて1500℃のスタート温度に合わせ
たのち、6種類の方法で冷却した。図1に冷却方法とそ
の冷却カーブを概念的に示す。なお、実験に供した鉄系
Si−Mn合金の凝固温度は概略1200〜1350℃
の範囲にあった。なお、一般的に冷却速度は、 液体急冷法 1×105 〜106 ℃/sec アトマイズ 5×103 〜105 ℃/sec その他の鋳込み 5×103 ℃/sec以下程度と推定
されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.
The present inventors conducted melting experiments by changing the composition and cooling time of the iron-based Si-Mn alloy in various ways. Melting was performed in a high-frequency furnace, and an alumina crucible (dissolution amount 2 kg) was used. After melting, the temperature was adjusted to a start temperature of 1500 ° C. by adjusting the load of the high-frequency furnace, and then cooled by six methods. FIG. 1 conceptually shows a cooling method and a cooling curve thereof. The solidification temperature of the iron-based Si-Mn alloy used for the experiment was approximately 1200 to 1350 ° C.
Was in the range. Incidentally, generally cooling rate is estimated to liquid quenching method 1 × 10 5 ~10 6 ℃ / sec atomizing 5 × 10 3 ~10 5 ℃ / sec Other casting 5 × 10 3 ℃ / sec extent less .

【0011】図1中カーブは、底にスリットを付けた
タンディッシュ型坩堝中で溶解し、高速回転ロールをも
つアモルファスリボン作成装置のロール面に溶湯を落と
した液体急冷である。この方法で出来たリボンは極めて
容易に粉砕されたが、異型タンディッシュ、ロール設備
等コスト高になり、生産性も低い。カーブは、水アト
マイズしたものである。高周波炉で溶解した溶湯をメタ
ル対水の重量比1対50の水流中へ滴下した。出来たメ
タル粒は、水切り乾燥後粉砕テスト及び樹脂埋めサンプ
ルとし、鋳片断面の結晶組織を顕微鏡観察した。図中円
内に示した写真はFe−0.6C−8Si−31Mn組
成の例である。左の円内がの顕微鏡写真で、微細な組
織となり、粉砕性が悪いことが判った。
The curve in FIG. 1 shows a liquid quenching process in which a melt is melted in a tundish type crucible having a slit at the bottom, and molten metal is dropped on the roll surface of an amorphous ribbon forming apparatus having a high-speed rotating roll. Although the ribbon made by this method is very easily pulverized, the cost of a modified tundish, roll equipment and the like is high, and the productivity is low. The curves are water atomized. The molten metal dissolved in the high frequency furnace was dropped into a water flow having a weight ratio of metal to water of 1:50. The resulting metal particles were used as a pulverization test and a resin-filled sample after draining and drying, and the microstructure of the cross section of the slab was observed under a microscope. The photograph shown in the circle in the figure is an example of the composition of Fe-0.6C-8Si-31Mn. A micrograph in the left circle shows a fine structure, and it was found that the pulverizability was poor.

【0012】カーブは高周波炉で溶解した溶湯を裏面
を水冷用ジャケットとした水平鉄鋳型上へ鋳造したもの
である。鋳片の粉砕性は次のカーブと同様良好であっ
た。カーブ、は、高周波炉溶解した溶湯を非水冷の
金型モールド中へ鋳込んだものであるが、は溶湯表面
が金型中で凝固した時点で大量の水スプレーを加えたも
の、は金型中で空冷したものである。図中の中央の顕
微鏡写真は、デンドライトが中位のサイズに成長したの
ち、マトリックス部が相分離しきれずに凝固した組織と
見られる。非水冷で、かつ金型比が小さいとか、炉内で
そのまま冷却した状態では、図中右円内の顕微鏡写真の
ようにデンドライトとマトリックス間の成分偏析が平準
化されて行くために破砕が困難になることが判った。な
お、この境界はカーブとカーブの中間にあり、これ
は、カーブに比べて、カーブのデンドライト面積率
が小さくなる傾向にあることからも推察される。
The curve is obtained by casting a molten metal melted in a high-frequency furnace on a horizontal iron mold whose back surface has a water cooling jacket. The pulverizability of the slab was as good as the following curve. The curve is a mold in which a molten metal melted by a high-frequency furnace is cast into a non-water-cooled mold, while a large amount of water spray is applied when the molten metal surface solidifies in the mold. Air cooled inside. The micrograph at the center in the figure shows a structure where the dendrite has grown to a medium size and then the matrix has solidified without phase separation. When non-water cooled and the mold ratio is small or cooled in the furnace as it is, crushing is difficult because the component segregation between the dendrite and the matrix is leveled as shown in the micrograph in the right circle in the figure It turned out to be. This boundary is located between the curves, which is inferred from the fact that the dendrite area ratio of the curve tends to be smaller than that of the curve.

【0013】なお、破砕性の良否の判定法としては、後
記する実施例と同じ方法であり、鋳片100gをディス
ク型のリングミル粉砕機(振幅100mm、振動数1、
800回/分)に入れて、60秒間粉砕し、粒径212
μm以下が50%以上の場合を良好と判定した。なお、
図1は概念図であるが、図2はカーブの場合の金型鋳
込後水冷の場合について鋳型に熱電対をセットしておき
実測したものである。本発明者らは、上記〜の冷却
方法において、種々組成を変化させた鉄系Si−Mn合
金の溶解実験を繰り返し行った。その結果、鉄系Si−
Mn合金の粉砕性は、その組成に依存した適正な冷却速
度を選択することにより大幅に改善されることを見いだ
したものである。
The method of determining the friability is the same as in the embodiment described later. 100 g of the slab is crushed by a disk-type ring mill (amplitude: 100 mm, frequency: 1,
800 times / min) and pulverized for 60 seconds to obtain a particle size of 212.
A case where the value of μm or less was 50% or more was judged to be good. In addition,
FIG. 1 is a conceptual diagram, but FIG. 2 shows a measured value in a case where a thermocouple is set in a mold in a case of water cooling after casting a mold in the case of a curve. The present inventors have repeatedly performed melting experiments of iron-based Si-Mn alloys having various compositions changed in the above cooling methods. As a result, iron-based Si-
It has been found that the grindability of a Mn alloy can be greatly improved by selecting an appropriate cooling rate depending on its composition.

【0014】以下に、本発明の基本となる冷却速度の限
定理由について述べる。鉄系Si−Mn合金を溶解し、
その凝固した鋳片のビッカース硬度(Hv)が概略55
0以上になると通常の機械的粉砕においても粉砕性が良
好となる。このとき、多くの実験結果からビッカース硬
度(Hv)の測定値は下記(1)式で求めたHvの計算
値に極めて近似することが判った。 Hv=380C+130Si+10Mn+〔P〕−1076 … (1) ただし、〔P〕=0(P<0.10%)、〔P〕=80
(P≧0.10%)。
The reasons for limiting the cooling rate, which is the basis of the present invention, will be described below. Dissolve iron-based Si-Mn alloy,
The Vickers hardness (Hv) of the solidified slab is approximately 55
When it is 0 or more, the pulverizability becomes good even in ordinary mechanical pulverization. At this time, it was found from many experimental results that the measured value of the Vickers hardness (Hv) was very close to the calculated value of Hv obtained by the following equation (1). Hv = 380C + 130Si + 10Mn + [P] -1076 (1) where [P] = 0 (P <0.10%), [P] = 80
(P ≧ 0.10%).

【0015】しかし、(1)式により計算されるHvの
値が550以上となる組成の鉄系Si−Mn合金であっ
ても冷却速度によっては粉砕性が悪くなったり、逆にH
vの計算値が550未満の組成において良好な粉砕性が
得られる場合があった。本発明者らは、このような鉄系
Si−Mn合金の粉砕性に対する挙動に注目した。そこ
で、まず、鉄系Si−Mn合金の組成を全体的に表わす
成分依存変数Xを下記(2)式で規定した。 X=Si+2.92C+0.077Mn … (2) この(2)式において、Xの値は上記(1)式のHvの
値に相関し、また各成分間の係数比は(1)式のHvへ
の寄与度に等しい。
However, even with an iron-based Si—Mn alloy having a composition in which the value of Hv calculated by the equation (1) is 550 or more, the pulverizability deteriorates depending on the cooling rate, and conversely, H
Good pulverizability was sometimes obtained with a composition in which the calculated value of v was less than 550. The present inventors have paid attention to the behavior of such an iron-based Si-Mn alloy with respect to grindability. Therefore, first, a component-dependent variable X that entirely represents the composition of the iron-based Si-Mn alloy is defined by the following equation (2). X = Si + 2.92C + 0.077Mn (2) In the equation (2), the value of X is correlated with the value of Hv in the above equation (1), and the coefficient ratio between the components is Hv in the equation (1). Equal to the contribution of

【0016】図3に縦軸をX=Si+2.92C+0.
077Mn、横軸に種々冷却速度を変えた場合の溶湯の
冷却開始から400℃までの降下時間(sec)を示し
た。図3中、破線はX=11.89を示すラインで、こ
の値は(1)式によるHvの値が550(ただし、P≧
0.10%)となり、良好な粉砕性が得られる目安とな
るが、図3によりXの値が、11.89未満となる組成
でも冷却速度が速ければ粉砕良好域があり、また、X≒
11.89の近傍でも冷却速度が遅くなると、粉砕不良
域があることが判る。
In FIG. 3, the vertical axis represents X = Si + 2.92C + 0.
077Mn, the horizontal axis shows the descent time (sec) from the start of cooling of the molten metal to 400 ° C. when various cooling rates were changed. In FIG. 3, the dashed line is a line indicating X = 11.89, and this value indicates that the value of Hv according to equation (1) is 550 (where P ≧
0.10%), which is a standard for obtaining good pulverizability. However, as shown in FIG. 3, even with a composition in which the value of X is less than 11.89, if the cooling rate is high, there is a good pulverization area, and X ≒
If the cooling rate is low even in the vicinity of 11.89, it can be seen that there is a pulverization defective area.

【0017】そこで、図3より粉砕良好域と粉砕不良域
の間に実線で示した境界線を描き、これを累乗式と仮定
して読み取り、下記(3)式を粉砕性が良好となる冷却
時間として限定した。 T≦3.41×10-5(X−6)9.21 … (3) なお、(3)式は凝固して1150℃から400℃に達
するまでの温度降下時間を基に得られたものであるが、
400℃よりも低温域での冷却速度は粉砕性に殆ど影響
しないことを確認した。
Accordingly, a boundary line shown by a solid line is drawn between the good pulverization area and the poor pulverization area in FIG. 3, and this is read assuming that it is a power equation. Limited time. T ≦ 3.41 × 10 −5 (X−6) 9.21 (3) Equation (3) is obtained based on the temperature drop time from solidification to 1150 ° C. to 400 ° C. But,
It was confirmed that the cooling rate at a temperature lower than 400 ° C. hardly affected the pulverizability.

【0018】次に、成分規制の理由について、粉砕性と
非磁性化の観点から説明する。粉砕性に重要な影響をも
つ冷却速度(T)と化学成分の関係を、一連の実験によ
って求め、(3)式で表すことが出来た。粉砕性良好な
鉄系Si−Mn合金を得るためのC,Si,Mn及びP
の含有量の組み合わせは、組成面から各々成分が限定さ
れた含有量の範囲で、かつ、上記のように冷却速度面か
ら限定される(3)式によって自ら決まる。
Next, the reasons for the regulation of the components will be described from the viewpoint of pulverizability and demagnetization. The relationship between the cooling rate (T), which has an important effect on the pulverizability, and the chemical components was determined by a series of experiments, and could be expressed by the equation (3). C, Si, Mn and P for obtaining an iron-based Si-Mn alloy having good pulverizability
Is determined by the formula (3), which is limited in terms of the composition in terms of the content of each component and is limited in terms of the cooling rate as described above.

【0019】以下に、本発明の鉄系Si−Mn合金の組
成面から各成分範囲の限定理由について述べる。 C:0.40〜1.20% Cは粉砕性を良好にし、また、非磁性化にも有効に作用
する成分であり、0.40%以上必要である。Cが0.
40%未満では鋳片のビッカース硬度(Hv)が550
以上になりにくく、粉砕が困難になる。Cの上限につい
ては、この値が1.20%を超えても粉砕性及び非磁性
化に対する効果は殆ど変わらない。そこでCの範囲を
0.40〜1.20%とした。
The reasons for limiting the range of each component from the aspect of composition of the iron-based Si-Mn alloy of the present invention will be described below. C: 0.40 to 1.20% C is a component that improves the pulverizability and effectively acts on demagnetization, and is required to be 0.40% or more. C is 0.
If it is less than 40%, the Vickers hardness (Hv) of the slab is 550.
And pulverization becomes difficult. Regarding the upper limit of C, even if this value exceeds 1.20%, the effect on pulverizability and demagnetization hardly changes. Therefore, the range of C is set to 0.40 to 1.20%.

【0020】Si:5.0〜12.0% Siは5.0%以上含有させることによって粉砕性が顕
著に向上するが、12%を超えても粉砕性は殆ど変わら
ない。また、Siは磁性の面から後記のように他の成分
の含有量によって制御する必要があり、これらから上限
を12.0%に限定した。なお、Siが5.0%未満に
なると粉砕性が急激に悪くなる。
Si: 5.0 to 12.0% By containing 5.0% or more of Si, pulverizability is remarkably improved, but pulverizability hardly changes even if it exceeds 12%. Further, from the viewpoint of magnetism, Si needs to be controlled by the content of other components as described later, and therefore the upper limit is limited to 12.0%. When the content of Si is less than 5.0%, the pulverizability rapidly deteriorates.

【0021】Mn:19.0〜42.0% Mnは、ビッカーズ硬度(Hv)に対する寄与度が小さ
いことから、粉砕性については、CやSi程に強くはな
いが、この合金鉄を非磁性の安定したオーステナイト相
に保持するために、19.0%以上必要である。一方、
粉砕性を良好にするためにフェライト形成能の強いSi
を上限近くまで増加すると、Mnは40%以上必要にな
ってくる。そこでMnの範囲は19.0〜42.0%と
した。
Mn: 19.0-42.0% Since Mn has a small contribution to Vickers hardness (Hv), its grindability is not as strong as that of C or Si. Is required to be 19.0% or more in order to maintain the stable austenite phase. on the other hand,
Si with strong ferrite forming ability to improve pulverizability
Is increased to near the upper limit, Mn needs to be 40% or more. Therefore, the range of Mn is set to 19.0 to 42.0%.

【0022】また、本発明の合金鉄に微量のPを添加す
ると、硬度(Hv)の上昇、すなわち、粉砕性の改良に
極めて有効である。実施例を踏まえて、総合的に整理す
ると、Pを0.10%以上添加するとビッカース硬度
(Hv)は約80も上昇し、粉砕性を高める。しかしな
がら、余り多量に添加すると本発明の合金粉を使用した
鉄鋼製品の材質を脆化させる危険性があるので本発明で
は、Pの範囲を0.10〜0.40%とした。以上、鉄
系Si−Mn合金の粉砕性に及ぼすC,Si,Mn及び
Pの成分限定の理由について述べたが、各成分が上記限
定した含有量の範囲内で、かつ、その冷却速度との関係
において(3)式を満足することにより、良好な粉砕性
を確保することが出来る。
Further, when a small amount of P is added to the ferroalloy of the present invention, it is extremely effective in increasing the hardness (Hv), that is, improving the pulverizability. In summary, based on the examples, when P is added in an amount of 0.10% or more, the Vickers hardness (Hv) increases by about 80 and the pulverizability is improved. However, if added in an excessively large amount, there is a risk of embrittlement of the material of a steel product using the alloy powder of the present invention. Therefore, in the present invention, the range of P is set to 0.10 to 0.40%. As described above, the reasons for limiting the components of C, Si, Mn, and P which affect the pulverizability of the iron-based Si-Mn alloy have been described, but each component is within the above-defined range of the content and the cooling rate. By satisfying the expression (3), good pulverizability can be ensured.

【0023】次に、鉄系Si−Mn合金粉の比透磁率
(μ)を1.10以下としたのは、比透磁率(μ)が
1.10という値は磁性を僅かに帯びる性質を有する臨
界値であって、例えば、溶接用フラックス入りワイヤで
のフラックス原料として使用する場合の用途等を考慮す
ると、非透磁率(μ)が1.10以下であれば、フラッ
クス入りワイヤ製造工程のシーム溶接に際しても溶接欠
陥が全く発生しない。なお、非磁性化の目安を得るため
に測定した鋳片のフェライト量で表わすと、比透磁率
(μ)が1.10以下となるのは、フェライト量で1〜
2%以下に対応していることが明らかになった。
Next, the reason why the relative magnetic permeability (μ) of the iron-based Si—Mn alloy powder is set to 1.10 or less is that the value of 1.10 indicates that the magnetic material has a slight magnetic property. It is a critical value that has a non-magnetic permeability (μ) of 1.10 or less in consideration of, for example, the use when used as a flux raw material in a flux-cored wire for welding, if the non-magnetic permeability (μ) is 1.10 or less. No welding defects occur during seam welding. In terms of the amount of ferrite in the slab measured to obtain a measure of demagnetization, the relative magnetic permeability (μ) becomes 1.10 or less when the amount of ferrite is 1 to 10.
It became clear that it corresponded to 2% or less.

【0024】図4は、鉄系Si−Mn合金鉄において鋳
片の組成と磁性の関係を求めた結果である。縦軸は鋳片
に含まれる強磁性分をフェライトメーターで測定したフ
ェライト量(α)(%)の値であり、横軸のオーステナ
イト指数(A/F)は、図中に示すように鋳片のC,S
i及びMn含有量によって求められる値であり、大きな
値になるほどオーステナイト化傾向が強くなるという意
味を持っている。この図4からオーステナイト指数(A
/F)が大きくなるほど、磁性を示すフェライト量は、
ほぼ直線的に減少し、ばらつきを考慮してもこのオース
テナイト指数(A/F)が2.40〜2.80になると
フェライト量はほとんど消失し、いわゆる、非磁性化す
ることが判る。
FIG. 4 is a graph showing the relationship between the composition of the cast slab and the magnetism of the iron-based Si-Mn alloy iron. The vertical axis represents the value of the amount of ferrite (α) (%) obtained by measuring the ferromagnetic component contained in the slab by a ferrite meter, and the austenite index (A / F) on the horizontal axis represents the slab as shown in the figure. C, S
This is a value obtained from the contents of i and Mn, and means that the larger the value, the stronger the austenitizing tendency. From this FIG. 4, the austenite index (A
/ F) increases, the amount of ferrite exhibiting magnetism increases.
It can be seen that when the austenite index (A / F) becomes 2.40 to 2.80 even if the variation is considered, the amount of ferrite almost disappears and the material becomes non-magnetic.

【0025】そこで、図4に示したオーステナイト指数
(A/F)とフェライト量(α)の関係から、オーステ
ナイト指数(A/F)を非磁性化原料として実用上問題
のない2.40とした場合の両者の関係式を求めたの
が、下記(4)式である。 α=114−47.4(A/F) … (4) この(4)式に非磁性の条件(α≦0)を入れると、
(4)式は下記(5)式となり、鉄系Si−Mn合金の
組成を規制する。 Si≦8.3C+0.14Mn … (5)
Therefore, based on the relationship between the austenite index (A / F) and the amount of ferrite (α) shown in FIG. 4, the austenite index (A / F) was set to 2.40, which is a practically non-magnetic material and has no practical problem. The relational expression between the two cases is obtained by the following expression (4). α = 114−47.4 (A / F) (4) When a non-magnetic condition (α ≦ 0) is added to the equation (4),
Equation (4) becomes the following equation (5) and regulates the composition of the iron-based Si-Mn alloy. Si ≦ 8.3C + 0.14Mn (5)

【0026】本発明では比透磁率の規制とともに、この
(5)式を非磁性の鉄系Si−Mn合金粉を製造する場
合の要件とした。非磁性化に対しても組成面から規制し
たことは、鉄系Si−Mn合金の品質を高め、また生産
歩留りの向上に効果的であった。なお、(5)式で規制
した組成の鉄系Si−Mn合金についても、前述した
(3)式により規制した冷却速度をもって製造すれば十
分に良好な粉砕性が得られ、また機械的粉砕を行った後
においても実質的な非磁性が得られることを確認した。
In the present invention, along with the regulation of the relative magnetic permeability, the expression (5) is a requirement for producing a nonmagnetic iron-based Si-Mn alloy powder. Restricting the demagnetization from the aspect of composition was effective in improving the quality of the iron-based Si-Mn alloy and improving the production yield. It should be noted that, with respect to the iron-based Si—Mn alloy having the composition regulated by the formula (5), if the alloy is manufactured with the cooling rate regulated by the above-described formula (3), sufficiently good grindability can be obtained. It was confirmed that substantial non-magnetism was obtained even after the test.

【0027】以上、本発明では組成を規制し、その組成
に見合った冷却速度を選択することにより、粉砕性が良
好で、非磁性の鉄系Si−Mn合金粉の製造を可能にし
た。加えて、それら合金粉の用途が、例えば、仕上りワ
イヤ径が1.2mmという細径のフラックス入りワイヤ
の生産性(断線)及び溶接作業性(特にアーク安定性)
の向上のために粒径が212μm以下という細粒のもの
であったとしても、十分に対応できる粉砕性を有してい
る。
As described above, according to the present invention, by controlling the composition and selecting a cooling rate suitable for the composition, it is possible to produce a nonmagnetic iron-based Si-Mn alloy powder having good crushability. In addition, the applications of these alloy powders are, for example, the productivity (disconnection) and welding workability (particularly arc stability) of a flux-cored wire having a finished wire diameter of 1.2 mm.
Even if it is a fine particle having a particle diameter of 212 μm or less for improving the crushing property, it has a sufficiently crushable property.

【0028】[0028]

【実施例】(実施例1)所定の成分となるように配合し
た溶解原料を、高周波誘導溶解炉(溶解量2kg)を用
いて溶解し、鋳型に鋳込み、凝固後水冷却して鋳片を得
た。この鋳片をハンマーで粗粉砕後、図5に形状を示す
リングミル粉砕機を使用して粉砕性の評価を行った。図
5(a)はリングミル粉砕機の図5(b)のB−B´平
面図、図5(b)は図5のA−A´断面図であり、底部
材3と一体である外筒1の中に内リング2が装入されて
おり、底部材3を所定の条件で水平振動させると、内リ
ング2は移動し、外筒1と内リング2の間に挿填された
鋳片は、衝撃を受けて粉砕される。粉砕性の評価は上記
リングミル粉砕機に粗粉砕した鋳片(平均サイズ10〜
20mm塊を約100g入れて、振幅100mm、振動
数1800回/分、60秒間衝撃を与えた後、粒径が2
12μm以下の割合が90%以上の場合を評価記号◎印
(極めて良)、50%以上の場合を○印(良)、50%
未満の場合を△印(不充分)とした。試験結果は、表1
に示し、No1は比較例、No2〜5は本発明例で良好
な粉砕性が得られた。
(Example 1) A raw material blended so as to have predetermined components is melted using a high-frequency induction melting furnace (melting amount 2 kg), cast into a mold, solidified, and then cooled with water to form a slab. Obtained. The slab was roughly pulverized with a hammer, and the pulverizability was evaluated using a ring mill pulverizer having the shape shown in FIG. 5A is a plan view of the ring mill pulverizer taken along the line BB ′ of FIG. 5B, and FIG. 5B is a cross-sectional view of the ring mill pulverizer taken along the line AA ′ of FIG. When the inner ring 2 is inserted into the inner ring 1 and the bottom member 3 is horizontally vibrated under predetermined conditions, the inner ring 2 moves, and the slab inserted between the outer cylinder 1 and the inner ring 2 is formed. Is crushed by impact. The crushability was evaluated by using the above-mentioned ring mill crusher to coarsely pulverize slabs (average size 10 to 10).
After putting about 100 g of a 20 mm lump and applying an impact for 60 seconds at an amplitude of 100 mm and a frequency of 1800 times / minute, the particle size becomes 2
When the ratio of 12 μm or less is 90% or more, the evaluation symbol ◎ (very good), when it is 50% or more, ○ (good), 50%
When the value was less than △, it was marked with a mark (insufficient). Table 1 shows the test results.
No. 1 was a comparative example, and Nos. 2 to 5 were examples of the present invention, in which good crushability was obtained.

【0029】[0029]

【表1】 [Table 1]

【0030】(実施例2)小型高周波誘導溶解炉(溶解
量2kg)及び大型高周波誘導加熱炉(溶解量250k
g)を用いた多量溶解の結果を表2に示す。冷却速度
は、鋳込み金型の大、小、水冷却、空冷、炉冷、鋳込み
厚さなどにより変化させた。No1〜11及びNo17
〜19は、本発明例で粉砕性が良好で、かつ非磁性の鉄
系Si−Mn合金の製造を可能にしていることが判る。
なお、No3,5は請求項1に係わる発明例である。ま
た、No17〜19に示した多量溶解においても、少量
溶解結果と一致することが確かめられた。これに対し、
No12〜16は比較例で、それぞれ本発明で限定した
冷却速度を表わす(3)式を満足していないために粉砕
性が不良である。なお、粉砕性の評価方法は上記実施例
と同様で、また、合金粉の比透磁率(μ)の測定は、振
動試料型磁力計を用いた。
(Example 2) A small high-frequency induction melting furnace (melting amount 2 kg) and a large high-frequency induction heating furnace (melting amount 250 k
Table 2 shows the results of mass dissolution using g). The cooling rate was varied depending on the size of the casting mold, small size, water cooling, air cooling, furnace cooling, casting thickness, and the like. No1 ~ 11 and No17
Nos. To 19 show that the non-magnetic iron-based Si-Mn alloy has good pulverizability and can be produced in the examples of the present invention.
Nos. 3 and 5 are examples of the present invention. It was also confirmed that the large amount dissolution shown in Nos. 17 to 19 coincided with the small amount dissolution result. In contrast,
Nos. 12 to 16 are comparative examples, each of which does not satisfy the expression (3) representing the cooling rate limited by the present invention, and thus has poor pulverizability. The method for evaluating the grindability was the same as that in the above-described example, and the relative magnetic permeability (μ) of the alloy powder was measured using a vibrating sample magnetometer.

【0031】[0031]

【表2】 [Table 2]

【0032】[0032]

【発明の効果】以上述べたように、本発明によって鉄成
分の含有量が多く実質的に非磁性の鉄系Si−Mn合金
粉を、製造工程において、極めて粉砕性良く、多量生産
することが可能となった。
As described above, according to the present invention, it is possible to produce a large amount of substantially non-magnetic iron-based Si-Mn alloy powder having a high iron content in a production process with extremely good pulverizability. It has become possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る溶解実験における冷却カーブとそ
の際の合金の組織を説明するために示した概念図、
FIG. 1 is a conceptual diagram for explaining a cooling curve and a structure of an alloy at that time in a melting experiment according to the present invention;

【図2】本発明の400℃までの冷却カーブの一例を示
す図、
FIG. 2 is a diagram showing an example of a cooling curve of the present invention up to 400 ° C.

【図3】鉄系SiMn合金の組成と冷却速度及び粉砕性
の関係を示す図、
FIG. 3 is a diagram showing the relationship between the composition of iron-based SiMn alloy, cooling rate, and grindability,

【図4】本発明を含むSi−Mn合金鉄において鋳片の
化学成分と磁性の関係を示す図
FIG. 4 is a diagram showing the relationship between the chemical composition of the slab and the magnetism in the Si—Mn alloy iron including the present invention.

【図5】粉砕性評価に使用したリングミル粉砕機を示す
概略図である。
FIG. 5 is a schematic view showing a ring mill pulverizer used for pulverizability evaluation.

【符号の説明】[Explanation of symbols]

1 外筒 2 内リング 3 底部材 4 上蓋 5 鋳片 DESCRIPTION OF SYMBOLS 1 Outer cylinder 2 Inner ring 3 Bottom member 4 Top lid 5 Cast piece

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C22C 38/04 C22C 38/04 // C22C 33/04 33/04 A (72)発明者 川口 静雄 富山県高岡市吉久1−1−1 日本重化学 工業株式会社高岡事業所内 (72)発明者 菊池 俊士 東京都中央区日本橋小網町8−4 日本重 化学工業株式会社内 (72)発明者 青木 宏一 東京都中央区築地三丁目5番4号 日鐵溶 接工業株式会社内 (72)発明者 鎌田 政男 東京都中央区築地三丁目5番4号 日鐵溶 接工業株式会社研究所内────────────────────────────────────────────────── ─── Continued on the front page (51) Int.Cl. 6 Identification symbol FI C22C 38/04 C22C 38/04 // C22C 33/04 33/04 A (72) Inventor Shizuo Kawaguchi 1-Yoshihisa, Takaoka-shi, Toyama 1-1 Nippon Heavy Chemical Industry Co., Ltd. Takaoka Plant (72) Inventor Toshishi Kikuchi 8-4 Nihonbashi Koamicho, Chuo-ku, Tokyo Nippon Heavy Industries Co., Ltd. (72) Inventor Koichi Aoki 3-chome Tsukiji, Chuo-ku, Tokyo 5-4 Inside Nippon Steel Welding Industry Co., Ltd. (72) Inventor Masao Kamata 3-4-4 Tsukiji, Chuo-ku, Tokyo Inside Nippon Steel Welding Industry Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 C:0.40〜1.20%、 Si:5.0〜12.0%、 Mn:19.0〜42.0%を含み、 残部Feからなる鉄合金となるように、該合金原料を溶
解し、凝固後、1150℃から400℃までの冷却時間
T(sec)が、T≦3.41×10-5(X−6)9.21
の範囲となるように冷却し、その後所定の粒度まで機械
的粉砕することを特徴とする粉砕性の良好な鉄系Si−
Mn合金粉の製造方法。ただし、X=Si+2.92C
+0.077Mnで得られる成分依存変数。
1. An iron alloy containing 0.40 to 1.20% by weight of C, 5.0 to 12.0% of Si, 19.0 to 42.0% of Mn, and the balance Fe After melting and solidifying the alloy raw material, the cooling time T (sec) from 1150 ° C. to 400 ° C. is T ≦ 3.41 × 10 −5 (X-6) 9.21
, And then mechanically pulverized to a predetermined particle size.
Method for producing Mn alloy powder. Where X = Si + 2.92C
+ Component dependent variable obtained at 0.077 Mn.
【請求項2】 重量%で、 C:0.40〜1.20%、 Si:5.0〜12.0%、 Mn:19.0〜42.0%を含み、 残部Feからなり、かつ、Si≦8.3C+0.14M
nおよび比透磁率(μ)≦1.10を満たす鉄合金とな
るように、該合金原料を溶解し、凝固後、1150℃か
ら400℃までの冷却時間T(sec)が、T≦3.4
1×10-5(X−6)9.21の範囲となるように冷却し、
その後所定の粒度まで機械粉砕することを特徴とする粉
砕性の良好な鉄系Si−Mn合金粉の製造方法。ただ
し、X=Si+2.92C+0.077Mnで得られる
成分依存変数。
2. The composition according to claim 1, comprising 0.40 to 1.20% of C, 5.0 to 12.0% of Si, and 19.0 to 42.0% of Mn, with the balance being Fe. , Si ≦ 8.3C + 0.14M
After melting and solidifying the alloy raw material so as to obtain an iron alloy satisfying n and the relative magnetic permeability (μ) ≦ 1.10, the cooling time T (sec) from 1150 ° C. to 400 ° C. is T ≦ 3. 4
Cooled so that 1 × 10 -5 range (X-6) 9.21,
Thereafter, a method for producing an iron-based Si-Mn alloy powder having good pulverizability, comprising mechanically pulverizing to a predetermined particle size. Here, X is a component-dependent variable obtained by Si + 2.92C + 0.077Mn.
【請求項3】 重量%で、P:0.10〜0.40%を
含有することを特徴とする請求項1または2記載の粉砕
性の良好な鉄系Si−Mn合金の製造方法。
3. The method for producing an iron-based Si—Mn alloy having good pulverizability according to claim 1, wherein the content of P is 0.10 to 0.40% by weight.
【請求項4】 粒径が212μm以下であることを特徴
とする請求項1〜3記載の鉄系Si−Mn合金粉の製造
方法。
4. The method for producing an iron-based Si—Mn alloy powder according to claim 1, wherein the particle size is 212 μm or less.
JP9354398A 1997-12-24 1997-12-24 Production of iron base si-mn alloy powder good in pulverizability Withdrawn JPH11181507A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9354398A JPH11181507A (en) 1997-12-24 1997-12-24 Production of iron base si-mn alloy powder good in pulverizability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9354398A JPH11181507A (en) 1997-12-24 1997-12-24 Production of iron base si-mn alloy powder good in pulverizability

Publications (1)

Publication Number Publication Date
JPH11181507A true JPH11181507A (en) 1999-07-06

Family

ID=18437298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9354398A Withdrawn JPH11181507A (en) 1997-12-24 1997-12-24 Production of iron base si-mn alloy powder good in pulverizability

Country Status (1)

Country Link
JP (1) JPH11181507A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1046454A1 (en) * 1999-04-23 2000-10-25 NIPPON STEEL WELDING PRODUCTS &amp; ENGINEERING CO., Ltd. Gas shielded arc-welding flux cored wire
WO2010053154A1 (en) * 2008-11-10 2010-05-14 トヨタ自動車株式会社 Iron-based sintered alloy, manufacturing method therefor, and iron-based sintered alloy member
US9017601B2 (en) 2004-04-23 2015-04-28 Kabushiki Kaisha Toyota Chuo Kenkyusho Iron-based sintered alloy, iron-based sintered-alloy member and production process for them
JP2019512612A (en) * 2016-04-01 2019-05-16 エルジー・ケム・リミテッド 3D printing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1046454A1 (en) * 1999-04-23 2000-10-25 NIPPON STEEL WELDING PRODUCTS &amp; ENGINEERING CO., Ltd. Gas shielded arc-welding flux cored wire
US9017601B2 (en) 2004-04-23 2015-04-28 Kabushiki Kaisha Toyota Chuo Kenkyusho Iron-based sintered alloy, iron-based sintered-alloy member and production process for them
WO2010053154A1 (en) * 2008-11-10 2010-05-14 トヨタ自動車株式会社 Iron-based sintered alloy, manufacturing method therefor, and iron-based sintered alloy member
JP2010133016A (en) * 2008-11-10 2010-06-17 Toyota Central R&D Labs Inc Iron-based sintered alloy, manufacturing method therefor, and iron-based sintered alloy member
JP2019512612A (en) * 2016-04-01 2019-05-16 エルジー・ケム・リミテッド 3D printing method
US11577315B2 (en) 2016-04-01 2023-02-14 Lg Chem, Ltd. 3D printing method

Similar Documents

Publication Publication Date Title
RU2230797C2 (en) Method for steel graininess reduction, an alloy for steel graininess reduction and a method to produce the alloy for steel graininess reduction
JP4548263B2 (en) Manufacturing method of cast iron products with excellent wear resistance
US11781204B2 (en) Powder for mold
CN104220192A (en) Centrifugally cast composite roller and method for manufacturing same
JP2019119924A (en) Spheroidal graphite cast iron
JPS58501042A (en) Boron alloy additive for continuous casting of boron steel
JPH11181507A (en) Production of iron base si-mn alloy powder good in pulverizability
KR100325127B1 (en) Iron-based Si-Mn alloys or iron-based Si-Mn-Ni alloys and their powders
KR930002523B1 (en) Alloy steel powder
JP3693789B2 (en) Iron-based Si-Mn alloy or iron-based Si-Mn-Ni alloy with good grindability and alloy powder thereof
JP2005076083A (en) Method for manufacturing iron-based amorphous spherical particle, and iron-based amorphous spherical type particle thereof
JPH1150206A (en) Ferrous si-mn-ni alloy excellent in pulverizability and alloy powder thereof
JP2002206150A (en) Soft magnetic alloy powder and production method therefor
CA1076399A (en) Crushable low reactivity nickel-base magnesium additive
CA3163539C (en) Metal powder for additive manufacturing
JPH08238544A (en) Production of steel excellent in toughness at welding heat affected zone
JP4162461B2 (en) Spheroidal graphite cast iron and manufacturing method
JP2001020204A (en) Thermit welding joint of bainite steel rail
KR20210107289A (en) Stainless steel powder, powder composition for powder metallurgy containing the same and method of manufacturing the same
JP3160468B2 (en) Alloy powder and compact using the same
KR100544662B1 (en) Ni-Fe-Si-S Alloys for High Permeability Soft Magnetic Materials And Method For Manufacturing the Materials
JPH10335126A (en) Alloy powder
JPH11293379A (en) Production of silicon-manganese ferroalloy
JP2021101036A (en) Co-BASED ALLOY HAVING MAGNETIC PROPERTIES
JPS613870A (en) Wear resistant parts and its production

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050301