JPH11179371A - Apparatus for treating water containing manganese and organic component - Google Patents

Apparatus for treating water containing manganese and organic component

Info

Publication number
JPH11179371A
JPH11179371A JP35515097A JP35515097A JPH11179371A JP H11179371 A JPH11179371 A JP H11179371A JP 35515097 A JP35515097 A JP 35515097A JP 35515097 A JP35515097 A JP 35515097A JP H11179371 A JPH11179371 A JP H11179371A
Authority
JP
Japan
Prior art keywords
ozone
manganese
membrane
organic components
contact tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35515097A
Other languages
Japanese (ja)
Inventor
Shigeki Sawada
繁樹 澤田
Ichiro Sumita
一郎 住田
Hisamichi Ariga
久道 有賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP35515097A priority Critical patent/JPH11179371A/en
Publication of JPH11179371A publication Critical patent/JPH11179371A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain treated water of good quality stably and efficiently by removing manganese and organic components in raw water simultaneously without requiring excess ozone and without causing the reduction of membrane permeation flux. SOLUTION: Manganese is oxidized with ozone in the first ozone contact tank 1, the produced manganese dioxide is removed by a solid-liquid separation means 2. After organic components being oxidation-decomposed in the second ozone contact tank 3, the treated water is subjected to membrane separation with a membrane separator 4. By the ozone-oxidation of raw water containing manganese and the organic components, manganese is oxidized to be insolubilized and the organic components such as humic acid can be decomposed into low molecular weight compounds. By the decomposition of the organic components, in the membrane separator 4 in the succeeding stage, the formation of a cake layer or a gel layer on the membrane which causes the reduction of membrane permeation flux is prevented to keep a high membrane permeation flux.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、地下水、湧水等
の、主にフミン酸などの有機物質とマンガンとが共存す
る水を効率的に処理する装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for efficiently treating water in which manganese coexists mainly with an organic substance such as humic acid, such as groundwater and spring water.

【0002】[0002]

【従来の技術】マンガンを含有する水は着色障害をおこ
すことから、特に用水系においてその除去が重要視され
ている。マンガンの除去方法としては、溶解性のMn2+
を酸化し、不溶性の二酸化マンガン(MnO4)として
除去する方法が最も一般的である。Mn2+の酸化法とし
ては、実用段階にあるものとして、塩素を酸化剤として
水和二酸化マンガンを自触媒とする接触濾過法(通称マ
ンガン砂法)と、過マンガン酸カリウムを酸化剤とする
凝集沈殿法とがある。また、マンガン砂法の応用技術と
して、特開平9−57263号公報には、塩素剤を添加
した水を、水和二酸化マンガンを膜面に付着させた膜分
離装置で膜分離処理することにより、マンガンを除去す
る方法が提案されている。
2. Description of the Related Art Since manganese-containing water causes discoloration, its removal is regarded as important, especially in water systems. As a method for removing manganese, soluble Mn 2+
Is most commonly oxidized and removed as insoluble manganese dioxide (MnO 4 ). As a method of oxidizing Mn 2+ , contact filtration method (commonly known as manganese sand method) using chlorine as an oxidizing agent and hydrated manganese dioxide as an autocatalyst, and potassium permanganate as an oxidizing agent are in the practical stage. There is a coagulation sedimentation method. Further, as an application technique of the manganese sand method, Japanese Patent Application Laid-Open No. 9-57263 discloses a method in which water to which a chlorinating agent is added is subjected to membrane separation treatment using a membrane separation apparatus in which hydrated manganese dioxide is adhered to the membrane surface. Methods for removing manganese have been proposed.

【0003】また、オゾンを酸化剤とする方法もある
が、この方法では、過剰のオゾンを注入した場合、生成
した二酸化マンガンが更に酸化されて過マンガン酸イオ
ンとなるため除去効果が上がらないという問題がある。
このため、実装置では、過剰のオゾン注入により生成し
た過マンガン酸イオンを処理するために、オゾン処理の
後処理として滞留槽や濾過装置を設けて、過マンガン酸
イオンを二酸化マンガンに還元する方法が採られてい
る。
There is also a method using ozone as an oxidizing agent. However, in this method, when excessive ozone is injected, the produced manganese dioxide is further oxidized to permanganate ions, so that the removing effect is not improved. There's a problem.
For this reason, in actual equipment, in order to treat permanganate ions generated by excessive ozone injection, a method of reducing permanganate ions to manganese dioxide by providing a retention tank or a filtration device as a post-treatment of the ozone treatment. Is adopted.

【0004】一方、フミン酸などの塩素による消毒副生
成物が問題となっている有機成分の処理法としては、従
来から広く行われている凝集沈殿・砂濾過法では処理に
限界があることから、オゾン及び活性炭処理を併用した
処理が採用されるようになった。これにより、凝集沈殿
・砂濾過法では除去することが難しかった溶解性の有機
成分の処理が可能になり、処理水質が向上した。また、
このような処理において、固液分離手段として膜分離処
理を導入することにより、装置全体を簡素化することが
できるようになった。
On the other hand, as a method for treating an organic component, which is a problem of disinfection by-products due to chlorine such as humic acid, there is a limit in the treatment by the coagulation sedimentation / sand filtration method which has been widely performed conventionally. , Ozone and activated carbon treatment have come to be used. As a result, it becomes possible to treat soluble organic components which were difficult to remove by the coagulation sedimentation / sand filtration method, and the quality of treated water was improved. Also,
In such a process, by introducing a membrane separation process as a solid-liquid separation unit, the entire apparatus can be simplified.

【0005】オゾン・活性炭処理と膜分離処理とを組み
合わせた装置は、例えば、特開平6−328069号公
報及び特開平8−89959号公報に提案されており、
従来の凝集沈殿・砂濾過に代わる技術として、近年、浄
水処理分野などで採用されるようになった。
[0005] An apparatus combining the ozone / activated carbon treatment and the membrane separation treatment is proposed in, for example, JP-A-6-328069 and JP-A-8-89959.
As a technology that replaces the conventional coagulation sedimentation and sand filtration, it has recently been adopted in the field of water purification and the like.

【0006】[0006]

【発明が解決しようとする課題】上述の如く、マンガン
を含有する原水に対しては、溶解性マンガンを塩素等を
用いて酸化することにより不溶性の沈殿として除去する
方法が一般に採用されているが、この方法において、例
えば、膜分離装置でマンガンの不溶物を除去する場合、
原水中に有機成分が共存すると、膜面に有機成分のケー
ク層又はゲル層が生成して膜の透過流束が低減する。こ
のため、原水中の有機成分は予め除去する必要がある。
また、例えば原水中に、フミン酸が存在すると、酸化剤
として添加した塩素とフミン酸とが反応してトリハロメ
タンが生成するおそれがあるため、この点からも有機成
分の除去が必要となる。
As described above, a method of removing soluble manganese as insoluble precipitate by oxidizing soluble manganese with chlorine or the like is generally adopted for raw water containing manganese. In this method, for example, when removing insoluble matter of manganese in a membrane separation device,
When an organic component coexists in raw water, a cake layer or a gel layer of the organic component is formed on the membrane surface, and the permeation flux of the membrane is reduced. Therefore, it is necessary to remove the organic components in the raw water in advance.
In addition, for example, if humic acid is present in raw water, chlorine added as an oxidizing agent may react with humic acid to generate trihalomethane. Therefore, it is necessary to remove organic components from this point as well.

【0007】一方、有機成分の除去方法としては、上述
の如く、凝集沈殿・砂濾過による方法や、最近ではオゾ
ン・活性炭処理と膜分離処理を組み合せた方法が採用さ
れるようになっている。
On the other hand, as a method for removing organic components, a method using coagulation sedimentation and sand filtration or a method combining ozone / activated carbon treatment and membrane separation treatment has recently been adopted, as described above.

【0008】しかしながら、従来において、有機成分と
共にマンガンを除去することは考えられておらず、例え
ば、凝集沈殿・砂濾過による有機成分の処理法では、有
機成分の処理工程とは別に、更にマンガンの処理工程を
付加している。また、オゾン・活性炭処理と膜分離処理
との組み合せによる方法では、マンガンの除去を主目的
としていないため、必ずしも、マンガンを効率的に除去
できるとは限らない。
However, conventionally, it has not been considered to remove manganese together with the organic component. For example, in the method of treating the organic component by coagulation sedimentation and sand filtration, the manganese is further removed separately from the organic component treatment step. A processing step is added. In addition, in the method using the combination of the ozone / activated carbon treatment and the membrane separation treatment, the main purpose is not to remove manganese, so that manganese cannot always be removed efficiently.

【0009】本発明は上記従来の問題点を解決し、原水
中の有機成分とマンガンを効率的に除去するマンガン及
び有機成分含有水の処理装置を提供することを目的とす
る。
An object of the present invention is to solve the above-mentioned conventional problems and to provide an apparatus for treating manganese and organic component-containing water that efficiently removes organic components and manganese in raw water.

【0010】[0010]

【課題を解決するための手段】本発明のマンガン及び有
機成分含有水の処理装置は、マンガンと有機成分を含む
水をオゾン接触装置及び膜分離装置に順次通水して処理
するマンガン及び有機成分含有水の処理装置であって、
該オゾン接触装置は第1のオゾン接触槽と、該第1のオ
ゾン接触槽の流出水が導入される第2のオゾン接触槽と
を有し、該第1のオゾン接触槽と第2のオゾン接触槽と
の間に固液分離手段が設けられていることを特徴とす
る。
The manganese and organic component-containing water treatment apparatus according to the present invention is a manganese and organic component treatment system in which water containing manganese and organic components is sequentially passed through an ozone contact device and a membrane separation device for treatment. An apparatus for treating contained water,
The ozone contact device has a first ozone contact tank and a second ozone contact tank into which the effluent of the first ozone contact tank is introduced. A solid-liquid separation means is provided between the contact tank and the contact tank.

【0011】マンガンと有機成分が共存する原水をオゾ
ン酸化処理することにより、原水中のマンガンをオゾン
酸化して不溶化すると共に、フミン酸等の有機成分を酸
化分解して低分子化することができる。フミン酸等の有
機成分が酸化分解されるため、後段の膜分離装置におい
て、膜透過流束を低下させるケーク層或いはゲル層が膜
面に発達せず、高い膜透過流束が維持される。
By subjecting raw water in which manganese and organic components coexist to be subjected to ozone oxidation treatment, manganese in the raw water can be ozone-oxidized and insolubilized, and organic components such as humic acid can be oxidatively decomposed and reduced in molecular weight. . Since organic components such as humic acid are oxidatively decomposed, a cake layer or a gel layer for lowering the membrane permeation flux does not develop on the membrane surface in the subsequent membrane separation device, and a high membrane permeation flux is maintained.

【0012】ところで、マンガンと有機成分とが共存す
る水をオゾン酸化すると、まず、マンガンが優先的に酸
化され、その後、有機成分が酸化分解される。従って、
有機成分の酸化分解のために過剰のオゾンを注入する
と、酸化により生成した二酸化マンガンが更に酸化され
て、過マンガン酸イオンが生成し、マンガンの除去効果
が下がり、また、処理水がピンク色に着色するという問
題が生じる。
When water containing both manganese and an organic component is ozone-oxidized, manganese is preferentially oxidized first, and then the organic component is oxidized and decomposed. Therefore,
When excessive ozone is injected for oxidative decomposition of organic components, manganese dioxide generated by the oxidation is further oxidized to generate permanganate ions, and the manganese removal effect is reduced, and the treated water becomes pink. The problem of coloring occurs.

【0013】しかし、本発明では、第1のオゾン接触槽
でマンガンをオゾン酸化し、酸化により生成した不溶性
の二酸化マンガンを固液分離手段で除去し、その後、第
2のオゾン接触槽で有機成分の酸化分解を行うため、 第1のオゾン接触槽では、マンガンを二酸化マンガ
ンに酸化するに必要なオゾン量を供給すればよく、有機
成分をも酸化するほど、マンガンにとって大過剰のオゾ
ンを供給する必要がない。 第1のオゾン接触槽で酸化されて生成した二酸化マ
ンガンは固液分離手段で分離除去されるため、有機物が
酸化されるまで、長時間オゾンとマンガンが共存するこ
とがなく、第1のオゾン接触槽でオゾンが過剰に存在し
ても過マンガン酸イオンは殆ど生成しない。 第2のオゾン接触槽では、過マンガンイオンを生成
させることなく、有機成分の効率的な酸化分解を行え
る。 といった作用効果が得られる。
However, according to the present invention, manganese is oxidized with ozone in the first ozone contact tank, and insoluble manganese dioxide generated by the oxidation is removed by solid-liquid separation means. In the first ozone contact tank, the amount of ozone necessary to oxidize manganese into manganese dioxide may be supplied in order to perform oxidative decomposition of manganese, and the greater the amount of organic components oxidized, the greater the amount of ozone supplied to manganese. No need. Since the manganese dioxide generated by oxidation in the first ozone contact tank is separated and removed by the solid-liquid separation means, ozone and manganese do not coexist for a long time until the organic matter is oxidized. Even if ozone is excessively present in the tank, almost no permanganate ion is generated. In the second ozone contact tank, organic components can be efficiently oxidatively decomposed without generating permanganese ions. Such an operation and effect can be obtained.

【0014】また、このようにオゾン酸化と膜分離処理
とを組み合わせた処理において、オゾン耐性のある膜素
材を用いた場合には、膜分離装置の注入水中にオゾンが
検出される条件にて膜分離を行うことが可能であり、膜
面に析出する有機物や付着生長する微生物スライム等の
膜ファウリングの原因物質となる有機性成分を、その残
存オゾンにより分解消毒することにより、安定した膜濾
過を継続することができるものと考えられる。
[0014] Further, in the case where the ozone-resistant membrane material is used in the treatment combining the ozone oxidation and the membrane separation treatment, the membrane is subjected to the condition that ozone is detected in the injection water of the membrane separation device. Separation can be performed, and organic components that cause membrane fouling, such as organic substances deposited on the membrane surface and microbial slime that adheres and grows, are eliminated by the remaining ozone, and stable membrane filtration is achieved. Can be continued.

【0015】しかし、原水中にマンガンが多量に含まれ
ている場合には、オゾン酸化処理におけるオゾンが優先
的にマンガンの酸化に消費されることから、単一のオゾ
ン接触槽を用いてオゾン酸化処理水中にオゾンを残存さ
せるためには、有機成分を酸化させる以上のオゾンを供
給させる必要がある。これに対し、本発明では、マンガ
ン酸化用のオゾン接触槽と有機成分酸化分解用のオゾン
接触槽とに分離し、両槽間でマンガンの不溶物を除去す
ることにより、過剰のオゾンを供給することなく、オゾ
ン酸化処理水中にオゾンを残留せしめ、オゾンによる分
解消毒効果で安定した膜分離を行うことができる。
However, when raw water contains a large amount of manganese, ozone in the ozone oxidation treatment is preferentially consumed for the oxidation of manganese. In order to allow ozone to remain in the treated water, it is necessary to supply more ozone than oxidizes the organic components. On the other hand, in the present invention, an ozone contact tank for manganese oxidation and an ozone contact tank for oxidative decomposition of organic components are separated, and excess ozone is supplied by removing insoluble matter of manganese between the two tanks. Without leaving ozone in the ozone-oxidized water, it is possible to perform stable membrane separation with the effect of eliminating and poisoning ozone.

【0016】[0016]

【発明の実施の形態】以下に図面を参照して本発明の実
施の形態を説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0017】図1は本発明のマンガン及び有機成分含有
水の処理装置の実施の形態を示す系統図である。
FIG. 1 is a system diagram showing an embodiment of an apparatus for treating water containing manganese and organic components according to the present invention.

【0018】このマンガン及び有機成分含有水の処理装
置は、第1のオゾン接触槽1、固液分離手段2、第2の
オゾン接触槽3、膜分離装置4及び活性炭吸着塔5で構
成される。
This treatment device for water containing manganese and organic components comprises a first ozone contact tank 1, a solid-liquid separation means 2, a second ozone contact tank 3, a membrane separation device 4, and an activated carbon adsorption tower 5. .

【0019】原水はまず第1のオゾン接触槽1に導入さ
れ、オゾンにより原水中のマンガンが優先的に酸化され
る。この第1のオゾン接触槽1におけるオゾン注入量は
原水中のマンガンを二酸化マンガンに酸化できる量であ
れば良く、原水の水質によっても異なるが、通常の地下
水や湧水の処理においては0.5〜3mg/L程度とす
るのが好ましい。また、第1のオゾン接触槽1における
滞留時間は5〜15分程度とするのが好ましい。
Raw water is first introduced into the first ozone contact tank 1, and manganese in the raw water is preferentially oxidized by ozone. The amount of ozone injected into the first ozone contact tank 1 may be an amount capable of oxidizing manganese in raw water to manganese dioxide, and varies depending on the quality of raw water. It is preferably about 3 mg / L. Further, the residence time in the first ozone contact tank 1 is preferably set to about 5 to 15 minutes.

【0020】第1のオゾン接触槽1の処理水は次いで固
液分離手段2に導入され、オゾン酸化で生成した不溶性
の二酸化マンガンが分離除去される。この固液分離手段
2としては、沈澱池や適当な濾過手段を用いることがで
き、このうち、濾過手段としてはオゾン耐食性を有する
濾布や、砂、セラミック等の濾材から構成され、第1の
オゾン接触槽1で生成した二酸化マンガンの粒子を効率
的に捕捉して除去できるものであればいずれも採用可能
である。
The treated water in the first ozone contact tank 1 is then introduced into a solid-liquid separation means 2 to separate and remove insoluble manganese dioxide generated by ozone oxidation. As the solid-liquid separation means 2, a sedimentation basin or a suitable filtration means can be used. Among them, the filtration means is composed of a filter cloth having ozone corrosion resistance, a filter medium such as sand, ceramic, etc. Any material that can efficiently capture and remove the manganese dioxide particles generated in the ozone contact tank 1 can be used.

【0021】固液分離手段2で二酸化マンガンが除去さ
れた分離水は、次いで第2のオゾン接触槽3に導入さ
れ、有機成分がオゾンにより酸化分解される。この第2
のオゾン接触槽3におけるオゾン注入量は原水中の有機
成分が酸化分解される量或いはそれよりも若干多い量と
され、原水の水質によっても異なるが、通常の地下水や
湧水の処理においては0.5〜2mg/L程度とするの
が好ましい。また、第2のオゾン接触槽3の滞留時間は
5〜15分程度とするのが好ましい。
The separated water from which manganese dioxide has been removed by the solid-liquid separation means 2 is then introduced into a second ozone contact tank 3, where organic components are oxidized and decomposed by ozone. This second
The amount of ozone injected into the ozone contact tank 3 is an amount at which organic components in raw water are oxidized and decomposed or slightly larger than that, and varies depending on the quality of raw water. It is preferred to be about 0.5 to 2 mg / L. The residence time of the second ozone contact tank 3 is preferably set to about 5 to 15 minutes.

【0022】第2のオゾン接触槽3の処理水は、次いで
膜分離装置4に導入され、膜分離処理される。
[0022] The treated water in the second ozone contact tank 3 is then introduced into a membrane separation device 4 and subjected to a membrane separation treatment.

【0023】前述の如く、この膜分離装置4の流入水中
にオゾンを残留させることにより、膜面に析出する有機
物や付着生長する微生物スライム等の膜ファウリングの
原因物質となる有機性の成分をオゾンの分解消毒効果で
除去し、効率的な膜分離を行えるようになることから、
この膜分離装置4の流入水中には0.1〜1mg/L程
度のオゾンが残留していることが好ましい。
As described above, by leaving ozone in the influent water of the membrane separation device 4, organic components that cause membrane fouling, such as organic substances deposited on the membrane surface and microorganisms slime that adheres and grows, are removed. Since ozone is eliminated by the poisoning effect, and efficient membrane separation can be performed,
It is preferable that about 0.1 to 1 mg / L of ozone remain in the inflow water of the membrane separation device 4.

【0024】また、このようにオゾンを残存させる場
合、膜分離装置4の膜としては、ステンレス鋼、銅、ア
ルミニウム、チタン等を素材とした金属無機膜、ガラス
やアルミナ系のセラミック膜、その他PEEK(ポリエ
ーテルエーテルケトン)や、4フッ化ポリエチレン、2
フッ化ポリビニリデン等の耐オゾン酸化性の高い膜を用
いる必要がある。また、膜分離装置4の膜種としては、
精密濾過(MF)膜、限外濾過(UF)膜等を用いるこ
とができる。
When ozone is left in this way, the membrane of the membrane separator 4 may be a metal-inorganic membrane made of stainless steel, copper, aluminum, titanium, or the like, a glass or alumina ceramic membrane, or other PEEK. (Polyetheretherketone), tetrafluoroethylene,
It is necessary to use a film having high resistance to ozone oxidation such as polyvinylidene fluoride. Further, as the membrane type of the membrane separation device 4,
A microfiltration (MF) membrane, an ultrafiltration (UF) membrane, or the like can be used.

【0025】この膜分離装置4は、逆洗手段(図示せ
ず)を設け、定期的に処理水やガス等で逆洗し、前段の
固液分離手段2で除去されず通過した成分であって、膜
面で阻止され膜面に付着した無機成分を系外に排除する
ことにより効率的な膜分離を維持できる。
This membrane separation device 4 is provided with a backwashing means (not shown), which is periodically backwashed with treated water, gas or the like, and is a component which has not been removed by the solid-liquid separation means 2 at the preceding stage and passed therethrough. As a result, efficient membrane separation can be maintained by excluding the inorganic components blocked by the membrane surface and adhering to the membrane surface to the outside of the system.

【0026】膜分離装置4の透過水は次いで、活性炭吸
着塔2で残留オゾンを吸着除去すると共に、有機成分の
酸化分解で生じた低分子量の有機成分を吸着除去する。
Next, the permeated water of the membrane separation device 4 adsorbs and removes residual ozone in the activated carbon adsorption tower 2 and adsorbs and removes low molecular weight organic components generated by oxidative decomposition of organic components.

【0027】この活性炭吸着塔5の処理水は、二酸化マ
ンガン、その他の濁質が固液分離されると共にオゾンを
含まない清澄度の高い水であり、処理水として系外へ排
出される。
The treated water of the activated carbon adsorption tower 5 is a highly purified water containing manganese dioxide and other turbid substances which are solid-liquid separated and contain no ozone, and are discharged out of the system as treated water.

【0028】なお、本発明のマンガン及び有機成分含有
水の処理装置では、第2のオゾン接触槽3及び膜分離装
置4の処理水槽(図示せず)から排オゾンを回収し、回
収した排オゾンを第1のオゾン接触槽1に送気して再利
用するのが好ましい。このようにすることで、マンガン
イオン濃度が比較的低い原水の場合には、第1のオゾン
接触槽1で新たなオゾン注入を行うことなく、マンガン
のオゾン酸化を行うことができる。この場合において、
排オゾンのみでは、マンガンのオゾン酸化のためのオゾ
ン量が不足する場合には、不足分のみを新たに注入すれ
ば良い。特に、膜分離装置4の流入水中にオゾンを残存
させる場合には、このように排オゾンを回収して再利用
することによりオゾン使用量の低減が図れ、極めて有利
である。
In the apparatus for treating water containing manganese and organic components according to the present invention, the ozone discharged from the second ozone contact tank 3 and the treated water tank (not shown) of the membrane separation apparatus 4 are collected, and the collected ozone is collected. Is preferably sent to the first ozone contact tank 1 for reuse. By doing so, in the case of raw water having a relatively low manganese ion concentration, manganese ozone oxidation can be performed without performing new ozone injection in the first ozone contact tank 1. In this case,
When the amount of ozone for ozone oxidation of manganese is insufficient with only the exhausted ozone, only the insufficient amount may be newly injected. In particular, when ozone is left in the inflow water of the membrane separation device 4, the amount of ozone used can be reduced by collecting and reusing the exhausted ozone, which is extremely advantageous.

【0029】なお、図1は本発明の実施の形態の一例を
示すものであって、本発明はその要旨を超えない限り、
図1に示す装置に何ら限定されるものではない。
FIG. 1 shows an example of an embodiment of the present invention, and the present invention does not depart from the gist of the present invention.
It is not limited to the device shown in FIG.

【0030】例えば、活性炭吸着塔は膜分離装置の前段
に設けても良く、この場合には、オゾン酸化による残留
オゾンが活性炭吸着塔で除去されるため、この膜分離装
置の膜としては、ポリスルホン、ポリアクリロニトリ
ル、ポリエチレン、ポリプロピレン、酢酸セルロース等
の耐オゾン酸化性のない膜を用いることが可能となる。
For example, the activated carbon adsorption tower may be provided in front of the membrane separation device. In this case, the residual ozone due to the ozone oxidation is removed by the activated carbon adsorption tower. And a film having no ozone oxidation resistance, such as polyacrylonitrile, polyethylene, polypropylene, and cellulose acetate.

【0031】膜分離装置の後段に活性炭吸着塔を設ける
場合には、懸濁物質による活性炭吸着塔の目詰りのおそ
れがないことから、固定床式の活性炭吸着塔も採用可能
であるが、活性炭吸着塔を膜分離装置の前段に設ける場
合には、活性炭吸着塔が水中の懸濁物質で目詰りするこ
とがないように、粒状活性炭の上向流流動層式のものの
ように、水中の懸濁物質を捕捉しない形式のものを採用
するのが好ましい。
When an activated carbon adsorption tower is provided at the subsequent stage of the membrane separation apparatus, a fixed bed type activated carbon adsorption tower can be used because there is no danger of the activated carbon adsorption tower being clogged by suspended substances. If the adsorption tower is installed in front of the membrane separation device, the activated carbon adsorption tower will not be clogged with suspended matter in the water, so that the activated carbon adsorption tower will be suspended in water, such as in the case of an upflow fluidized bed type of granular activated carbon. It is preferable to adopt a type that does not capture suspended substances.

【0032】なお、活性炭処理は、活性炭吸着塔を設け
る他、送水ラインに粉末活性炭を直接添加し、その後活
性炭を分離する方法であっても良い。
The activated carbon treatment may be carried out by providing an activated carbon adsorption tower or by adding powdered activated carbon directly to a water supply line and thereafter separating the activated carbon.

【0033】[0033]

【実施例】以下に実施例及び比較例を挙げて本発明をよ
り具体的に説明する。
The present invention will be described more specifically below with reference to examples and comparative examples.

【0034】実施例1 水道水に懸濁物質としてベントナイト、フミン酸ナトリ
ウム、硫酸マンガンをそれぞれ10mg/L、2.5m
g/L、1mg−Mn/Lとなるように溶解した水を原
水として、図1に示す装置で処理した。
Example 1 Bentonite, sodium humate and manganese sulfate were suspended in tap water at a concentration of 10 mg / L and 2.5 m, respectively.
g / L and water dissolved to 1 mg-Mn / L were treated as raw water in the apparatus shown in FIG.

【0035】原水は10m3/dayで処理し、第1の
オゾン接触槽では、オゾン注入率2mg−O3/L,滞
留時間5分で処理し、第1のオゾン接触槽の処理水は砂
濾過機で固液分離した。第2のオゾン接触槽ではオゾン
注入率5mg−O3/L、滞留時間10分で処理し、残
存オゾン濃度を0.5〜1.5mg−O3/Lとした。
The raw water is treated at 10 m 3 / day, the first ozone contact tank is treated at an ozone injection rate of 2 mg-O 3 / L, the residence time is 5 minutes, and the treated water of the first ozone contact tank is sand. Solid-liquid separation was performed with a filter. Second ozone injection rate 5mg-O 3 / L in the ozone contact tank, is treated with a residence time of 10 minutes, the residual ozone concentration of 0.5~1.5mg-O 3 / L.

【0036】膜分離装置としては、MF膜(膜素材PV
DF)分離装置を用い、第2のオゾン接触槽の処理水を
膜の透過流束2m3/m2/dayで処理した。膜分離装
置の透過水は固定層式活性炭吸着塔に通水して処理水を
得た。
As the membrane separation device, MF membrane (membrane material PV)
DF) Using a separator, the treated water in the second ozone contact tank was treated at a permeation flux of the membrane of 2 m 3 / m 2 / day. The permeated water of the membrane separation device was passed through a fixed bed activated carbon adsorption tower to obtain treated water.

【0037】なお、第1のオゾン接触槽には、第2のオ
ゾン接触槽及び膜分離装置の処理水槽の排オゾンを回収
して注入した。このとき、第1のオゾン接触槽ではこの
排オゾンのみで足り、別途新たなオゾンを注入する必要
はなかった。
The ozone discharged from the second ozone contact tank and the treated water tank of the membrane separator was collected and injected into the first ozone contact tank. At this time, in the first ozone contact tank, only this exhausted ozone was sufficient, and there was no need to separately inject new ozone.

【0038】このときの各処理槽の流出水の水質を調
べ、結果を表1に示した。
At this time, the quality of the effluent of each treatment tank was examined, and the results are shown in Table 1.

【0039】また、30日処理後の膜差圧の上昇度を膜
差圧(ΔPa)/透過流束(flux)の比で表し、結
果を図1に示した。
Further, the degree of increase of the transmembrane pressure after the treatment for 30 days is represented by the ratio of transmembrane pressure (ΔPa) / permeation flux (flux), and the results are shown in FIG.

【0040】更に、1Lの原水を処理するに必要とした
オゾン量を表1に示した。
Table 1 shows the amount of ozone required for treating 1 L of raw water.

【0041】比較例1 実施例1において、オゾン接触槽を1槽のみ設け、固液
分離手段を設けずに、オゾン接触槽の処理水を膜分離装
置で処理し、更に活性炭吸着処理したこと以外は同様に
処理し、各槽の流出水の水質及び膜差圧の上昇度及びオ
ゾン量を調べ、結果を表1に示した。
Comparative Example 1 In Example 1, except that only one ozone contact tank was provided, and no solid-liquid separation means was provided, the treated water in the ozone contact tank was treated with a membrane separation device, and further activated carbon adsorption treatment was performed. Was treated in the same manner, and the quality of the effluent of each tank, the degree of increase in the membrane differential pressure, and the amount of ozone were examined. The results are shown in Table 1.

【0042】[0042]

【表1】 [Table 1]

【0043】表1より、本発明のマンガン及び有機成分
含有水の処理装置によれば、少ないオゾン注入量でマン
ガンと有機成分とを共に効率的に除去することができ、
また、膜差圧の上昇も防止されることがわかる。
As can be seen from Table 1, according to the apparatus for treating water containing manganese and organic components of the present invention, both manganese and organic components can be efficiently removed with a small amount of injected ozone.
It can also be seen that an increase in the membrane differential pressure is also prevented.

【0044】[0044]

【発明の効果】以上詳述した通り、本発明のマンガン及
び有機成分含有水の処理装置によれば、原水中のマンガ
ン及び有機成分を、過剰量のオゾンを必要とすることな
く、また、膜透過流束の低下の問題を引き起こすことな
く同時に除去することができ、良好な水質の処理水を安
定かつ効率的に得ることができる。
As described above in detail, according to the apparatus for treating water containing manganese and organic components of the present invention, manganese and organic components in raw water can be treated without requiring an excessive amount of ozone, The water can be removed at the same time without causing the problem of reduction of the permeation flux, and the treated water having good quality can be obtained stably and efficiently.

【0045】本発明のマンガン及び有機成分含有水の処
理装置は、特に、マンガンイオンを多量に含み、かつ、
フミン酸などの有機成分が共存する地下水や湧水などの
処理に有効であり、清澄度の高い浄水を効率的にかつ経
済的に得ることが可能とされる。
The apparatus for treating manganese and organic component-containing water of the present invention particularly contains a large amount of manganese ions,
It is effective for treating groundwater and spring water in which organic components such as humic acid coexist, and it is possible to efficiently and economically obtain purified water with high clarity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のマンガン及び有機成分含有水の処理装
置の実施の形態を示す系統図である。
FIG. 1 is a system diagram showing an embodiment of a treatment device for water containing manganese and organic components of the present invention.

【符号の説明】[Explanation of symbols]

1 第1のオゾン接触槽 2 固液分離手段 3 第2のオゾン接触槽 4 膜分離装置 5 活性炭吸着塔 DESCRIPTION OF SYMBOLS 1 1st ozone contact tank 2 Solid-liquid separation means 3 2nd ozone contact tank 4 Membrane separation apparatus 5 Activated carbon adsorption tower

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 マンガンと有機成分を含む水をオゾン接
触装置及び膜分離装置に順次通水して処理するマンガン
及び有機成分含有水の処理装置であって、 該オゾン接触装置は第1のオゾン接触槽と、該第1のオ
ゾン接触槽の流出水が導入される第2のオゾン接触槽と
を有し、 該第1のオゾン接触槽と第2のオゾン接触槽との間に固
液分離手段が設けられていることを特徴とするマンガン
及び有機成分含有水の処理装置。
1. An apparatus for treating manganese and organic component-containing water, wherein water containing manganese and an organic component is sequentially passed through an ozone contact device and a membrane separation device to treat the manganese and organic component-containing water. A contact tank, and a second ozone contact tank into which the effluent of the first ozone contact tank is introduced; solid-liquid separation between the first ozone contact tank and the second ozone contact tank An apparatus for treating water containing manganese and organic components, characterized in that a means is provided.
JP35515097A 1997-12-24 1997-12-24 Apparatus for treating water containing manganese and organic component Pending JPH11179371A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35515097A JPH11179371A (en) 1997-12-24 1997-12-24 Apparatus for treating water containing manganese and organic component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35515097A JPH11179371A (en) 1997-12-24 1997-12-24 Apparatus for treating water containing manganese and organic component

Publications (1)

Publication Number Publication Date
JPH11179371A true JPH11179371A (en) 1999-07-06

Family

ID=18442240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35515097A Pending JPH11179371A (en) 1997-12-24 1997-12-24 Apparatus for treating water containing manganese and organic component

Country Status (1)

Country Link
JP (1) JPH11179371A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006224010A (en) * 2005-02-18 2006-08-31 Hitachi Ltd Operation control method of water purification process

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006224010A (en) * 2005-02-18 2006-08-31 Hitachi Ltd Operation control method of water purification process

Similar Documents

Publication Publication Date Title
JP2005087887A (en) Membrane washing method
JP2008043898A (en) Water treatment system and water treatment method
JPH08243361A (en) Membrane separation device
JP5339054B2 (en) Water treatment method
JP2001038390A (en) Production of ultrapure water
JPH10192851A (en) Water purifying treatment apparatus
JP3575238B2 (en) Water treatment method containing organic components and manganese
JP3384029B2 (en) Water purification device and water purification method
JPH11253940A (en) Purified water treatment
JP4911272B2 (en) Membrane separation of manganese in water containing soluble manganese
JP3896687B2 (en) Manganese-containing water treatment equipment
JP3525699B2 (en) Water treatment method containing organic components and manganese
JP2000301005A (en) Method for reutilizing effluent in regeneration of ion exchange resin
JPH1199389A (en) Treatment of water containing organic component and manganese
JPH11179371A (en) Apparatus for treating water containing manganese and organic component
JP3444202B2 (en) Water treatment equipment
JPH0561991B2 (en)
JP3529806B2 (en) Wastewater treatment method
JP2003340247A (en) Device and method for treating water
JPH0871593A (en) Water treatment method
Suzuki et al. Performance of a hybrid MF membrane system combining activated carbon adsorption and biological oxidation
JP4539321B2 (en) Water purification system
JP3268876B2 (en) How to purify river or lake water
JP3965782B2 (en) Water treatment equipment
JPH08323350A (en) Membrane treating device for oil-containing waste water