JPH11179213A - Raw material for purification of environment and purifying material for environment using that - Google Patents

Raw material for purification of environment and purifying material for environment using that

Info

Publication number
JPH11179213A
JPH11179213A JP9352807A JP35280797A JPH11179213A JP H11179213 A JPH11179213 A JP H11179213A JP 9352807 A JP9352807 A JP 9352807A JP 35280797 A JP35280797 A JP 35280797A JP H11179213 A JPH11179213 A JP H11179213A
Authority
JP
Japan
Prior art keywords
fiber
carrier
environment
sheet
environmental purification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9352807A
Other languages
Japanese (ja)
Inventor
Toshihiko Matsushita
壽彦 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Ltd filed Critical Mitsubishi Paper Mills Ltd
Priority to JP9352807A priority Critical patent/JPH11179213A/en
Publication of JPH11179213A publication Critical patent/JPH11179213A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Surface Treatment Of Glass (AREA)
  • Catalysts (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To firmly fix a photoreactive semiconductor and to prevent it from falling apart by fixing a photoreactive semiconductor by CVD or PVD method on a fiber, solid or sheet carrier to form a material for cleaning an environment which decomposes contaminants such as harmful gases, bacteria and org. substances and purifies the environment. SOLUTION: A photoreactive semiconductor is firmly fixed to one kind of a carrier in a fiber, solid or sheet state by CVD or PVD method to produce a material for purification of environment. As the fiber carrier, a nonwoven fabric, paper or woven fabric is used, and as the solid carrier, a coating material or coating liquid on a base body is used. As the sheet carrier, a coated metal sheet, glass sheet or film can be used. The photoreactive semiconductor has a photocatalytic function which causes photochemical reaction by irradiation of light at specified wavelength. Titanium oxide is preferably used, and its particles having 10 to 500 m<2> /g specific surface area are used.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、有毒ガス、雑菌、
有機物などの汚染物質を分解し、清浄化することのでき
る環境浄化素材およびそれを用いた環境浄化材料に関
し、さらに詳しくは、繊維状、固体状、シート状の担体
に光反応性半導体が強固に固定され、光反応性半導体の
脱落のない環境浄化素材およびそれを用いた環境浄化材
料に関するものである。
TECHNICAL FIELD The present invention relates to toxic gas, various bacteria,
Regarding environmental purification materials that can decompose and purify contaminants such as organic substances and environmental purification materials using the same, more specifically, photoreactive semiconductors are firmly applied to fibrous, solid, and sheet carriers. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an environment-purifying material that is fixed and does not fall off a photoreactive semiconductor and an environment-purifying material using the same.

【0002】[0002]

【従来の技術】近年の地球環境の悪化に伴い、社会問題
としてクローズアップされ、その関心はますます高まる
ばかりである。都市や公園の緑地化、オフィスや家庭内
への観葉植物設置など、快適な生活環境を創るため種々
行われている。しかし、氾濫する自動車による排気ガ
ス、家庭からの生活廃水や汚水、喫煙によるタバコの煙
など、環境に与える問題は大きく、清浄化のための要求
が日増しに大きくなってきている。
2. Description of the Related Art With the deterioration of the global environment in recent years, it has been highlighted as a social problem, and its interest is increasing more and more. Various activities have been carried out to create a comfortable living environment, such as greening of cities and parks, and setting up houseplants in offices and homes. However, environmental problems such as exhaust gas from flooding automobiles, domestic wastewater and sewage from households, and cigarette smoke caused by smoking are great, and the demand for purification is increasing day by day.

【0003】特に、臭気に関しては身近な問題として捕
えられ、種々の方法が講じられている。例えば、ロー
ズ、スズラン、ジャスミンなどの強い芳香により不快臭
を感じさせなくするマスキング法、人工酵素を用いて悪
臭分子を分解するバイオミメティク法、アミン類を酸で
中和、硫化水素をアルカリで中和するなど非常に早い化
学反応を利用して悪臭分子を他の物質に変える化学的方
法、微生物・酵素により腐敗菌を殺し、悪臭物質の発生
を抑制または分解する生物学的方法、多孔質体に悪臭分
子を吸着する物理的方法などが挙げられ、これら各種の
方法の内でも、物理的方法が一般に普及している。
[0003] In particular, odor is regarded as a familiar problem, and various methods have been adopted. For example, a masking method that eliminates unpleasant odors due to the strong aroma of rose, lily of the valley, jasmine, etc., a biomimetic method that decomposes malodorous molecules using artificial enzymes, neutralizes amines with acids, and neutralizes hydrogen sulfide with alkali Chemical methods to convert malodorous molecules to other substances using very fast chemical reactions, such as biological methods to kill spoilage bacteria by microorganisms and enzymes, and to suppress or decompose malodorous substances, and porous materials There are physical methods for adsorbing malodorous molecules and the like, and among these various methods, the physical method is widely used.

【0004】上記物理的方法としては、ミクロポアを内
部に有する粉末、粒状の活性炭を用いた各種形状の製品
が広く利用されている。さらに、粉末、粒状の活性炭か
ら炭素繊維を原料とした繊維状活性炭が開発され、繊維
状の特徴からシート、成形体、静電植毛などに加工する
ことができ、浄水器用、脱臭設備の脱臭用シート、空調
設備の脱臭用ハニカムフィルターなどに利用されてい
る。
[0004] As the above physical method, products of various shapes using powder or granular activated carbon having micropores therein are widely used. Furthermore, fibrous activated carbon made from carbon fiber as a raw material has been developed from powdered or granular activated carbon, and it can be processed into sheets, molded products, electrostatic flocking, etc. due to its fibrous characteristics, for water purifiers and for deodorizing deodorizing equipment It is used for seats, honeycomb filters for deodorizing air conditioning equipment, and the like.

【0005】繊維状活性炭を用いた従来技術としては、
例えば、特開昭56−24151号公報が挙げられる。
同公報では、活性炭繊維と熱溶融性合成樹脂繊維とを混
紡または混合した後、加熱して、両者を融着もしくは接
着一体化させた吸着材を開示し、空気の脱臭および浄
化、気相からの溶剤の回収および溶剤の濃縮などの用途
が記載されている。
[0005] Conventional techniques using fibrous activated carbon include:
For example, JP-A-56-24151 can be mentioned.
The publication discloses an adsorbent in which activated carbon fiber and hot-melt synthetic resin fiber are blended or mixed and then heated to fuse or bond the two together, deodorizing and purifying air, It describes uses such as solvent recovery and solvent concentration.

【0006】しかしながら、吸着能の高い活性炭繊維で
構成された吸着材を用いたとしても吸着能力には限度が
あり、限度まで達した吸着材を再活性化させるには再生
処理をするか、新たに吸着材を用意する必要があり、簡
便、且つ安価なものが要望されていた。しかも、悪臭を
吸着するのみであり、悪臭を分解、除去できることが最
も理想とされるものであった。
However, even if an adsorbent composed of activated carbon fibers having a high adsorbent capacity is used, the adsorbent capacity is limited. To re-activate the adsorbent which has reached the limit, a regeneration treatment or a new process is required. It is necessary to prepare an adsorbent, and a simple and inexpensive one has been demanded. In addition, it is only ideal that the odor is absorbed, and it is most ideal that the odor can be decomposed and removed.

【0007】近年、光触媒 (photocatalyst、本発明で
いう光反応性半導体のこと)と称され、酸化チタンに代
表される半導体粉末を利用した光触媒反応の応用研究が
盛んに行われてきている。酸化チタンは、紫外線を照射
すると光化学反応を起こし、水を分解する性質がある。
また、水の他に各種有機物を分解する働きがあり、多く
の分野にわたってその応用がなされている。特許面にお
いても多数の先行技術を見ることができる。
In recent years, application studies of photocatalytic reactions using semiconductor powders represented by titanium oxide, which are called photocatalysts (photoreactive semiconductors in the present invention), have been actively conducted. Titanium oxide has a property of decomposing water by causing a photochemical reaction when irradiated with ultraviolet rays.
Further, it has a function of decomposing various organic substances in addition to water, and has been applied in many fields. Numerous prior arts can also be found on the patent side.

【0008】例えば、空気中の低濃度窒素酸化物の除去
方法として、特公平2−62297号公報には、空気中
の低濃度窒素酸化物を300nm以上の人工光あるいは
太陽光を照射した二酸化チタン−活性炭混合物によって
除去する方法が開示されている。
For example, as a method for removing low-concentration nitrogen oxides from air, Japanese Patent Publication No. 2-62297 discloses a method for removing low-concentration nitrogen oxides from air using artificial light or sunlight of 300 nm or more. A method for removal by an activated carbon mixture is disclosed.

【0009】また、有害物質除去方法として、特開平4
−256755号公報には、光反応性半導体を担持させ
た粒状パルプからなる光反応性有害物質除去材に紫外線
照射することで、悪臭物質、刺激臭物質、園芸作物成長
促進成分などの有害物質を除去する方法が開示されてい
る。
As a method for removing harmful substances, Japanese Patent Laid-Open No.
JP-256755-A discloses that by irradiating a photoreactive harmful substance removing material composed of granular pulp carrying a photoreactive semiconductor with ultraviolet light, harmful substances such as malodorous substances, pungent odorous substances, and horticultural crop growth promoting components are removed. A method of removing is disclosed.

【0010】さらに、光分解方法として、特開平6−2
33929号公報には、太陽光を長波長帯域と短波長帯
域とに分光し、光触媒を分散した溶液に短波長帯域の光
を照射し、光化学反応により生成物、例えば、水から水
素と酸素、CO2 水溶液からCH3OHとCH4に分解す
る方法が開示されている。
[0010] Further, as a photodecomposition method, JP-A-6-2
No. 33929 discloses that sunlight is divided into a long wavelength band and a short wavelength band, a solution in which a photocatalyst is dispersed is irradiated with light in a short wavelength band, and a product by a photochemical reaction, for example, hydrogen and oxygen from water, A method is disclosed for decomposing an aqueous CO 2 solution into CH 3 OH and CH 4 .

【0011】上記に例示したように、二酸化チタンなど
の光触媒に、光源として、人工光や太陽光、紫外線、あ
るいは短波長帯域の光など、特定の光を照射することで
有害物質除去を狙っている。
As exemplified above, a photocatalyst such as titanium dioxide is irradiated with specific light such as artificial light, sunlight, ultraviolet light, or light in a short wavelength band as a light source to remove harmful substances. I have.

【0012】ところで、光反応性半導体は、400nm
以下の波長の光が照射されると、近傍にあるほとんどす
べての有機物質を分解してしまうという長所であり、短
所でもあるということから、基材への固定化が一つの問
題点となっている。
Incidentally, the photoreactive semiconductor has a thickness of 400 nm.
When irradiated with light of the following wavelengths, it is an advantage that almost all organic substances in the vicinity are decomposed, and it is also a disadvantage, so immobilization to the substrate is one problem. I have.

【0013】例えば、比較的光反応性半導体に対して分
解しにくいフッ素系樹脂を用いた浄化材として、特開平
6−315614号公報がある。同公報では、二酸化チ
タンあるいは二酸化チタンと活性炭を主成分とする光触
媒の粉末を合成樹脂を用いてシート状又はパネル状に成
形、あるいは接着剤を用いてシート状又はパネル状表面
に付着させた浄化材を開示している。ここで、シート状
又はパネル状に成形する基材として、また表面付着材料
の接着剤としてフッ素系樹脂を使用している。しかしな
がら、二酸化チタンの形態や種類には関係なく使用でき
るという利点があるものの、強度的問題や固定化する基
材の種類に大きな制約がある。
For example, Japanese Patent Application Laid-Open No. 6-315614 discloses a purifying material using a fluorine-based resin which is relatively hard to decompose in a photoreactive semiconductor. In the same publication, purification is performed by molding titanium dioxide or a photocatalyst powder containing titanium dioxide and activated carbon as main components into a sheet or panel using a synthetic resin, or attaching the powder to a sheet or panel surface using an adhesive. The material is disclosed. Here, a fluororesin is used as a base material to be formed into a sheet or panel shape, and as an adhesive for a surface-adhering material. However, although there is an advantage that it can be used regardless of the form and type of titanium dioxide, there are great restrictions on the strength problem and the type of substrate to be fixed.

【0014】シート状担体にバインダーを用いて光触媒
を担持させたシート状エチレン分解触媒として、特開平
6−296874号公報がある。同公報では、特定の粒
子径を有する酸化チタン微粒子を高反射率表面をもつシ
ート状担体に光の透過性のよいバインダーを用いて担持
させたシート状エチレン分解触媒を開示している。ここ
で、バインダーとしては光の透過率のよいシリカ系バイ
ンダーを挙げている。しかしながら、シート状担体への
接着性は十分とはいえず、またバインダーにより光触媒
活性を低下させるという問題点がある。
JP-A-6-296874 discloses a sheet-like ethylene decomposition catalyst in which a photocatalyst is supported on a sheet-like carrier using a binder. This publication discloses a sheet-like ethylene decomposition catalyst in which titanium oxide fine particles having a specific particle diameter are supported on a sheet-like carrier having a high reflectance surface using a binder having good light transmittance. Here, as the binder, a silica binder having a good light transmittance is mentioned. However, there is a problem that the adhesiveness to the sheet-like carrier is not sufficient and that the photocatalytic activity is reduced by the binder.

【0015】基材表面に光触媒を強固に被覆接着できる
光触媒用酸化チタン塗膜形成組成物として、特開平8−
164334号公報がある。同公報では、チタン酸化
物、特定の加水分解性珪素化合物の加水分解物及び溶媒
からなり、チタンと珪素とを特定重量比で混合した光触
媒用酸化チタン塗膜組成物を開示している。該組成物を
用い、ガラス、金属、セメント、壁紙、プラスチックな
どの基材表面に塗布、乾燥することによって酸化チタン
及び酸化珪素の複合塗膜を形成することができるとして
いる。しかしながら、上記加水分解物は酸化チタン表面
を被覆すると共に、基材へのバインダー的な役割を持つ
ため、光触媒活性の低下と接着力不足になりがちであ
る。
As a titanium oxide coating film forming composition for photocatalyst capable of firmly coating and adhering a photocatalyst to the surface of a substrate, Japanese Patent Application Laid-Open No. 8-
There is 164334 gazette. This publication discloses a titanium oxide coating composition for a photocatalyst comprising titanium oxide, a hydrolyzate of a specific hydrolyzable silicon compound, and a solvent, wherein titanium and silicon are mixed at a specific weight ratio. It is stated that a composite coating film of titanium oxide and silicon oxide can be formed by using the composition and applying and drying it on the surface of a substrate such as glass, metal, cement, wallpaper, and plastic. However, the hydrolyzate covers the titanium oxide surface and also has a role as a binder for the substrate, so that the photocatalytic activity tends to decrease and the adhesive strength tends to be insufficient.

【0016】さらに、半導体粉末を多孔性高分子膜に固
定した光触媒固定膜として、特開平1−135842号
公報がある。同公報では、ポリサルフォン、酢酸セルロ
ース、ポリビニルアルコールなどの高分子膜材料を適当
な溶剤に溶解、半導体粉末を混合して製膜化する方法を
開示している。しかしながら、高分子膜として半導体粉
末を固定した場合、高分子膜に該半導体粉末が埋もれて
光触媒活性が十分発揮されないという問題点がある。
Further, as a photocatalyst fixed film in which semiconductor powder is fixed to a porous polymer film, there is JP-A-1-135842. This publication discloses a method in which a polymer film material such as polysulfone, cellulose acetate, polyvinyl alcohol, or the like is dissolved in an appropriate solvent, and a semiconductor powder is mixed to form a film. However, when semiconductor powder is fixed as a polymer film, there is a problem that the semiconductor powder is buried in the polymer film and the photocatalytic activity is not sufficiently exhibited.

【0017】一方、酸化物系の微粉末脱臭剤(本発明で
いう光反応性半導体)を含有した繊維を用いた不織布と
して、特開平1−156576号公報がある。同公報に
は、酸化物系の微粉末脱臭剤を含有し、活性種存在雰囲
気下に曝されて、表面が微細にエッチングされ、微粉末
脱臭剤上の被膜が破壊されて、微粉末脱臭剤の一部が露
出された繊維からなる不織布を開示している。ここで
は、不織布を構成する繊維が、予め繊維素材に微粉末脱
臭剤を含有させて紡糸した繊維からなり、この繊維に対
してエッチング処理を施し、微粉末脱臭剤を繊維表面に
露出させたものである。このような方法による繊維は、
繊維表面に微粉末脱臭剤が露出しやすくなり、且つ固定
化の程度も高いものの、繊維が強度的に劣るという問題
点がある。
On the other hand, as a nonwoven fabric using fibers containing an oxide-based fine powder deodorant (the photoreactive semiconductor in the present invention), there is JP-A-1-156576. The gazette contains an oxide-based fine powder deodorant, is exposed to an atmosphere in which active species are present, the surface is finely etched, and the film on the fine powder deodorant is destroyed. Discloses a nonwoven fabric composed of fibers having a part exposed. Here, the fibers constituting the nonwoven fabric are made of fibers spun in advance by adding a fine powder deodorant to the fiber material, and the fibers are subjected to an etching treatment to expose the fine powder deodorant to the fiber surface. It is. Fiber by such a method,
Although the fine powder deodorant is easily exposed to the fiber surface and the degree of immobilization is high, there is a problem that the fiber is inferior in strength.

【0018】上記のとおり、光反応性半導体を各種基材
に固定化する方法として様々な方法が検討され、それぞ
れに対応して利用されてきているが、未だ満足のいくも
のがなく、固定化技術の開発が望まれているのが現状で
ある。
As described above, various methods have been studied as a method for immobilizing a photoreactive semiconductor on various substrates, and these methods have been used in accordance with the respective methods. However, there is no satisfactory method. At present, technology development is desired.

【0019】[0019]

【発明が解決しようとする課題】本発明は、有毒ガス、
雑菌、有機物などの汚染物質を分解し、清浄化すること
のできる環境浄化素材およびそれを用いた環境浄化材料
であって、繊維状、固体状、シート状の担体に光反応性
半導体が強固に固定され、光反応性半導体の脱落のない
環境浄化素材およびそれを用いた環境浄化材料を提供す
ることを目的とする。
SUMMARY OF THE INVENTION The present invention relates to a toxic gas,
An environmental purification material that can decompose and purify contaminants such as germs and organic substances, and an environmental purification material using the same. An object of the present invention is to provide an environment-purifying material that is fixed and does not fall off a photoreactive semiconductor, and an environment-purifying material using the same.

【0020】[0020]

【課題を解決するための手段】本発明者は、鋭意研究の
結果、光反応性半導体を担体に担持させた環境浄化素材
とそれを用いた環境浄化材料により、上記課題を達成し
うることを見出した。
Means for Solving the Problems As a result of earnest research, the present inventor has found that the above object can be achieved by an environmental purification material in which a photoreactive semiconductor is supported on a carrier and an environmental purification material using the same. I found it.

【0021】本発明の環境浄化素材において、環境浄化
素材が、繊維状、固体状、シート状のいずれか1種から
なる担体に、CVD法またはPVD法により光反応性半
導体を固定化してなるものである。
In the environmental purification material of the present invention, the environmental purification material is obtained by fixing a photoreactive semiconductor by a CVD method or a PVD method to a carrier made of any one of fibrous, solid, and sheet. It is.

【0022】本発明において、好ましくはPVD法が、
RFプラズマ法であることを特徴とするものである。
In the present invention, the PVD method is preferably
It is characterized by the RF plasma method.

【0023】繊維状の担体としては、有機繊維または無
機繊維のいずれかであることが好ましい。
The fibrous carrier is preferably either an organic fiber or an inorganic fiber.

【0024】固体状の担体としては、有機系粒状物、無
機系粒状物、金属系粒状物のいずれかであることが好ま
しい。
It is preferable that the solid carrier is any one of an organic granular material, an inorganic granular material, and a metallic granular material.

【0025】シート状の担体としては、有機系シート、
無機系シート、金属系シートのいずれかであることが好
ましい。
As the sheet-like carrier, an organic sheet,
Preferably, the sheet is either an inorganic sheet or a metal sheet.

【0026】本発明の環境浄化材料において、環境浄化
材料が、繊維状の担体に光反応性半導体をCVD法また
はPVD法により固定化した環境浄化繊維素材を主体と
した不織布であることを特徴とする環境浄化材料であ
る。
The environment-purifying material of the present invention is characterized in that the environment-purifying material is a nonwoven fabric mainly composed of an environment-purifying fiber material obtained by fixing a photoreactive semiconductor to a fibrous carrier by a CVD method or a PVD method. Environmental purification material.

【0027】また、本発明の環境浄化材料において、繊
維状の担体が活性炭素繊維からなる環境浄化繊維素材で
あり、該繊維素材と有機繊維からなる不織布であって、
該有機繊維同士または該有機繊維と該繊維素材が3次元
的に交絡された不織布であることを特徴とする環境浄化
材料である。
In the environment-purifying material of the present invention, the fibrous carrier is an environment-purifying fiber material made of activated carbon fiber, and a nonwoven fabric made of the fiber material and organic fibers.
An environmental purification material characterized by being a nonwoven fabric in which the organic fibers are mutually entangled or the organic fiber and the fiber material are three-dimensionally entangled.

【0028】本発明の上記環境浄化材料の片面に粘着層
を塗設した壁紙であることを特徴とする環境浄化材料で
ある。
[0028] An environmental purification material characterized in that it is a wallpaper in which an adhesive layer is applied on one side of the above-mentioned environmental purification material of the present invention.

【0029】本発明の環境浄化材料において、固体状の
担体に光反応性半導体をCVD法またはPVD法により
固定化した環境浄化固体素材と接着剤を主体とする塗料
であることを特徴とする環境浄化材料である。
The environment-purifying material of the present invention is characterized in that the material is an environment-purifying solid material in which a photoreactive semiconductor is fixed to a solid carrier by a CVD method or a PVD method, and a paint mainly composed of an adhesive. It is a purification material.

【0030】本発明の環境浄化材料において、シート状
の担体がガラスシートであり、該ガラスシート表面に光
反応性半導体をCVD法またはPVD法により固定化し
てなることを特徴とする環境浄化材料である。
In the environmental purification material of the present invention, the sheet-like carrier is a glass sheet, and the photoreactive semiconductor is fixed on the surface of the glass sheet by a CVD method or a PVD method. is there.

【0031】[0031]

【発明の実施の形態】本発明の環境浄化素材及びそれを
用いた環境浄化材料について、以下に詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The environmental purification material of the present invention and the environmental purification material using the same will be described in detail below.

【0032】本発明における環境浄化素材は、光反応性
半導体を担体である繊維状、固体状、シート状の1種に
CVD法またはPVD法により強固に固定化したもので
あり、光反応性半導体が固定化された担体の利用方法に
よって、応用範囲の広い種々の形態の環境浄化材料とす
ることができる。本発明の環境浄化素材および環境浄化
材料の特長は、担体に対して光反応性半導体を用いてC
VD法またはPVD法による固定化処理を施すことで、
担体表面から光反応性半導体の脱落のない環境浄化素材
とすることができるために、これを種々応用製品として
の環境浄化材料まで特定条件を必要とせずに加工できる
ことである。
The environmental purification material according to the present invention is a material in which a photoreactive semiconductor is firmly fixed to a carrier, such as a fibrous, solid or sheet type, by a CVD method or a PVD method. Depending on the method of using the carrier to which is immobilized, various forms of environmental purification materials having a wide range of applications can be obtained. The features of the environmental purification material and the environmental purification material of the present invention are that the photoreactive semiconductor is
By performing the immobilization treatment by the VD method or the PVD method,
In order to be able to produce an environment-purifying material in which the photoreactive semiconductor does not fall off from the surface of the carrier, it can be processed without requiring specific conditions to an environment-purifying material as various applied products.

【0033】例えば、繊維状の担体からは不織布、基
紙、織物など、固体状の担体からは塗料、基材への塗工
用塗液など、シート状の担体からはコーティングされた
金属板、ガラス板、フィルムなどの形態が挙げられる。
For example, a fibrous carrier may be a non-woven fabric, a base paper, a woven fabric, etc., a solid carrier may be a coating, a coating liquid for coating a substrate, a sheet-shaped carrier may be a coated metal plate, Examples include a glass plate and a film.

【0034】本発明において、担体に光反応性半導体を
強固に固定化する手段は、CVD法またはPVD法を用
いて行われるものである。すなわち、CVD法またはP
VD法、特にPVD法におけるRFプラズマ法(Radio
Frequency Plasma)によって気相において生成された光
反応性半導体の超微粒子が含まれる流れの中に被覆され
るべき担体を連続的にまたは半連続的に供給し、該光反
応性半導体の超微粒子と被覆されるべき担体とを該超微
粒子が活性な状態において接触させて両者を接着させ、
もって被覆されるべき担体表面に強固に超微粒子が結合
し固着した環境浄化素材とすることができる。
In the present invention, the means for firmly fixing the photoreactive semiconductor to the carrier is carried out by using the CVD method or the PVD method. That is, the CVD method or P
RF plasma method (Radio
The carrier to be coated is continuously or semi-continuously supplied into a flow containing the ultra-fine particles of the photoreactive semiconductor generated in the gas phase by the frequency plasma, and the ultra-fine particles of the photoreactive semiconductor are supplied. The carrier to be coated is contacted with the ultrafine particles in an active state to adhere them,
Thus, an environmental purification material can be obtained in which ultrafine particles are firmly bonded and fixed to the surface of the carrier to be coated.

【0035】本発明の環境浄化素材は、担体表面が光反
応性半導体の超微粒子で完全に被覆された状態ではな
く、該担体表面に突起状に被覆された状態で十分に本発
明の機能を有するものである。
The environment-purifying material of the present invention can sufficiently exhibit the function of the present invention in a state where the surface of the carrier is not completely covered with the ultrafine particles of the photoreactive semiconductor but is covered in a projecting manner on the surface of the carrier. Have

【0036】本発明における環境浄化素材の製造に当た
っては、光反応性半導体の超微粒子をアーク放電による
プラズマジェットの発生によるもの、アーク電解による
もの、高周波プラズマの発生によるもの、ガス中蒸発法
によるものなどの物理的手段で生成させるか、または還
元あるいは酸化を伴う化学的手段で生成させることがで
きる。生成された光反応性半導体の超微粒子が含まれる
気流中に被覆される担体を導入し、該超微粒子と該担体
とを超微粒子が活性な状態において接触させ、両者を強
固に化学結合させ、環境浄化素材を製造する。
In producing the environmental purification material of the present invention, ultra-fine particles of photoreactive semiconductor are produced by plasma jet generation by arc discharge, by arc electrolysis, by high-frequency plasma generation, by gas evaporation method. It can be produced by physical means such as, or by chemical means involving reduction or oxidation. The carrier to be coated is introduced into an airflow containing the generated ultra-fine particles of the photoreactive semiconductor, the ultra-fine particles and the carrier are brought into contact with each other in an active state, and the two are strongly chemically bonded, Manufacture environmental purification materials.

【0037】本発明において、主体となる光反応性半導
体は、特定波長の光を照射した時に光化学反応を起す光
触媒としての作用を有する半導体であり、電子の充満し
た価電子帯、空の伝導帯、およびこれらを隔てる禁制帯
で表されるエネルギー構造をもつ。禁制帯以上のエネル
ギーをもつ光が吸収されると、価電子帯の電子が伝導帯
に励起する。この光励起に伴い、価電子帯には正孔、す
なわち電子の空席が残る。半導体表面において、励起電
子と正孔が気相や液相中の成分をそれぞれ還元、酸化す
るもので、この化学反応を利用して有害物質を除去する
ことができる。
In the present invention, the main photoreactive semiconductor is a semiconductor having a function as a photocatalyst that causes a photochemical reaction when irradiated with light of a specific wavelength, and includes a valence band filled with electrons and an empty conduction band. , And a forbidden band separating them. When light having energy equal to or higher than the forbidden band is absorbed, electrons in the valence band are excited to the conduction band. With this photoexcitation, holes, that is, vacancies of electrons remain in the valence band. On the semiconductor surface, excited electrons and holes reduce and oxidize components in the gas phase and the liquid phase, respectively, and harmful substances can be removed by using this chemical reaction.

【0038】光反応性半導体の形態としては、粒子状の
ものが好ましく、これら粒子は比表面積が10〜500
2/gのものを適宜選択して用いられる。
The form of the photoreactive semiconductor is preferably in the form of particles, and these particles have a specific surface area of 10 to 500.
m 2 / g is appropriately selected and used.

【0039】このような光反応性半導体としては、特開
平2−273514号公報に開示しているものを挙げる
ことができ、酸化亜鉛、三酸化タングステン、酸化チタ
ン、酸化セリウム、酸化第二鉄などの金属酸化物が好ま
しく、これらの内で、酸化チタンが優れた脱臭特性を有
することから好ましい。
Examples of such a photoreactive semiconductor include those disclosed in JP-A-2-273514, such as zinc oxide, tungsten trioxide, titanium oxide, cerium oxide, and ferric oxide. Of these are preferred, and among these, titanium oxide is preferred because of its excellent deodorizing properties.

【0040】酸化チタンとしては、二酸化チタンのほ
か、含水酸化チタン、水和酸化チタン、メタチタン酸、
オルトチタン酸、水酸化チタンなどが挙げられる。ま
た、その結晶型については、特に制限するものではな
い。
Examples of titanium oxide include titanium dioxide, hydrous titanium oxide, hydrated titanium oxide, metatitanic acid,
Ortho titanic acid, titanium hydroxide and the like can be mentioned. The crystal type is not particularly limited.

【0041】酸化チタンとしては、比表面積が50〜4
00m2/gの範囲にあるものが好ましい。
The titanium oxide has a specific surface area of 50 to 4
Those having a range of 00 m 2 / g are preferred.

【0042】本発明に用いられる担体は、光反応性半導
体を担持させる役目を持つものである。光反応性半導体
は、光触媒作用により悪臭などの有害物質を除外できる
反面、該光反応性半導体と接触する樹脂系バインダーな
どの有機成分を劣化、変色させるという短所も併せ持っ
ている。担体に対して、光反応性半導体を担持させた場
合、樹脂系バインダーや基材などと直接的な接触を緩和
させることができ、成形体である環境浄化材料の劣化、
変色防止に大いに効果を発揮する。
The carrier used in the present invention has a role of supporting a photoreactive semiconductor. Photoreactive semiconductors can remove harmful substances such as malodors by photocatalysis, but also have the disadvantage of deteriorating and discoloring organic components such as resin-based binders that come into contact with the photoreactive semiconductor. When a photoreactive semiconductor is supported on a carrier, direct contact with a resin-based binder or a base material can be reduced, and deterioration of an environmental purification material, which is a molded product,
It is very effective in preventing discoloration.

【0043】本発明に用いられる担体には、繊維状、固
体状、シート状からなる各種形態の担体が挙げられる。
The carrier used in the present invention includes various types of carriers such as fibrous, solid, and sheet.

【0044】繊維状の担体としては、有機繊維および無
機繊維があり、例えば、ポリエステル系繊維、ポリオレ
フィン系繊維、ポリアクリロニトリル系繊維、ポリビニ
ルアルコール系繊維、ナイロン繊維、ウレタン繊維な
ど、特にアラミド繊維、ポリフェニレンサルファイド繊
維、ポリエーテルイミド繊維、ポリパラフェニレンベン
ゾオキサゾール繊維など、ポリマー自体が高い難燃性を
有する有機系エンプラ繊維などの他に、汎用有機ポリマ
ーに難燃剤を練り込んだ、ポリエステル繊維、ポリオレ
フィン繊維、アクリル繊維、ビニロン繊維、植物性繊維
などの有機繊維、Cu、Al、Feなどの金属繊維、ガ
ラス繊維、アルミナ繊維、チラノ繊維、活性炭素繊維、
SiCウィスカー、アルミナウィスカーなどの無機繊維
が挙げられる。
Examples of the fibrous carrier include organic fibers and inorganic fibers. For example, polyester fibers, polyolefin fibers, polyacrylonitrile fibers, polyvinyl alcohol fibers, nylon fibers, urethane fibers, etc., especially aramid fibers and polyphenylene fibers In addition to organic engineering plastic fibers, such as sulfide fibers, polyetherimide fibers, and polyparaphenylene benzoxazole fibers, which have high flame retardancy, polyester fibers and polyolefin fibers kneaded with flame retardants in general-purpose organic polymers , Acrylic fiber, vinylon fiber, organic fiber such as vegetable fiber, metal fiber such as Cu, Al, Fe, glass fiber, alumina fiber, Tyranno fiber, activated carbon fiber,
Examples include inorganic fibers such as SiC whiskers and alumina whiskers.

【0045】特に、繊維状の担体の中でも、活性炭素繊
維が好ましく用いられる。活性炭素繊維は、通常繊維径
2〜30μm、繊維長さ0.5〜10mm、細孔直径8
〜20オングストロームの微細孔を有し、比表面積50
0〜2500m2/gのものであり、レーヨン系、ポリア
クリロニトリル系、フェノール樹脂系、石炭ピッチ系、
石油ピッチ系などが挙げられ、何等限定するものではな
い。
In particular, among the fibrous carriers, activated carbon fibers are preferably used. Activated carbon fibers usually have a fiber diameter of 2 to 30 μm, a fiber length of 0.5 to 10 mm, and a pore diameter of 8
It has fine pores of ~ 20 angstroms and a specific surface area of 50
0-2500 m 2 / g, rayon type, polyacrylonitrile type, phenolic resin type, coal pitch type,
A petroleum pitch type or the like can be mentioned, and there is no limitation.

【0046】固体状の担体としては、有機系粒状物、無
機系粒状物、金属系粒状物があり、例えば、ポリエステ
ル樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリフェニ
レンサルファイド樹脂、エポキシ樹脂、フェノール樹脂
などの有機系粒状物、ガラス、シラスバルーン、シリ
カ、アルミナなどの無機系粒状物、Ag、Al、Au、
Co、Cu、Fe、Mg、Mn、Ni、Sn、W、P
b、Zn、Zr、Crなどの金属系粒子物が挙げられ
る。
The solid carrier includes organic particles, inorganic particles, and metal particles. For example, organic carriers such as polyester resin, polyamide resin, polyimide resin, polyphenylene sulfide resin, epoxy resin, and phenol resin. Inorganic particles such as glass, shirasu balloon, silica, and alumina, Ag, Al, Au,
Co, Cu, Fe, Mg, Mn, Ni, Sn, W, P
Metal-based particles such as b, Zn, Zr, and Cr are exemplified.

【0047】シート状の担体としては、有機系シート、
無機系シート、金属系シートなどがあり、例えば、ポリ
エステル系フィルム、ポリアミド系フィルム、ポリイミ
ド系フィルム、ポリオレフィン系フィルムなどの有機系
シート、ガラス板などの無機系シート、Fe、Al、N
i、Znなどの金属系シートが挙げられる。これらのシ
ート状の担体の中でもガラスシートが耐久性の面で好ま
しい。
As the sheet-shaped carrier, organic sheets,
There are inorganic sheets, metal sheets, etc., for example, organic sheets such as polyester films, polyamide films, polyimide films, polyolefin films, inorganic sheets such as glass plates, Fe, Al, N
Metallic sheets such as i, Zn, and the like. Among these sheet-shaped carriers, a glass sheet is preferable in terms of durability.

【0048】上記の担体において、担体自体が悪臭物質
に対する吸着能を有するものであれば、さらに効果的で
ある。このような吸着能を有する担体を用いた場合に
は、悪臭物質を担体によって吸着させ、続いて光反応性
半導体の光触媒作用により分解、除去することができ
る。この吸着・分解という段階的な有害物質の除去方法
は、非常に効率的である。また、触媒作用を有する担体
も好ましく用いることができる。
In the above-mentioned carrier, it is more effective if the carrier itself has the ability to adsorb odorous substances. When a carrier having such an adsorption ability is used, a malodorous substance can be adsorbed by the carrier and then decomposed and removed by the photocatalytic action of the photoreactive semiconductor. This stepwise removal method of harmful substances called adsorption and decomposition is very efficient. Further, a carrier having a catalytic action can also be preferably used.

【0049】具体的には、吸着能を有するものとして、
活性炭粉末、活性炭繊維、ゼオライトなど、触媒作用を
有するものとして、三二酸化鉄などの鉄系金属化合物が
挙げられる。その他に、酸化亜鉛、酸化マグネシウム、
酸化アルミニウム、シリカ、シリカ−アルミナ−酸化亜
鉛複合物、複合フィロ珪酸塩、シリカ−酸化亜鉛複合
物、あるいはそれらの混合物などが挙げられる。
Specifically, as those having an adsorption ability,
Activated carbon powder, activated carbon fiber, zeolite and the like, which have a catalytic action, include iron-based metal compounds such as iron sesquioxide. In addition, zinc oxide, magnesium oxide,
Examples include aluminum oxide, silica, silica-alumina-zinc oxide composite, composite phyllosilicate, silica-zinc oxide composite, or a mixture thereof.

【0050】以上、本発明の環境浄化素材を構成する各
担体について、個々に説明してきたが、該環境浄化素材
としては、それぞれの担体が有する形態、性質によって
適宜変えればよい。例えば、固体状の担体に光反応性半
導体を固定化させた環境浄化固体素材をそのまま環境浄
化材料として利用することは取扱いにくい面もある。固
体状の環境浄化材料(環境浄化固体素材)では、取扱い
やすい大きさに凝集化させ、顆粒状、ペレット状、錠剤
型形状などに成形することにより環境浄化固体素材自体
を利用しやすくすることもできる。
As described above, each carrier constituting the environmental purification material of the present invention has been individually described. The environmental purification material may be appropriately changed depending on the form and properties of each carrier. For example, it is difficult to use an environment-purifying solid material in which a photoreactive semiconductor is immobilized on a solid carrier as it is as an environment-purifying material. Solid environmental purification material (environmental purification solid material) can be made easy to use itself by agglomerating it into a size that is easy to handle and forming it into granules, pellets, tablets, etc. it can.

【0051】続いて、本発明の環境浄化素材を用いた環
境浄化材料について、以下に説明する。
Next, an environmental purification material using the environmental purification material of the present invention will be described below.

【0052】環境浄化材料における第1の発明は、繊維
状の担体に光反応性半導体を固定化させた環境浄化繊維
素材を用いた環境浄化材料である。
The first invention of the environmental purification material is an environmental purification material using an environmental purification fiber material in which a photoreactive semiconductor is immobilized on a fibrous carrier.

【0053】従来、粉体状の光反応性半導体を用い、種
々の方法によって不織布に担持させた環境浄化材料は数
あるが、不織布へ光反応性半導体を固定化する方法に工
夫を凝らしているものの固定化が不十分で不織布から光
反応性半導体が脱落してしまう。一方、本発明の環境浄
化材料は、上記の繊維状の担体に光反応性半導体をCV
D法またはPVD法により固定化させた環境浄化繊維素
材であり、これを用いて不織布としたものである。すで
に、繊維状の担体に光反応性半導体が強固に固定化され
ているため、乾式あるいは湿式の製造法を選ばずに不織
布を製造することができ、製造された不織布は何ら光反
応性半導体の脱落を起こさない。
Conventionally, there are a number of environmental purification materials which use a powdery photoreactive semiconductor and are supported on a nonwoven fabric by various methods. However, a method for immobilizing the photoreactive semiconductor on the nonwoven fabric has been devised. However, immobilization is insufficient and the photoreactive semiconductor falls off the nonwoven fabric. On the other hand, the environmental purification material of the present invention comprises a photoreactive semiconductor on
It is an environment-purifying fiber material immobilized by the D method or the PVD method, and is used as a nonwoven fabric. Already, since the photoreactive semiconductor is firmly fixed to the fibrous carrier, a nonwoven fabric can be manufactured regardless of a dry or wet manufacturing method. Does not fall off.

【0054】不織布を構成する繊維としては、上記に挙
げた種々の有機繊維および無機繊維を用いることがで
き、光反応性半導体を担持させた繊維と併用して不織布
を製造するものであり、目的・用途に応じて有機繊維あ
るいは無機繊維を使い分けすればよい。
As the fibers constituting the nonwoven fabric, the above-mentioned various organic fibers and inorganic fibers can be used, and the nonwoven fabric is produced in combination with the fibers supporting the photoreactive semiconductor. -Organic fibers or inorganic fibers may be used depending on the application.

【0055】また、不織布の製法については、特に制限
はなく、目的・用途に応じて、乾式法、湿式抄造法、メ
ルトブローン法、スパンボンド法などで得られたウェブ
をウォータージェット法、ニードルパンチ法、ステッチ
ボンド法などの物理的方法、サーマルボンド法などの熱
による接着方法、レジンボンド法などの接着剤による方
法で強度を発現させる方法、などを適宜組み合わせて製
造することができる。
The method for producing the nonwoven fabric is not particularly limited, and a web obtained by a dry method, a wet papermaking method, a melt blown method, a spun bond method, etc. may be used in accordance with the purpose and application. , A physical method such as a stitch bond method, a heat bonding method such as a thermal bond method, a method of developing strength by a method using an adhesive such as a resin bond method, and the like, as appropriate.

【0056】環境浄化材料における第2の発明は、活性
炭素繊維に光反応性半導体を固定化させ、これを用いて
3次元的に交絡させた不織布からなる環境浄化材料であ
る。
The second invention of the environment-purifying material is an environment-purifying material comprising a nonwoven fabric in which a photoreactive semiconductor is immobilized on activated carbon fibers and three-dimensionally entangled with the photoreactive semiconductor.

【0057】本発明の環境浄化材料では、繊維状の担体
として活性炭素繊維を用いた環境浄化繊維素材であり、
該繊維素材と有機繊維を用いて有機繊維同士または有機
繊維と該繊維素材とを3次元的に交絡させた不織布とす
ることで、活性炭素繊維自体が持っている悪臭物質の吸
着能を発揮するとともに、より一層の耐久性を有する環
境浄化材料とすることができる。
The environmental purification material of the present invention is an environmental purification fiber material using activated carbon fiber as a fibrous carrier.
By using the fiber material and the organic fiber to form a nonwoven fabric in which organic fibers are three-dimensionally entangled with each other or between the organic fiber and the fiber material, the activated carbon fiber itself exhibits the ability to adsorb odorous substances. At the same time, it is possible to provide an environmental purification material having more durability.

【0058】用いられる活性炭素繊維は、通常繊維径2
〜30μm、繊維長さ0.5〜10mm、細孔直径8〜
20オングストロームの微細孔を有し、比表面積500
〜2500m2/gのものであり、レーヨン系、ポリアク
リロニトリル系、フェノール樹脂系、石炭ピッチ系、石
油ピッチ系などが挙げられ、何ら限定するものではな
い。
The activated carbon fibers used usually have a fiber diameter of 2
3030 μm, fiber length 0.5-10 mm, pore diameter 8〜
20 angstrom fine pores, specific surface area 500
2,500 m 2 / g, and examples thereof include rayon-based, polyacrylonitrile-based, phenolic resin-based, coal pitch-based, and petroleum pitch-based systems, without any limitation.

【0059】このような活性炭素繊維としては、綿、
麻、セルロース再生繊維、ポリビニルアルコール繊維、
アクリル繊維、芳香族ポリアミド繊維、架橋ホルムアル
デヒド繊維、リグニン繊維、フェノール繊維、石油ピッ
チ繊維、石炭ピッチ繊維などの原料繊維が挙げられ、常
法に従って高温で炭化処理及び表面活性化処理を施して
得られるものである。
As such activated carbon fibers, cotton,
Hemp, regenerated cellulose fiber, polyvinyl alcohol fiber,
Raw materials such as acrylic fiber, aromatic polyamide fiber, cross-linked formaldehyde fiber, lignin fiber, phenol fiber, petroleum pitch fiber, coal pitch fiber, etc., are obtained by performing carbonization treatment and surface activation treatment at high temperature according to a conventional method. Things.

【0060】活性炭素繊維の形状、繊維径、繊維長は特
に限定されるものではないが、繊維ウェブに高圧柱状水
流を当てた際の活性炭素繊維の脱落を防止し、しかも地
合の良好な不織布を得るためには、平均繊維径としては
5〜30μmが好ましく、さらに好ましい。また、平均
繊維長としては3mm〜15mmが好ましい。
The shape, fiber diameter, and fiber length of the activated carbon fiber are not particularly limited, but it is possible to prevent the activated carbon fiber from falling off when a high-pressure columnar water stream is applied to the fiber web, and to provide a good formation. In order to obtain a nonwoven fabric, the average fiber diameter is preferably 5 to 30 μm, and more preferably. Further, the average fiber length is preferably 3 mm to 15 mm.

【0061】本発明で用いる有機繊維の種類としては、
特に限定されるものではなく、ポリエステル系繊維、ポ
リオレフィン系繊維、ポリアクリロニトリル系繊維、ポ
リビニルアルコール系繊維、ナイロン繊維、ウレタン繊
維を単独、あるいはこれらの組み合せからなるあらゆる
繊維を用いることができる。また、互いに相溶性の小さ
い2種類以上の成分が接合された繊維で、機械的作用や
膨潤剤の作用により、容易に割繊し、極細繊維を発生す
る剥離分割型複合繊維も用いることができる。
The types of the organic fibers used in the present invention include:
There is no particular limitation, and polyester fibers, polyolefin fibers, polyacrylonitrile fibers, polyvinyl alcohol fibers, nylon fibers, and urethane fibers can be used alone or in any combination thereof. In addition, exfoliated splittable conjugate fibers, which are fibers in which two or more types of components having low compatibility with each other are joined and are easily split by a mechanical action or an action of a swelling agent to generate ultrafine fibers, can also be used. .

【0062】本発明で用いる有機繊維としては、アスペ
クト比が1000〜2500の範囲、有機繊維の繊維径
が9μm以下にあることが好ましい。この繊維径以下の
場合、シート内での繊維の本数が多くなることから、十
分な補強効果を得るための配合量を減らすことができ
る。また、この繊維径以下の有機繊維は、屈曲しやす
く、高圧柱状水により、活性炭素繊維を介在しながら、
繊維同士が容易に絡み合うことができる。
The organic fibers used in the present invention preferably have an aspect ratio in the range of 1000 to 2500 and a fiber diameter of the organic fibers of 9 μm or less. When the fiber diameter is not more than this, the number of fibers in the sheet increases, so that the amount of the fiber for obtaining a sufficient reinforcing effect can be reduced. In addition, the organic fiber having a fiber diameter or less is easy to bend, and the high-pressure columnar water interposes the activated carbon fiber,
The fibers can easily be entangled with each other.

【0063】ここで、有機繊維が活性炭素繊維を介在し
ながら、繊維同士が絡むという状態は、有機繊維が高圧
柱状水に当ると屈曲し、活性炭素繊維を取り囲み、捕捉
しながら、活性炭素繊維の周りの有機繊維が互いに絡み
合う状態のことをいう。
Here, the state in which the organic fibers are entangled with each other with the activated carbon fibers interposed therebetween is such that the organic fibers bend when hitting the high-pressure columnar water, surround and capture the activated carbon fibers, and Refers to a state in which the organic fibers around are intertwined with each other.

【0064】本発明で用いる有機繊維の断面形状は、円
形のみならず、楕円形でも良く、さらに好ましくは、三
角、Y型、T型、U型、星型、ドッグボーン型など、い
わゆる異型断面形状を持つものが好ましい。有機繊維の
断面積が、真円と異型断面とで同一の場合では、曲げに
対する挙動が異なり、異型断面を有する有機繊維の方
が、曲げ剛性に異方性を生じ、短軸方向での剛性が極端
に小さくなるために、短軸方向に屈曲し易く、水流交絡
の際に、活性炭素繊維を取り囲み、活性炭素繊維を介在
して、繊維同士が容易に交絡する。また、異型断面の方
が角があり、活性炭素繊維への引っかかりが良いため、
真円に比べると、活性炭素繊維の脱落が少ないという効
果がある。
The cross-sectional shape of the organic fiber used in the present invention may be not only a circle but also an ellipse, and more preferably, a so-called irregular cross-section such as a triangular, Y-shaped, T-shaped, U-shaped, star-shaped or dog-bone shaped. Those having a shape are preferred. When the cross-sectional area of the organic fiber is the same between the perfect circle and the irregular cross section, the behavior with respect to bending is different, and the organic fiber having the irregular cross section causes anisotropy in bending stiffness and rigidity in the short axis direction. Is extremely small, so that it is easy to bend in the short axis direction, and at the time of hydroentanglement, the active carbon fibers are surrounded and the fibers are easily entangled via the active carbon fibers. In addition, the irregular cross section has more corners and is better hooked on activated carbon fibers,
As compared with a perfect circle, there is an effect that the falling off of the activated carbon fiber is small.

【0065】本発明で用いる有機繊維の繊維長は、5〜
25mmのものが好ましい。繊維長が25mmより長い
と、水中での分散工程が難しく、分散剤を選択し、適量
使用する必要があるばかりか、1度分散した後、再度凝
集して、よれ、もつれ、だまなどが発生し易くなるとい
う問題が生じて来る。また、分散濃度を低くしなければ
ならず生産性が劣る。
The fiber length of the organic fiber used in the present invention is 5 to 5.
25 mm is preferred. If the fiber length is longer than 25 mm, the dispersing process in water is difficult, so it is necessary to select a dispersant and use an appropriate amount. In addition, after dispersing once, coagulation occurs again, causing entanglement, entanglement, and lumps. The problem that it becomes easy to come up arises. In addition, the dispersion concentration must be reduced, resulting in poor productivity.

【0066】一方、繊維長が5mmより短いと、分散工
程が容易であるが、高圧柱状水流により動き易いため、
繊維を曲げ、絡み合わせるのが困難で強度の大きいシー
ト(不織布)を得ることが困難であるばかりか、活性炭
素繊維を十分に捕捉することができず、活性炭素繊維の
脱落を招く。また、繊維全体が動くために繊維間のずれ
が生じ、シート内部で歪が生じ、高圧柱状水流を噴射し
た後、不織布に多くのしわが発生するという問題が生じ
る。
On the other hand, if the fiber length is shorter than 5 mm, the dispersing step is easy, but the fiber is easily moved by the high-pressure columnar water flow.
Not only is it difficult to obtain a sheet (nonwoven fabric) having a high strength because it is difficult to bend and entangle the fibers, but also it is not possible to sufficiently capture the activated carbon fibers, which causes the activated carbon fibers to fall off. In addition, since the whole fibers move, a displacement between the fibers occurs, a distortion occurs inside the sheet, and a problem arises that many wrinkles are generated in the nonwoven fabric after the high-pressure columnar water jet is jetted.

【0067】次に、活性炭素繊維を用いた不織布からな
る環境浄化材料の製造方法について述べる。まず、活性
炭素繊維のウェブを製造するには、乾式法と湿式法があ
るが、乾式法によって得られたシートは、通気性は良い
ものの、シートの地合が悪く、また、活性炭素繊維を開
繊する工程で繊維が折れて、活性炭素繊維の歩留まりが
悪くなり、不経済である。湿式法を用いて抄紙したシー
トは、シートが均一で地合が良好である。また、活性炭
素繊維の歩留まりが良い。
Next, a method for producing an environmental purification material composed of a nonwoven fabric using activated carbon fibers will be described. First, there are a dry method and a wet method for producing a web of activated carbon fibers.The sheet obtained by the dry method has good air permeability, but the sheet formation is poor, and the activated carbon fiber is also used. The fiber breaks during the opening process, and the yield of activated carbon fibers is reduced, which is uneconomical. The sheet made by the wet method has a uniform sheet and good formation. Also, the yield of activated carbon fibers is good.

【0068】製造方法は、活性炭素繊維と有機繊維をパ
ルパーあるいはミキサーなどで離解し、アジテーターな
どの緩やかな撹拌のもと、水中に分散して、均一なスラ
リーを形成する。このスラリーを円網、長網、あるいは
傾斜式などのワイヤーの少なくとも1つを有する抄紙機
を用いて抄紙して、地合良好なウェブを製造するもので
ある。
In the production method, the activated carbon fiber and the organic fiber are disintegrated with a pulper or a mixer, and dispersed in water under gentle stirring with an agitator or the like to form a uniform slurry. The slurry is made into a paper using a paper machine having at least one of a wire of a circular net, a long net or an inclined type to produce a well-formed web.

【0069】抄紙した湿紙ウェブをプレスして後、開孔
率40%以下、1つの開孔の大きさが0.07mm2
下の多孔質支持体上に積載し、ウェブ上方から高圧柱状
水流を噴射し、高圧柱状水流とウェブを相対的に移動さ
せ、活性炭素繊維を有機繊維で取り囲み、活性炭素繊維
を介在させて、有機繊維同士を3次元的に絡み合わせ
る。高圧柱状水流とウェブを相対的に移動させる方法と
しては、コンベア式の支持体、あるいはドラム式の支持
体を回転運動させる方法が簡便である。このとき支持体
の搬送速度は、3〜100m/分の速度で用いることが
できる。
After the formed wet paper web is pressed, it is loaded on a porous support having an opening ratio of 40% or less and one opening size of 0.07 mm 2 or less. Is sprayed to relatively move the high-pressure columnar water stream and the web, surround the activated carbon fibers with organic fibers, and entangle the organic fibers three-dimensionally with the activated carbon fibers interposed. As a method of relatively moving the high-pressure columnar water flow and the web, a method of rotating a conveyor-type support or a drum-type support is convenient. At this time, the carrier can be transported at a speed of 3 to 100 m / min.

【0070】ここで、支持体の開孔率が40%より大き
いと、得られるシートに開孔が生じる。逆に、開孔率が
小さいほど、得られたシートの面質が良くなるが、開孔
率が40%以下でも、1つの開孔の大きさが0.005
mm2以下の多孔質支持体上では、絡み合わせるために
要した水が支持体から下に抜けず、支持体に当たった
後、再びウェブに跳ね返り、跳ね返り水がウェブを突き
上げ、ウェブが破損する現象が生じ、好ましくない。
Here, if the porosity of the support is greater than 40%, porosity is formed in the obtained sheet. Conversely, the smaller the aperture ratio, the better the surface quality of the obtained sheet. However, even if the aperture ratio is 40% or less, the size of one aperture is 0.005.
On a porous support of 2 mm or less, the water required for entanglement does not fall down from the support, after hitting the support, rebounds on the web again, the rebound water pushes up the web, and the web breaks A phenomenon occurs, which is not preferable.

【0071】このような多孔質支持体としては、平織
り、綾織りなどの織り方で、ステンレス、ブロンズなど
の金属、あるいは強化ポリエステル、ポリアミドなどの
プラスチックなどの材質のワイヤーなどが挙げられる。
Examples of such a porous support include wires made of metal such as stainless steel and bronze, or plastics such as reinforced polyester and polyamide in a weave method such as plain weave and twill weave.

【0072】次に、こうして得られたシートは、シリン
ダードライヤーやエアードライヤーなどを用いて乾燥す
る。その後、熱カレンダーロール処理などの熱圧加工を
行い、適当な厚さに調整することも可能である。
Next, the sheet thus obtained is dried using a cylinder drier, an air drier or the like. Then, it is also possible to perform hot-press processing such as hot calender roll processing to adjust the thickness to an appropriate value.

【0073】上記環境浄化材料において、不織布の代わ
りにごく一般的な原紙としての利用方法がある。例え
ば、植物性繊維と光反応性半導体を固定化した上記環境
浄化繊維素材とを混合・調整した抄紙用スラリーとする
ことで原紙を抄紙することができる。
In the above environment-purifying material, there is a method of using it as a general base paper instead of a nonwoven fabric. For example, a base paper can be made by mixing and adjusting a vegetable fiber and the above-mentioned environment-purifying fiber material on which a photoreactive semiconductor is immobilized.

【0074】植物性繊維は、大きく分けて木本系セルロ
ース繊維、草本系セルロース繊維の2種に分類される。
木本系セルロース繊維としては、針葉樹材、広葉樹材の
木部繊維からなるクラフトパルプ、サルファイトパル
プ、サーモメカニカルパルプ、メカニカルパルプや、竹
などの維管束繊維、楮、雁皮などの靭皮繊維をパルプと
したものが挙げられる。草木系セルロース繊維として
は、綿繊維、麻繊維、エスパルト、ケナフなどが挙げら
れる。藁、古紙などから得られるパルプも含まれる。こ
れら植物性繊維を化学的に処理したものも使用可能であ
る。これらの繊維から少なくとも1種以上を選択して使
用できる。
Vegetable fibers are broadly classified into two types: woody cellulose fibers and herbaceous cellulose fibers.
Woody cellulosic fibers include kraft pulp, sulfite pulp, thermomechanical pulp, mechanical pulp, vascular bundle fibers such as bamboo, and bast fibers such as mulberry, goose, etc. Pulp may be used. Examples of the plant-based cellulose fibers include cotton fibers, hemp fibers, espart, and kenaf. It also includes pulp obtained from straw, waste paper and the like. Those obtained by chemically treating these vegetable fibers can also be used. At least one of these fibers can be selected and used.

【0075】また、環境浄化材料において、光反応性半
導体を固定化する繊維状の担体が連続的な糸状のもので
あれば、シート状の織布とすることができ、これを裁断
加工して衣類、カーテンなど用途に応じて種々の利用が
可能である。
In the environment-purifying material, if the fibrous carrier for immobilizing the photoreactive semiconductor is a continuous thread, it can be formed into a sheet-shaped woven fabric, which is cut and processed. Various uses are possible depending on the use such as clothing and curtains.

【0076】環境浄化材料における第3の発明は、上記
第1または第2の発明の不織布からなる環境浄化材料の
片面に粘着層を塗設した壁紙からなるものである。
The third aspect of the environmental purification material comprises wallpaper obtained by applying an adhesive layer to one surface of the environmental purification material comprising the nonwoven fabric of the first or second invention.

【0077】第1または第2の発明からなる環境浄化材
料は、上述したとおり光反応性半導体の固定化に優れ、
繊維からの脱落がなく光反応性半導体としての機能を十
分に発揮するが、大きな面積を有する壁紙に応用した場
合に、より一層の効果を発揮することができる。
The environmental purification material according to the first or second invention is excellent in immobilizing a photoreactive semiconductor as described above,
Although it does not fall off from the fiber and sufficiently exerts its function as a photoreactive semiconductor, it can exhibit even more effects when applied to wallpaper having a large area.

【0078】本発明における粘着層としては、加熱時に
粘着性を発揮するタイプあるいは常温下で粘着性を有す
るタイプのいずれでも可能である。前者では、粘着層塗
設後常温で取り扱うことができるため好ましい。また、
後者では、常温下で粘着性を有するために剥離紙とのセ
ットで取り扱う必要がある。
As the pressure-sensitive adhesive layer in the present invention, any of a type exhibiting tackiness upon heating and a type exhibiting tackiness at room temperature can be used. The former is preferable because it can be handled at room temperature after the application of the adhesive layer. Also,
The latter needs to be handled as a set with release paper because it has tackiness at room temperature.

【0079】加熱時に粘着性を有するタイプとしては、
ヒートシール層、ディレードタック層、ホットメルト層
からなる粘着層がある。
The types having tackiness when heated include:
There is an adhesive layer consisting of a heat seal layer, a delayed tack layer, and a hot melt layer.

【0080】ヒートシール層については、これを構成す
るヒートシールコーティング剤は、”コンバーティング
のすべて”(加工技術研究会発行、1993年、P35
1〜)で述べられるようないわゆる狭義のヒートシール
コーティング剤であり、無溶剤のホットメルトコーティ
ング樹脂とは別なものである。例えば、その構成樹脂と
しては、ポリオレフィン樹脂、ポリエステル、エチレン
/酢ビ共重合樹脂、ポリアクリレート、塩酢ビ、エチレ
ン/アクリル酸共重合樹脂、などの有機溶剤溶液、ある
いは水分散溶液などの形で用いられる。これの樹脂を用
いて塗液を調製して塗工、最低造膜温度より高い温度で
乾燥させて得たヒートシール層は、通常状態では指で触
ってもベトツキのない状態に乾燥されている。一旦融点
以上に加熱するとヒートシール層が可塑化され粘着性を
帯び、軽い圧力により壁面に貼ることができる。
Regarding the heat seal layer, the heat seal coating agent constituting the heat seal layer is “all of converting” (published by Processing Technology Research Institute, 1993, p. 35).
This is a so-called heat seal coating agent in a narrow sense as described in 1) and is different from a solventless hot melt coating resin. For example, the constituent resin may be in the form of an organic solvent solution such as polyolefin resin, polyester, ethylene / vinyl acetate copolymer resin, polyacrylate, vinyl chloride acetate, ethylene / acrylic acid copolymer resin, or an aqueous dispersion solution. Used. A heat seal layer obtained by preparing and applying a coating liquid using this resin and drying at a temperature higher than the minimum film forming temperature is dried to a state where there is no stickiness even with a finger in a normal state. . Once heated above the melting point, the heat seal layer is plasticized and becomes tacky and can be applied to the wall with light pressure.

【0081】ヒートシール層の塗工は、溶剤溶液あるい
はエマルジョンとして塗工・乾燥して用いることが可能
である。
The heat seal layer can be applied by coating and drying as a solvent solution or emulsion.

【0082】ディレードタック層については、これを構
成する樹脂として、例えば、アクリル系樹脂、塩化ビニ
ル系樹脂、酢酸ビニル系樹脂、スチレン/アクリル共重
合系樹脂、スチレン/ブタジエン共重合樹脂、ポリスチ
レン樹脂、ポリアミド樹脂などが挙げられる。該樹脂
に、1種あるいは数種の結晶性(固体)可塑剤、例え
ば、ジシクロヘキシルフタレート、ジフェニルフタレー
ト、N−シクロヘキシル−p−トルエンスルホンアミ
ド、o/p−トルエンスルホンアミドなどを含有させ
る。この樹脂を用いて塗液を調製して塗工、可塑剤の融
点以下で乾燥させて得たディレードタック層は、通常状
態では指で触ってもベトツキのない状態に乾燥されてい
る。一旦可塑剤の融点以上に加熱するとディレードタッ
ク層が可塑化され粘着性を帯び、軽い圧力により壁面に
貼ることができる。
The delayed tack layer may be formed of a resin such as an acrylic resin, a vinyl chloride resin, a vinyl acetate resin, a styrene / acrylic copolymer resin, a styrene / butadiene copolymer resin, a polystyrene resin, or the like. A polyamide resin is exemplified. The resin contains one or several crystalline (solid) plasticizers such as dicyclohexyl phthalate, diphenyl phthalate, N-cyclohexyl-p-toluenesulfonamide, o / p-toluenesulfonamide and the like. The delayed tack layer obtained by preparing a coating liquid using this resin, applying the coating liquid, and drying it at or below the melting point of the plasticizer is dried in a normal state so that there is no stickiness even when touched with a finger. Once heated above the melting point of the plasticizer, the delayed tack layer is plasticized and becomes tacky and can be applied to wall surfaces with light pressure.

【0083】ホットメルト層については、これを構成す
る樹脂は、一般に60℃〜180℃の温度範囲で溶融す
る熱可塑性材料(100%固体)であり、以下に示すよ
うなポリマー、樹脂およびワックスが用いられる。即
ち、アルキッド(変性ポリエステル)、アスファルトお
よびコールタールれき青質、クマロン−インデン樹脂、
ロジンおよびその誘導体、テルペン樹脂、ワックス(鉱
物、植物、および石油)、エチレン/アクリル酸エチル
共重合体、エチレン/酢酸ビニル共重合体、ポリエチレ
ン、ポリ酢酸ビニルおよびその共重合体、ポリカーボネ
ート、ポリスチレンおよびその共重合体、ポリスチレン
およびその共重合体、ポリプロピレン、ポリビニルエー
テル、ポリアミド、ポリエステル(熱可塑性)、フェノ
キシ樹脂(可塑化)、ポリイソプレン、ポリウレタン、
熱可塑性エラストマー(SBS、SIS、SEBSな
ど)などの樹脂が使用される。
For the hot melt layer, the resin constituting the same is generally a thermoplastic material (100% solid) that melts at a temperature in the range of 60 ° C. to 180 ° C. Used. Alkyd (modified polyester), asphalt and coal tar bluish blue, cumarone-indene resin,
Rosin and its derivatives, terpene resins, waxes (mineral, vegetable and petroleum), ethylene / ethyl acrylate copolymer, ethylene / vinyl acetate copolymer, polyethylene, polyvinyl acetate and its copolymers, polycarbonate, polystyrene and The copolymer, polystyrene and the copolymer, polypropylene, polyvinyl ether, polyamide, polyester (thermoplastic), phenoxy resin (plasticized), polyisoprene, polyurethane,
A resin such as a thermoplastic elastomer (SBS, SIS, SEBS, etc.) is used.

【0084】ホットメルト層の塗工は、溶剤溶液とし
て、あるいはエマルジョンとして塗工、乾燥して用いる
か、熱溶融押しだしにより行うことが可能である。
The hot melt layer can be applied as a solvent solution or as an emulsion and dried, or can be applied by hot melt extrusion.

【0085】常温下で粘着性を有するタイプとしては、
一般的なアクリル樹脂、天然及び合成ゴム、スチレン/
ブタジエン共重合体、ポリ酢酸ビニル、酢酸ビニル/エ
チレン共重合体、デンプン、シリコーン系化合物、ニカ
ワ、カゼイン、ポリビニルアルコール、ポリウレタン、
ポリウレタンなどを単独で、あるいは溶液、水溶液、エ
マルジョンの形で用いることができる。
The types having tackiness at room temperature include:
General acrylic resin, natural and synthetic rubber, styrene /
Butadiene copolymer, polyvinyl acetate, vinyl acetate / ethylene copolymer, starch, silicone compound, glue, casein, polyvinyl alcohol, polyurethane,
Polyurethane or the like can be used alone or in the form of a solution, an aqueous solution, or an emulsion.

【0086】環境浄化材料における第4の発明は、固体
状の担体に光反応性半導体をCVD法またはPVD法に
より固定化した環境浄化固体素材と接着剤とを主体とす
る塗料からなるものである。
[0086] A fourth aspect of the present invention relates to an environment-purifying material comprising a coating material mainly composed of an environment-purifying solid material obtained by fixing a photoreactive semiconductor to a solid carrier by a CVD method or a PVD method, and an adhesive. .

【0087】本発明の塗料は、従来の光反応性半導体が
微粒子状で扱われるのに対して、本発明の光反応性半導
体では固体状の担体に固定化された環境浄化固体素材と
して該担体の粒子径を適宜変えて扱うことができるた
め、これを種々の基材へ塗設するような場合でも取り扱
いが容易である。
In the coating of the present invention, the conventional photoreactive semiconductor is treated in the form of fine particles, whereas the photoreactive semiconductor of the present invention is used as an environment-purifying solid material immobilized on a solid carrier. Can be handled by appropriately changing the particle size, and therefore, it is easy to handle even when it is applied to various substrates.

【0088】上記塗料としては、水性系または溶剤系の
いずれでも可能であり、その系に応じて接着剤も変えら
れる。
The coating material may be an aqueous type or a solvent type, and the adhesive may be changed according to the type.

【0089】水性系の接着剤としては、例えば、ポリビ
ニルアルコール、シラノール変性ポリビニルアルコー
ル、酢酸ビニル、酸化澱粉、リン酸エステル化澱粉、エ
ーテル化澱粉、カルボキシメチルセルロース、ヒドロキ
シエチルセルロース等のセルロース誘導体、カゼイン、
ゼラチン、大豆蛋白、シリル変性ポリビニルアルコール
等;無水マレイン酸樹脂、スチレン−ブタジエン共重合
体、メチルメタクリレート−ブタジエン共重合体等の共
役ジエン系共重合体ラテックス;アクリル酸エステルお
よびメタクリル酸エステルの重合体または共重合体、ア
クリル酸およびメタクリル酸の重合体または共重合体等
のアクリル系重合体ラテックス;或いはこれらの各種重
合体のカルボキシル基等の官能基含有単量体による官能
基変性重合体ラテックス;を一種以上、適宜組み合わせ
て使用することが出来る。この他、公知の天然、合成樹
脂接着剤を使用することは特に限定されない。
Examples of the aqueous adhesive include polyvinyl alcohol, silanol-modified polyvinyl alcohol, vinyl acetate, oxidized starch, phosphated starch, etherified starch, cellulose derivatives such as carboxymethylcellulose and hydroxyethylcellulose, casein,
Gelatin, soy protein, silyl-modified polyvinyl alcohol, etc .; conjugated diene copolymer latex such as maleic anhydride resin, styrene-butadiene copolymer, methyl methacrylate-butadiene copolymer; polymers of acrylate and methacrylate Or an acrylic polymer latex such as a copolymer, a polymer or copolymer of acrylic acid and methacrylic acid; or a functional group-modified polymer latex of a functional group-containing monomer such as a carboxyl group of these various polymers; Can be used alone or in appropriate combination. In addition, the use of a known natural or synthetic resin adhesive is not particularly limited.

【0090】また、溶剤系の接着剤としては、例えば、
ケトン樹脂、ポリアミド樹脂、マレイン酸樹脂、フェノ
ール樹脂、エポキシ樹脂、アルキッド樹脂、メラミン樹
脂、尿素樹脂、ニトロセルロース、エチルセルロース、
ブチラール樹脂等が挙げられる。
Examples of the solvent-based adhesive include, for example,
Ketone resin, polyamide resin, maleic acid resin, phenol resin, epoxy resin, alkyd resin, melamine resin, urea resin, nitrocellulose, ethyl cellulose,
Butyral resin and the like.

【0091】溶剤としては、アマニ油、桐油、大豆油、
綿実油等の植物系溶剤、メタノール、エタノール、N−
プロピルアルコール、イソプロピルアルコール、ブタノ
ールなどのアルコール系溶剤、酢酸エチル、酢酸プロピ
ルなどのエステル系溶剤、ヘキサン、軽油などの炭化水
素系溶剤、などが挙げられる。
As the solvent, linseed oil, tung oil, soybean oil,
Plant solvents such as cottonseed oil, methanol, ethanol, N-
Examples thereof include alcohol solvents such as propyl alcohol, isopropyl alcohol and butanol, ester solvents such as ethyl acetate and propyl acetate, and hydrocarbon solvents such as hexane and light oil.

【0092】基材の特性としては、有害物質を通過させ
るための通気性、光反応性半導体を活性化させるための
光透過性を有することである。このような基材の形状と
しては、布帛状、不織布状あるいは多孔質フィルム状の
ものなどが挙げられるが、目付け、通気性を制御しやす
く、加工性にも優れている点から不織布状のものが特に
好ましい。
The characteristics of the substrate are that it has air permeability for passing harmful substances and light transmittance for activating the photoreactive semiconductor. Examples of the shape of such a base material include a cloth shape, a nonwoven fabric shape, and a porous film shape, and the nonwoven fabric shape is easy to control the basis weight and air permeability and is excellent in workability. Is particularly preferred.

【0093】多孔質フィルムとしては、特開昭50−7
4667号公報に記載されているように、ポリオレフィ
ン樹脂に酸、アルカリまたは水で溶出可能な無機充填剤
とノニオン界面活性剤を混合し、フィルム状に形成後、
延伸し、次いで前記無機充填剤を酸などで溶出させて製
造したもの、特開昭57−47334号公報に記載され
ているように、高密度ポリオレフィン樹脂に充填剤と液
状ゴムを配合してなる組成物を溶融成形して得たフィル
ムを延伸して製造したもの、など適宜利用することがで
きる。
As the porous film, JP-A-50-7
As described in No. 4667, an acid, an alkali or a water-elutable inorganic filler and a nonionic surfactant are mixed into a polyolefin resin, and after being formed into a film,
Stretched and then produced by dissolving the inorganic filler with an acid or the like, as described in JP-A-57-47334, comprising blending a filler and a liquid rubber with a high-density polyolefin resin. A film obtained by stretching a film obtained by melt-molding the composition can be used as appropriate.

【0094】本発明の塗料配合としては、接着剤の使用
量は、環境浄化固体素材の総重量100重量部に対し、
接着剤は1〜30重量部が好ましく、さらに好ましくは
2〜20重量部である。水性系あるいは非水性系の溶媒
の使用に当たっては、これを基材の種類に応じて適宜変
えて使用するものであり、何ら限定するものではない。
In the coating composition of the present invention, the amount of the adhesive used is based on 100 parts by weight of the total weight of the environmental purification solid material.
The amount of the adhesive is preferably 1 to 30 parts by weight, more preferably 2 to 20 parts by weight. When an aqueous or non-aqueous solvent is used, it is used by appropriately changing it according to the type of the base material, and is not limited at all.

【0095】環境浄化材料における第5の本発明は、シ
ート状の担体としてガラスシートを用いたもので、該ガ
ラスシート表面に光反応性半導体をCVD法またはPV
D法により固定化させたものである。
The fifth aspect of the present invention in the environmental purification material uses a glass sheet as a sheet-like carrier, and a photoreactive semiconductor is coated on the surface of the glass sheet by CVD or PV.
It was immobilized by Method D.

【0096】従来より、ガラスシート表面に光反応性半
導体である酸化チタンを塗布したものは知られている
が、好適なバインダーの選定、塗布後の熱処理による固
定化を要するなど、種々改善の余地があった。
Conventionally, a glass sheet surface coated with titanium oxide, which is a photoreactive semiconductor, is known. However, there is room for various improvements such as selection of a suitable binder and fixing by heat treatment after coating. was there.

【0097】本発明の環境浄化材料では、上記の問題点
を一挙に解決することのできるものであり、固定化され
た光反応性半導体はガラスシート表面から何ら脱落する
ことがなく、耐久性のある環境浄化材料とすることがで
きる。これを用いた例としては、住居用窓ガラス、鏡、
インテリアなど挙げられるが、これらに限定するもので
はない。
The environmental purification material of the present invention can solve the above problems at once, and the immobilized photoreactive semiconductor does not fall off the surface of the glass sheet at all. It can be a certain environmental purification material. Examples of this include residential windowpanes, mirrors,
Interiors include, but are not limited to.

【0098】[0098]

【実施例】以下、実施例によりさらに本発明を詳細に説
明するが、無論これらに限定されるものではない。ま
た、本文中に記載される%は何れも重量%である。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, which, of course, are not intended to limit the scope of the present invention. In addition, all percentages described in the text are percentages by weight.

【0099】実施例1 繊維状の担体に光反応性半導体を用いて固定化するため
の高周波プラズマ法の製造装置としては、例えば、特開
平7−242904号公報に記載されているような装置
を使用した。装置は、超微粒子原料供給部、ガス供給
部、プラズマトーチ、被覆原料供給装置、チャンバー、
超微粒子の固定化された被覆物回収部からなるものであ
る。
Example 1 As an apparatus for producing a high-frequency plasma method for immobilizing a fibrous carrier using a photoreactive semiconductor, for example, an apparatus described in JP-A-7-242904 is used. used. The equipment includes an ultrafine material supply unit, a gas supply unit, a plasma torch, a coating material supply device, a chamber,
It consists of a coating material recovery section in which ultrafine particles are immobilized.

【0100】まず、プラズマトーチ上部のガス供給部よ
りアルゴンガスおよび酸素を供給する。アルゴンガスお
よび酸素の混合ガスは高周波加熱によりプラズマ化さ
れ、プラズマトーチ内でプラズマ焔を形成させた。プラ
ズマトーチの下部には超微粒子原料供給部が設けられ、
ここから平均粒子径20nmの酸化チタン(石原テクノ
製;ST−21)をキャリアガスのアルゴンガスととも
にプラズマ焔中に導入した。一方、被覆原料供給部よ
り、ポリエステル繊維(旭化成製;ビサイロン、繊度
0.15デニール、繊維長7.5mm)を導入する。こ
こで、ポリエステル繊維は、プラズマ焔中で生成した活
性状態の酸化チタン微粒子と接触し、ポリエステル繊維
表面に酸化チタンが固定化される。酸化チタンの固定化
されたポリエステル繊維は、チャンバーを経て下部に設
けられた回収部より回収し、実施例1の環境浄化繊維素
材を得た。得られた環境浄化繊維素材を高速撹拌機を用
いて水性分散させ、固定化された状態を観察した。固定
化された酸化チタンは、ポリエステル繊維表面に対して
ほぼ半分の被覆率で固定化されており、ポリエステル繊
維表面から脱落することなく、強固に固定化されたもの
であった。
First, an argon gas and oxygen are supplied from a gas supply section above the plasma torch. The mixed gas of argon gas and oxygen was turned into plasma by high-frequency heating to form a plasma flame in the plasma torch. At the lower part of the plasma torch, an ultrafine particle feeder is provided,
From here, titanium oxide (manufactured by Ishihara Techno; ST-21) having an average particle diameter of 20 nm was introduced into the plasma flame together with an argon gas as a carrier gas. On the other hand, polyester fibers (Asahi Kasei; Visilon, fineness 0.15 denier, fiber length 7.5 mm) are introduced from the coating raw material supply unit. Here, the polyester fiber comes into contact with the activated titanium oxide fine particles generated in the plasma flame, and the titanium oxide is fixed on the polyester fiber surface. The polyester fiber having titanium oxide immobilized thereon was recovered from a recovery section provided at a lower portion through a chamber, and an environmental purification fiber material of Example 1 was obtained. The obtained environment-purifying fiber material was dispersed in water using a high-speed stirrer, and the immobilized state was observed. The immobilized titanium oxide was immobilized at almost half the coverage of the polyester fiber surface, and was firmly immobilized without falling off the polyester fiber surface.

【0101】実施例2 実施例1で得た環境浄化繊維素材を40部、アラミド繊
維(デュポン社製;ノーメックス、繊度2デニール、繊
維長15mm)60部を、ノニオン系界面活性剤3%と
共に水中に投入し、パルパーにて繊維の束がなくなるま
で強撹拌を行った。次いで、水を加えて希釈後、アジテ
ーターにて緩やかに撹拌しながら高分子ポリアクリルア
ミド0.1%溶液を添加し、増粘させ、撹拌を継続して
水性スラリーとし、湿式抄造法により円網抄紙機を用い
て乾燥重量50g/m2の不織布を製造し、実施例2の環
境浄化材料を得た。得られた実施例2の環境浄化材料
は、製造工程中でも何ら酸化チタンが繊維状の担体(被
覆材)から脱落することがなかった。また、環境浄化材
料として汚染物質除去の効果に優れたものであった。
Example 2 40 parts of the environment-purifying fiber material obtained in Example 1 and 60 parts of aramid fiber (manufactured by DuPont; Nomex, fineness: 2 denier, fiber length: 15 mm) were mixed with 3% of a nonionic surfactant in water. And stirred vigorously until the fiber bundle disappeared with the pulper. Then, after adding water and diluting, a 0.1% solution of high molecular weight polyacrylamide is added while gently stirring with an agitator to increase the viscosity, and stirring is continued to form an aqueous slurry. A non-woven fabric having a dry weight of 50 g / m 2 was produced using a machine, and an environmental purification material of Example 2 was obtained. In the obtained environmental purification material of Example 2, no titanium oxide was dropped off from the fibrous carrier (coating material) during the manufacturing process. In addition, the material was excellent in removing pollutants as an environmental purification material.

【0102】比較例1 光反応性半導体として含水酸化チタン(石原産業社製;
ST−31)15部、ポリエステル繊維(旭化成製;ビ
サイロン、繊度0.15デニール、繊維長7.5mm)
35部、アラミド繊維(デュポン社製;ノーメックス、
繊度2デニール、繊維長15mm)50部を、ノニオン
系界面活性剤3%と共に水中に投入し、パルパーにて繊
維の束がなくなるまで強撹拌を行った。次いで、水を加
えて希釈後、アジテーターにて緩やかに撹拌しながら高
分子ポリアクリルアミド0.1%溶液を添加し、増粘さ
せ、撹拌を継続して水性スラリーとし、湿式抄造法によ
り円網抄紙機を用いて乾燥重量50g/m2の不織布を製
造し、比較例1の環境浄化材料を得た。得られた比較例
1の環境浄化材料は、酸化チタンがほとんど製造工程中
で排出して繊維間に充填されなかった。また、得られた
環境浄化材料表面からは酸化チタンが容易に脱落するも
のであった。
Comparative Example 1 Hydrous titanium oxide (manufactured by Ishihara Sangyo Co., Ltd.) as a photoreactive semiconductor
ST-31) 15 parts, polyester fiber (manufactured by Asahi Kasei; Visilon, fineness 0.15 denier, fiber length 7.5 mm)
35 parts, aramid fiber (Dupont; Nomex,
50 parts of a fineness of 2 denier and a fiber length of 15 mm) were put into water together with 3% of a nonionic surfactant, and the mixture was vigorously stirred with a pulper until the fiber bundle disappeared. Then, after adding water and diluting, a 0.1% solution of high molecular weight polyacrylamide is added while gently stirring with an agitator to increase the viscosity, and stirring is continued to form an aqueous slurry. A non-woven fabric having a dry weight of 50 g / m 2 was produced using a machine to obtain an environmental purification material of Comparative Example 1. In the obtained environmental purification material of Comparative Example 1, almost no titanium oxide was discharged during the manufacturing process and was not filled between the fibers. Further, titanium oxide was easily removed from the surface of the obtained environmental purification material.

【0103】実施例3 繊維状の担体として、実施例1のポリエステル繊維を活
性炭素繊維(平均繊維径15μm、繊維長8mm、比表
面積1000m2/g)に代え、活性炭素繊維表面に酸化
チタンを固定化させ、実施例3の環境浄化繊維素材とし
た。得られた環境浄化繊維素材を高速撹拌機を用いて水
性分散させ、固定化された状態を観察した。実施例1と
同様に固定化された酸化チタンは、活性炭素繊維表面か
ら脱落することなく、強固に固定化されたものであっ
た。
Example 3 As a fibrous carrier, the polyester fiber of Example 1 was replaced with activated carbon fiber (average fiber diameter: 15 μm, fiber length: 8 mm, specific surface area: 1,000 m 2 / g), and titanium oxide was coated on the surface of the activated carbon fiber. It was immobilized to obtain an environment-purifying fiber material of Example 3. The obtained environment-purifying fiber material was dispersed in water using a high-speed stirrer, and the immobilized state was observed. The titanium oxide immobilized in the same manner as in Example 1 was firmly immobilized without falling off the activated carbon fiber surface.

【0104】実施例4 実施例3で得た環境浄化繊維素材および繊維径3.9μ
m、繊維長7.5mmのポリエステル繊維を配合比率4
5/55とし、これをノニオン系界面活性剤3%と共に
水中に投入し、パルパーにて繊維の束がなくなるまで強
撹拌を行った。次いで、水を加えて希釈後、アジテータ
ーにて緩やかに撹拌しながら高分子ポリアクリルアミド
0.1%溶液を添加し、増粘させ、撹拌を継続して水性
スラリーとし、湿式抄造法により円網抄紙機を用いて乾
燥重量55g/m2の活性炭素繊維を繊維状の担体とする
不織布を製造した。
Example 4 The environment-purifying fiber material obtained in Example 3 and a fiber diameter of 3.9 μm
m, polyester fiber of 7.5 mm in fiber length, compounding ratio 4
The mixture was put into water together with 3% of a nonionic surfactant, and vigorously stirred with a pulper until there was no fiber bundle. Then, after adding water and diluting, a 0.1% solution of high molecular weight polyacrylamide is added while gently stirring with an agitator to increase the viscosity, and stirring is continued to form an aqueous slurry. A nonwoven fabric using activated carbon fibers having a dry weight of 55 g / m 2 as a fibrous carrier was produced using a machine.

【0105】続いて、この不織布を100メッシュのス
テンレスワイヤーからなる多孔質支持体上に載置し、ウ
ェブ上より水流を噴射し、繊維の交絡を行った。交絡に
は、ノズルを装着した2つのノズルヘッドを用い、表裏
各1回の交絡を行った。ノズルヘッドは、第1ヘッドの
ノズルとして径120μm、間隔1.2mmの2列で水
圧100kg/cm2、第2ヘッドのノズルとして径10
0μm、間隔0.6mmの1列で水圧125kg/cm2
からなる2つのヘッドを用いた。交絡後、100℃のエ
アードライヤーで乾燥し、実施例4の環境浄化材料を得
た。得られた実施例4の環境浄化材料は、製造工程中で
も何ら酸化チタンが繊維状の担体(被覆材)から脱落す
ることがなかった。また、環境浄化材料として汚染物質
除去の効果に優れたものであった。
Subsequently, the nonwoven fabric was placed on a porous support made of a 100-mesh stainless steel wire, and a water stream was jetted from the web to entangle the fibers. For confounding, two convolutions were performed on each of the front and back sides using two nozzle heads equipped with nozzles. The nozzle head has a diameter of 120 μm as a nozzle of the first head, a water pressure of 100 kg / cm 2 in two rows with an interval of 1.2 mm, and a diameter of 10 as a nozzle of the second head.
0μm, water pressure 125kg / cm 2 in one row with 0.6mm spacing
Were used. After the confounding, the resultant was dried with an air dryer at 100 ° C. to obtain an environmental purification material of Example 4. In the obtained environmental purification material of Example 4, no titanium oxide was dropped off from the fibrous carrier (coating material) during the manufacturing process. In addition, the material was excellent in removing pollutants as an environmental purification material.

【0106】実施例5 上記実施例2により製造した環境浄化材料の片面に、粘
着剤(東亞合成化学工業(株)製 アロンタック HV
C−3300)を乾燥塗布量25g/m2となるようにロ
ールコーターを用いて塗布し、乾燥した後、剥離紙と貼
り合わせて実施例5の壁紙を製造した。得られた壁紙を
用い、壁面に貼り付けて汚染物質の除去効果を観察した
結果、十分その効果を発揮するものであった。
Example 5 An adhesive (Alontack HV manufactured by Toagosei Chemical Industry Co., Ltd.) was applied to one side of the environmental purification material produced in Example 2 above.
C-3300) was applied using a roll coater so as to have a dry application amount of 25 g / m 2 , dried, and then bonded to a release paper to produce wallpaper of Example 5. As a result of observing the effect of removing contaminants by attaching the obtained wallpaper to a wall surface, the effect was sufficiently exhibited.

【0107】実施例6 上記実施例4により製造した環境浄化材料の片面に、粘
着剤(東亞合成化学工業(株)製 アロンタック HV
C−3300)を乾燥塗布量25g/m2となるようにロ
ールコーターを用いて塗布し、乾燥した後、剥離紙と貼
り合わせて実施例5の壁紙を製造した。得られた壁紙を
用い、壁面に貼り付けて汚染物質の除去効果を観察した
結果、活性炭素繊維を用いたことによって実施例5で得
た壁紙よりもさらに優れた効果を発揮するものであっ
た。
Example 6 An adhesive (Alontack HV manufactured by Toagosei Chemical Industry Co., Ltd.) was applied to one side of the environmental purification material produced in Example 4 above.
C-3300) was applied using a roll coater so as to have a dry application amount of 25 g / m 2 , dried, and then bonded to a release paper to produce wallpaper of Example 5. As a result of observing the effect of removing contaminants by sticking to the wall surface using the obtained wallpaper, it was found that the effect was more excellent than the wallpaper obtained in Example 5 by using the activated carbon fiber. .

【0108】実施例7 固体状の担体として、実施例1のポリエステル繊維を平
均粒子径1.0μmのシリカ(商品名:ニップシルE2
20A、日本シリカ工業社製)に代え、シリカ表面に酸
化チタンを固定化させ、実施例7の環境浄化固体素材と
した。得られた環境浄化固体素材を高速撹拌機を用いて
水性分散させ、固定化された状態を観察した。実施例1
と同様に固定化された酸化チタンは、シリカ表面から脱
落することなく、強固に固定化されたものであった。
Example 7 As the solid carrier, the polyester fiber of Example 1 was mixed with silica having an average particle diameter of 1.0 μm (trade name: Nipsil E2).
20A, manufactured by Nippon Silica Industry Co., Ltd.), and titanium oxide was immobilized on the silica surface to obtain an environmental purification solid material of Example 7. The obtained environment-purifying solid material was dispersed in water using a high-speed stirrer, and the immobilized state was observed. Example 1
The titanium oxide immobilized in the same manner as in Example 1 was firmly immobilized without falling off the silica surface.

【0109】実施例8 実施例7で製造した環境浄化固体素材を用いて塗料を製
造し、その使用例を示す。分散剤としてポリビニルアル
コールを用い、1%ポリビニルアルコール水溶液75部
の中に環境浄化固体素材25部を添加し、水性分散液と
した。続いて、バインダーとしてアクリル酸エチル−メ
タクリル酸メチル共重合体からなる25%水溶液20部
を水性分散液と混合して、実施例8の塗料とした。得ら
れた塗料を用い、坪量75g/m2の原紙にエアーナイフ
コーターにより塗工して環境浄化材料とした。得られた
環境浄化材料は、汚染物質除去の効果に優れたものであ
った。
Example 8 A paint was produced using the environmentally purified solid material produced in Example 7, and an example of its use will be described. Using polyvinyl alcohol as a dispersing agent, 25 parts of an environmental purification solid material was added to 75 parts of a 1% aqueous solution of polyvinyl alcohol to obtain an aqueous dispersion. Subsequently, 20 parts of a 25% aqueous solution containing an ethyl acrylate-methyl methacrylate copolymer as a binder was mixed with the aqueous dispersion to obtain a coating material of Example 8. The obtained paint was applied to base paper having a basis weight of 75 g / m 2 using an air knife coater to obtain an environmental purification material. The obtained environmental purification material was excellent in the effect of removing pollutants.

【0110】実施例9 シート状の担体として、実施例1のポリエステル繊維を
厚さ3mmのガラス板に代え、ガラス表面に酸化チタン
を固定化させ、実施例9の環境浄化シート素材とし、こ
れをそのまま実施例9の環境浄化材料とした。固定化さ
れた酸化チタンは、ガラス表面から脱落することなく、
強固に固定化されたものであった。得られた環境浄化材
料を窓ガラスとして使用し、汚染物質の除去効果をみた
が、十分その効果を発揮するものであった。
Example 9 As a sheet-shaped carrier, the polyester fiber of Example 1 was replaced with a glass plate having a thickness of 3 mm, and titanium oxide was immobilized on the glass surface to obtain an environmental purification sheet material of Example 9. This was used as it was as the environmental purification material of Example 9. The immobilized titanium oxide does not fall off the glass surface,
It was firmly immobilized. Using the obtained environmental purification material as a window glass, the effect of removing contaminants was observed, but the effect was sufficiently exhibited.

【0111】[0111]

【発明の効果】以上のとおり、本発明の光反応性半導体
を各種形状の担体にCVD法またはPVD法により固定
化した環境浄化素材は、各種形状の担体に対して強固に
固定化させることができ、また、それを用いた環境浄化
材料は、光反応性半導体の脱落が無く、汚染物質の除去
作用に優れ、長期間の耐久性に優れた環境浄化材料とす
ることができる。
As described above, the environment-purifying material in which the photoreactive semiconductor of the present invention is immobilized on carriers of various shapes by the CVD method or the PVD method can be firmly immobilized on the carriers of various shapes. In addition, an environment-purifying material using the same can be an environment-purifying material that does not fall off the photoreactive semiconductor, is excellent in removing pollutants, and has excellent long-term durability.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI B32B 33/00 B32B 33/00 C01G 23/04 C01G 23/04 Z C03C 17/22 C03C 17/22 Z D06M 11/46 D06M 11/12 ──────────────────────────────────────────────────の Continuation of front page (51) Int.Cl. 6 Identification code FI B32B 33/00 B32B 33/00 C01G 23/04 C01G 23/04 Z C03C 17/22 C03C 17/22 Z D06M 11/46 D06M 11 / 12

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 繊維状、固体状、シート状のいずれか1
種からなる担体に、CVD法またはPVD法により光反
応性半導体を固定化してなる環境浄化素材。
1. One of a fibrous, solid, and sheet form
An environmental purification material comprising a photoreactive semiconductor immobilized on a seed carrier by a CVD method or a PVD method.
【請求項2】 PVD法が、RFプラズマ法であること
を特徴とする請求項1記載の環境浄化素材。
2. The environmental purification material according to claim 1, wherein the PVD method is an RF plasma method.
【請求項3】 繊維状の担体が、有機繊維または無機繊
維のいずれかであることを特徴とする請求項1または2
記載の環境浄化素材。
3. The fibrous carrier is one of an organic fiber and an inorganic fiber.
Environmental purification material as described.
【請求項4】 固体状の担体が、有機系粒状物、無機系
粒状物、金属系粒状物のいずれかであることを特徴とす
る請求項1または2記載の環境浄化素材。
4. The environmental purification material according to claim 1, wherein the solid carrier is any one of an organic granular material, an inorganic granular material, and a metallic granular material.
【請求項5】 シート状の担体が、有機系シート、無機
系シート、金属系シートのいずれかであることを特徴と
する請求項1または2記載の環境浄化素材。
5. The environmental purification material according to claim 1, wherein the sheet-shaped carrier is any one of an organic sheet, an inorganic sheet, and a metal sheet.
【請求項6】 繊維状の担体に光反応性半導体をCVD
法またはPVD法により固定化した環境浄化繊維素材を
主体とした不織布であることを特徴とする環境浄化材
料。
6. A photo-reactive semiconductor on a fibrous carrier by CVD.
An environmental purification material characterized by being a nonwoven fabric mainly composed of an environmental purification fiber material fixed by a PVD method or a PVD method.
【請求項7】 前記請求項7記載の繊維状の担体が活性
炭素繊維からなる環境浄化繊維素材であり、該繊維素材
と有機繊維からなる不織布であって、該有機繊維同士ま
たは該有機繊維と該繊維素材が3次元的に交絡された不
織布であることを特徴とする環境浄化材料。
7. The fibrous carrier according to claim 7, wherein the fibrous carrier is an environment-purifying fiber material made of activated carbon fiber, and a non-woven fabric made of the fiber material and organic fiber. An environmental purification material, wherein the fiber material is a three-dimensionally entangled nonwoven fabric.
【請求項8】 前記請求項7または8記載の環境浄化材
料の片面に粘着層を塗設した壁紙であることを特徴とす
る環境浄化材料。
8. An environment-purifying material according to claim 7 or 8, which is a wallpaper in which an adhesive layer is applied to one side of the environment-purifying material.
【請求項9】 固体状の担体に光反応性半導体をCVD
法またはPVD法により固定化した環境浄化固体素材と
接着剤を主体とする塗料であることを特徴とする環境浄
化材料。
9. A photo-reactive semiconductor on a solid carrier by CVD.
An environment-purifying material comprising an environment-purifying solid material fixed by a PVD method or a PVD method and a paint mainly composed of an adhesive.
【請求項10】 シート状の担体がガラスシートであ
り、該ガラスシート表面に光反応性半導体をCVD法ま
たはPVD法により固定化してなることを特徴とする環
境浄化材料。
10. An environment-purifying material, wherein the sheet-like carrier is a glass sheet, and a photoreactive semiconductor is fixed on the surface of the glass sheet by a CVD method or a PVD method.
JP9352807A 1997-12-22 1997-12-22 Raw material for purification of environment and purifying material for environment using that Pending JPH11179213A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9352807A JPH11179213A (en) 1997-12-22 1997-12-22 Raw material for purification of environment and purifying material for environment using that

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9352807A JPH11179213A (en) 1997-12-22 1997-12-22 Raw material for purification of environment and purifying material for environment using that

Publications (1)

Publication Number Publication Date
JPH11179213A true JPH11179213A (en) 1999-07-06

Family

ID=18426577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9352807A Pending JPH11179213A (en) 1997-12-22 1997-12-22 Raw material for purification of environment and purifying material for environment using that

Country Status (1)

Country Link
JP (1) JPH11179213A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001293378A (en) * 2000-04-13 2001-10-23 Ebara Corp Photocatalyst, method of manufacturing the same and gas cleaning apparatus using photocatalyst
JP2004057912A (en) * 2002-07-26 2004-02-26 Sumitomo Titanium Corp Photocatalyst composite material and its production method
EP1468737A1 (en) * 2002-01-21 2004-10-20 Sumitomo Titanium Corporation Photocatalytic composite material and method for preparation thereof
JP2006142206A (en) * 2004-11-19 2006-06-08 Murakami Corp Photocatalyst-film carrying member
JP2009155202A (en) * 2009-04-06 2009-07-16 Saruta Shiki Nosan Kk Highly dispersive titanium dioxide powder
JP2011101880A (en) * 2009-11-10 2011-05-26 Korea Inst Of Energy Research Cellulose catalyst with metal catalyst nanoparticle supported on the surface of surface-treated native cellulose fiber, and method of manufacturing the same
CN103710955A (en) * 2013-12-24 2014-04-09 东华大学 Preparation method of special photocuring titanium-base air purification finishing agent for fabrics
JP2014124630A (en) * 2012-12-27 2014-07-07 Nippon Pillar Packing Co Ltd Photocatalyst carrier and method for manufacturing the same
JP2016037509A (en) * 2014-08-05 2016-03-22 王子ホールディングス株式会社 Manufacturing method of base material for fiber-reinforced plastic molding
JP2017505859A (en) * 2014-02-05 2017-02-23 カルゴン カーボン コーポレーション Activated carbon cloth enhanced by nanoparticles

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001293378A (en) * 2000-04-13 2001-10-23 Ebara Corp Photocatalyst, method of manufacturing the same and gas cleaning apparatus using photocatalyst
EP1468737A1 (en) * 2002-01-21 2004-10-20 Sumitomo Titanium Corporation Photocatalytic composite material and method for preparation thereof
EP1468737A4 (en) * 2002-01-21 2005-09-21 Sumitomo Titanium Corp Photocatalytic composite material and method for preparation thereof
JP2004057912A (en) * 2002-07-26 2004-02-26 Sumitomo Titanium Corp Photocatalyst composite material and its production method
JP2006142206A (en) * 2004-11-19 2006-06-08 Murakami Corp Photocatalyst-film carrying member
JP2009155202A (en) * 2009-04-06 2009-07-16 Saruta Shiki Nosan Kk Highly dispersive titanium dioxide powder
JP2011101880A (en) * 2009-11-10 2011-05-26 Korea Inst Of Energy Research Cellulose catalyst with metal catalyst nanoparticle supported on the surface of surface-treated native cellulose fiber, and method of manufacturing the same
US9254483B2 (en) 2009-11-10 2016-02-09 Korea Institute Of Energy Research Catalysts having metal nano-particle catalyst supported on surface-treated natural cellulose fibers and preparation method thereof
US9259728B2 (en) 2009-11-10 2016-02-16 Korea Institute Of Energy Research Catalysts having metal nano-particle catalyst supported on surface-treated natural cellulose fibers and preparation method thereof
JP2014124630A (en) * 2012-12-27 2014-07-07 Nippon Pillar Packing Co Ltd Photocatalyst carrier and method for manufacturing the same
CN103710955A (en) * 2013-12-24 2014-04-09 东华大学 Preparation method of special photocuring titanium-base air purification finishing agent for fabrics
JP2017505859A (en) * 2014-02-05 2017-02-23 カルゴン カーボン コーポレーション Activated carbon cloth enhanced by nanoparticles
JP2016037509A (en) * 2014-08-05 2016-03-22 王子ホールディングス株式会社 Manufacturing method of base material for fiber-reinforced plastic molding

Similar Documents

Publication Publication Date Title
JP5173105B2 (en) Filter media
JPH11179213A (en) Raw material for purification of environment and purifying material for environment using that
JPH08266902A (en) Environment purifying material using photocatalyst and its composition
JP3558807B2 (en) Adsorption decomposition sheet
Jaleh et al. Photocatalytic decomposition of VOCs by AC–TiO 2 and EG–TiO 2 nanocomposites
JP4030146B2 (en) Photoreactive harmful substance removal material
KR102369829B1 (en) Filter media in combination for automotive bends
JP2001025668A (en) Photocatalytic corrugated filter
JPH0928776A (en) Harmful material removing material
JP4223122B2 (en) Titanium oxide support sheet
JP2000126609A (en) Photocatalytic corrugated structure and photocatalytic deodorization member and photocatalytic deodorization unit using the same
JP3545145B2 (en) Deodorant antibacterial sheet
JP4030228B2 (en) Photocatalyst deodorization filter
JP3684269B2 (en) Deodorant fiber products
JP2002095912A (en) Method for manufacturing deodorizing filter
JPH09201404A (en) Photoreactive material for eliminating toxic substance
JP3454952B2 (en) Photoreactive harmful material removal material
JP2000262604A (en) Deodorant and deodorization sheet
JPH11253755A (en) Environment purifying agent, environment purification material and manufacture thereof
JP2002291856A (en) Titanium oxide containing filter member
JP2000084330A (en) Production of air purifying filter
CN114471732A (en) Photocatalytic composite nanofiber membrane and preparation method and application thereof
JP3343832B2 (en) Photoreactive harmful substance remover and photoreactive harmful substance remover using the same
JP2001070418A (en) Water resistant photocatalyst corrugated filter
CN118668513A (en) Wet skeleton non-woven fabric for long-life high-efficiency catalytic degradation of Volatile Organic Compounds (VOCs) as well as preparation method and application thereof