JPH11174482A - Liquid crystal display device - Google Patents

Liquid crystal display device

Info

Publication number
JPH11174482A
JPH11174482A JP10192163A JP19216398A JPH11174482A JP H11174482 A JPH11174482 A JP H11174482A JP 10192163 A JP10192163 A JP 10192163A JP 19216398 A JP19216398 A JP 19216398A JP H11174482 A JPH11174482 A JP H11174482A
Authority
JP
Japan
Prior art keywords
liquid crystal
gap
electric field
crystal molecules
display device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10192163A
Other languages
Japanese (ja)
Other versions
JP3356273B2 (en
Inventor
Mutsumi Nakajima
睦 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP19216398A priority Critical patent/JP3356273B2/en
Priority to KR1019980041849A priority patent/KR100327927B1/en
Publication of JPH11174482A publication Critical patent/JPH11174482A/en
Application granted granted Critical
Publication of JP3356273B2 publication Critical patent/JP3356273B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133707Structures for producing distorted electric fields, e.g. bumps, protrusions, recesses, slits in pixel electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/1393Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the birefringence of the liquid crystal being electrically controlled, e.g. ECB-, DAP-, HAN-, PI-LC cells

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Liquid Crystal (AREA)
  • Geometry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a liquid crystal display device which permits mass- production and is excellent in viewing angle characteristic, contrast, and response speed. SOLUTION: Gap parts 15, 16 of electrodes 10, 14 of each substrate are arranged so as not to be overlapped with each other in each picture element. Electric field 17 tilted to the substrate surfaces is formed in the liquid crystal layer part in the neighborhood of the peripheral parts of the gap parts 15, 16, and electric field vertical to the substrate surfaces is formed in the other part of the liquid crystal layer part interposed by the electrodes 10, 14. When a voltage is not impressed on the liquid crystal molecules, they are oriented approximately vertical to the substrate surfaces, or horizontal to them. In the part where a diagonal electric field 17 is induced, the liquid crystal molecules are tilted by the electric field in a certain direction, and are also tilted in the similar direction by the action of an elastic force caused by the liquid crystal molecules even in the area where the electric field is induced only in the vertical direction. The diagonal electric field 17 differs in the direction on each side placing the gap parts 15, 16 inbetween, therefore, each picture element area is divided into plural areas differing in the oriented direction.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えばテレビジョ
ンセット、パーソナルコンピュータ、ワードプロセッサ
またはOA機器等に用いられる液晶表示装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal display device used for, for example, a television set, a personal computer, a word processor or an OA device.

【0002】[0002]

【従来の技術】上述の液晶表示装置として、図9に示す
ようなマトリクス型のものが知られている。この液晶表
示装置は、マトリクス基板28と対向基板29との間に
液晶層27を挟み、両側に偏光板30を貼り付けた構造
となっており、この液晶表示装置の背面に光源、いわゆ
るバックライト31を配置して光シャッターとして使用
する。
2. Description of the Related Art As a liquid crystal display device described above, a matrix type liquid crystal display device as shown in FIG. 9 is known. This liquid crystal display device has a structure in which a liquid crystal layer 27 is sandwiched between a matrix substrate 28 and a counter substrate 29, and polarizing plates 30 are adhered on both sides. 31 is used as an optical shutter.

【0003】図10にマトリクス基板28の平面図を示
し、図11に対向基板29の平面図を示す。このマトリ
クス基板28は、ゲートライン32とソースライン33
とが互いに交差して設けられ、各ラインの交差部近傍に
スイッチング素子としての薄膜トランジスタ34が設け
られている。マトリクス状に設けられた画素電極35
は、各薄膜トランジスタ34を介してゲートライン32
とソースライン33とに接続されている。対向基板29
は、画素電極35に対応した開口部36を有する遮光膜
37とカラーフィルタ(図示せず)とが設けられ、その
上に全面に対向電極38が設けられている。なお、図1
1は、対向基板29を基板側から見たものである。この
マトリクス基板28と対向基板29との上には配向膜
(図示せず)が形成され、これをラビング処理すること
により液晶分子を任意の方向に配向させることができ
る。
FIG. 10 is a plan view of a matrix substrate 28, and FIG. 11 is a plan view of a counter substrate 29. The matrix substrate 28 includes a gate line 32 and a source line 33
Are provided so as to intersect with each other, and a thin film transistor 34 as a switching element is provided near the intersection of each line. Pixel electrodes 35 provided in a matrix
Is the gate line 32 through each thin film transistor 34
And the source line 33. Counter substrate 29
A light-shielding film 37 having an opening 36 corresponding to the pixel electrode 35 and a color filter (not shown) are provided, and a counter electrode 38 is provided on the entire surface. FIG.
Reference numeral 1 denotes the counter substrate 29 viewed from the substrate side. An alignment film (not shown) is formed on the matrix substrate 28 and the counter substrate 29, and the liquid crystal molecules can be aligned in an arbitrary direction by performing a rubbing process.

【0004】この構造の液晶表示装置によれば、薄膜ト
ランジスタ34を介して画素電極35に画像信号を入力
することにより、各画素毎に液晶層27に与える電圧を
制御することができる。液晶層27に電圧が印加される
と、液晶層27内の液晶分子の誘電率異方性に依存して
液晶分子の配向方向が変化する。
According to the liquid crystal display device having such a structure, a voltage applied to the liquid crystal layer 27 can be controlled for each pixel by inputting an image signal to the pixel electrode 35 via the thin film transistor 34. When a voltage is applied to the liquid crystal layer 27, the orientation direction of the liquid crystal molecules changes depending on the dielectric anisotropy of the liquid crystal molecules in the liquid crystal layer 27.

【0005】この液晶表示装置の光制御の原理は、以下
の通りである。バックライト31から液晶層27に入射
する前に背面側の偏光板30により直線偏光とされた光
が、屈折率異方性を有する液晶分子の配向方向に依存し
て楕円偏光、円偏光または旋光等の光学変調を起こし、
液晶層27を透過後に前面側の偏光板30に入射する。
偏光板30に入射した光の吸収軸成分は吸収され、光の
透過率が変化する。ところで、液晶表示装置には、TN
(Twisted Nematic)方式、STN(S
uper Twisted Nematic)方式、E
CB(Electrically Controlle
d Birefringence)方式、高分子分散方
式等の多くの表示方式がある。中でも、TN方式による
液晶表示装置は、例えばテレビジョンセット、パーソナ
ルコンピュータ、ワードプロセッサまたはOA機器等に
広く実用化されているが、さらにコントラストおよび応
答速度を向上させるために、ECB方式の無着色領域を
用いた液晶表示装置の開発がなされている。
The principle of light control of this liquid crystal display device is as follows. The light linearly polarized by the rear polarizer 30 before entering the liquid crystal layer 27 from the backlight 31 is converted into elliptically polarized light, circularly polarized light, or optical rotation depending on the orientation direction of the liquid crystal molecules having the refractive index anisotropy. Cause optical modulation such as
After passing through the liquid crystal layer 27, the light enters the front polarizing plate 30.
The absorption axis component of the light incident on the polarizing plate 30 is absorbed, and the light transmittance changes. By the way, the liquid crystal display device has a TN
(Twisted Nematic) method, STN (S
upper Twisted Nematic) method, E
CB (Electrically Control)
There are many display methods such as a d Birefringence method and a polymer dispersion method. Above all, a liquid crystal display device using the TN method is widely used in television sets, personal computers, word processors, OA devices, and the like. However, in order to further improve contrast and response speed, a non-colored area in the ECB method is used. The liquid crystal display device used has been developed.

【0006】このECB方式のうち、垂直配向モードの
液晶表示装置においては、電圧無印加時に液晶分子が基
板面に対してほぼ垂直に配向しており、負の誘電率異方
性を有する材料を用いて電圧印加時に液晶分子を水平方
向に傾斜させる。このモードでは、液晶層にツイスト構
造を用いないため、応答速度が速く、また、偏光軸を互
いに直交させた一対の偏光板を用いて電圧無印加時の複
屈折の無い状態で黒表示を行うため、画面の法線方向に
おけるコントラストも高い。しかし、ECB方式垂直配
向モードでは光の透過率に視野角依存性があり、視野角
依存性の改善が重要な課題であった。
[0006] Of the ECB method, in a vertical alignment mode liquid crystal display device, when no voltage is applied, liquid crystal molecules are aligned almost perpendicular to the substrate surface, and a material having a negative dielectric anisotropy is used. To tilt the liquid crystal molecules in the horizontal direction when a voltage is applied. In this mode, since the liquid crystal layer does not use a twisted structure, the response speed is high, and black display is performed using a pair of polarizing plates whose polarization axes are orthogonal to each other without birefringence when no voltage is applied. Therefore, the contrast in the normal direction of the screen is also high. However, in the ECB vertical alignment mode, the transmittance of light has a viewing angle dependency, and improvement of the viewing angle dependency has been an important issue.

【0007】このECB方式垂直配向モードでの視野角
特性の改善方法については、様々な検討がなされてきて
いる。例えば、「SID79’ P845 Devel
opment of Super−High−imag
e−Quality Vertical−Alignm
ent−Mode LCD」には、画素内に液晶分子の
配向方向が異なる複数の領域を形成することにより視野
角特性の飛躍的な向上を図り得ることが詳細に説明され
ている。このように、視野角特性の拡大のためには、配
向分割して画素内に液晶分子の配向方向が異なる複数の
領域を形成することが必要である。
Various studies have been made on a method for improving the viewing angle characteristics in the ECB type vertical alignment mode. For example, "SID79 'P845 Level
option of Super-High-image
e-Quality Vertical-Alignment
The "ent-Mode LCD" describes in detail that the viewing angle characteristics can be significantly improved by forming a plurality of regions in which the orientation directions of liquid crystal molecules are different in pixels. As described above, in order to expand the viewing angle characteristics, it is necessary to form a plurality of regions in which the orientation directions of the liquid crystal molecules are different in the pixel by performing orientation division.

【0008】この従来技術の中では配向分割のプロセス
については説明されていないが、配向分割の方法として
は、例えば、「Japan DISPLAY ’92
P591 A Complementaly TN L
CD with Wide−Viewing−Angl
e Grayscale」に説明されているようなレジ
ストパターンの形成とラビング処理とを2回行う方法の
他、「Japan DISPLAY ’92 P886
Wide Viewing Angle Full−
Color TFT LCDs」に説明されているよう
な液晶分子のチルト角が異なる2種類の配向膜を画素内
で部分的にパターニングした後にラビング処理を行う方
法等が知られている。これらはTNモードに対して配向
分割を行ったものであるが、配向膜材料やラビング方向
は異なるものの、ECB方式垂直配向モードについても
適用することが可能である。
[0008] Although the process of the orientation division is not described in this prior art, as the method of the orientation division, for example, "Japan DISPLAY '92"
P591 A Complementary TNL
CD with Wide-Viewing-Angl
e Grayscale ”, a method of forming a resist pattern and performing a rubbing process twice, and“ Japan DISPLAY '92 P886
Wide Viewing Angle Full-
A method of performing rubbing treatment after partially patterning two types of alignment films having different tilt angles of liquid crystal molecules in a pixel as described in “Color TFT LCDs” is known. These are obtained by performing orientation division on the TN mode. However, although the orientation film material and the rubbing direction are different, the present invention can also be applied to the ECB type vertical orientation mode.

【0009】一方、ECB方式のうち、水平配向モード
の液晶表示装置においては、電圧無印加時に液晶分子が
基板面に対してほぼ水平に配向しており、正の誘電率異
方性を有する材料を用いて電圧印加時に液晶分子を垂直
方向に傾斜させる。このモードでも、液晶層にツイスト
構造を用いないため、応答速度が速く、また、偏光軸を
互いに平行にした一対の偏光板を用いると電圧無印加時
の液晶分子が均一に配向した状態で黒表示を行うことが
できるので、画面の法線方向におけるコントラストも高
くすることができる。しかし、ECB方式水平配向モー
ドでも光の透過率に視野角依存性があり、視野角依存性
の改善が重要な課題である。
On the other hand, in the liquid crystal display device of the horizontal alignment mode in the ECB system, when no voltage is applied, the liquid crystal molecules are aligned almost horizontally with respect to the substrate surface, and a material having a positive dielectric anisotropy is used. Is used to tilt the liquid crystal molecules in the vertical direction when a voltage is applied. Even in this mode, the liquid crystal layer does not use a twisted structure, so that the response speed is high.When a pair of polarizing plates having polarization axes parallel to each other is used, the liquid crystal molecules are uniformly aligned when no voltage is applied. Since display can be performed, the contrast in the normal direction of the screen can be increased. However, even in the ECB type horizontal alignment mode, the transmittance of light has a viewing angle dependency, and improvement of the viewing angle dependency is an important issue.

【0010】このECB方式水平配向モードでの視野角
特性の改善方法としては、ECB垂直配向モードと同様
に、異なる方向に複数回のラビング処理を行うことによ
り1画素内に液晶分子の配向方向が異なる領域を複数形
成して配向分割する方法を適用することができる。
As a method for improving the viewing angle characteristics in the ECB type horizontal alignment mode, the rubbing process is performed a plurality of times in different directions, as in the ECB vertical alignment mode, so that the alignment direction of the liquid crystal molecules is within one pixel. A method of forming a plurality of different regions and performing orientation division can be applied.

【0011】さらに、電極の形状を工夫して視野角特性
の改善を図る方法についても、例えば特開平9−160
041号公報、特開平9−160042号公報、特開平
9−160061号公報に開示されている。
Further, a method for improving the viewing angle characteristics by devising the shape of the electrode is disclosed in, for example, Japanese Patent Application Laid-Open No. 9-160.
No. 041, JP-A-9-160042, and JP-A-9-160061.

【0012】これらの公報に開示されている技術は、い
ずれも、同一基板上に一対の電極を形成し、両電極間で
生じる横方向の電界成分で液晶分子を光学変調させる横
電界方式を改良した斜め電界方式と言える。すなわち、
対向配置された一対の基板上に各々電極を形成し、基板
面に対して斜め方向の電界を発生させて、この斜め電界
領域における液晶分子の光学変調を利用したものであ
る。
All of the techniques disclosed in these publications improve a horizontal electric field method in which a pair of electrodes are formed on the same substrate and liquid crystal molecules are optically modulated by a horizontal electric field component generated between the two electrodes. It can be said that this is an oblique electric field method. That is,
Electrodes are formed on a pair of substrates arranged opposite to each other, an electric field is generated in an oblique direction to the substrate surface, and optical modulation of liquid crystal molecules in the oblique electric field region is used.

【0013】図12に、上記斜め電界方式の液晶表示装
置における電極構造の断面図を示す。
FIG. 12 is a sectional view of an electrode structure in the oblique electric field type liquid crystal display device.

【0014】ここでは、対向電極101と画素電極10
2は隙間部103と導電体部104とを有し、両電極の
導電帯部104が基板表面い平行な方向に沿って交互に
配置されている。この対向電極101と画素電極102
とに電圧を印加したとき、対向電極101と画素電極1
02の間の液晶層105に斜め方向の電場が生じる。そ
の結果、斜め電場領域106において液晶分子107の
配向方向が電場の方向に従って変化して、光学変調が得
られる。
Here, the counter electrode 101 and the pixel electrode 10
2 has gap portions 103 and conductor portions 104, and the conductive strip portions 104 of both electrodes are alternately arranged along a direction parallel to the substrate surface. The counter electrode 101 and the pixel electrode 102
When a voltage is applied to the counter electrode 101 and the pixel electrode 1
An oblique electric field is generated in the liquid crystal layer 105 during the period 02. As a result, in the oblique electric field region 106, the orientation direction of the liquid crystal molecules 107 changes according to the direction of the electric field, and optical modulation is obtained.

【0015】[0015]

【発明が解決しようとする課題】前述のECB方式垂直
配向モード及びECB方式水平配向モードにおいて配向
分割を行った液晶表示装置によれば、画素内に液晶分子
の配向方向が異なる複数の領域を形成することにより、
視野角特性が大幅に向上して優れた性能が得られる。
According to the liquid crystal display device in which the alignment is divided in the above-described ECB type vertical alignment mode and ECB type horizontal alignment mode, a plurality of regions having different alignment directions of liquid crystal molecules are formed in the pixel. By doing
The viewing angle characteristics are greatly improved, and excellent performance is obtained.

【0016】しかしながら、上述したような方法で配向
分割を行うためには、新たなプロセスを追加する必要が
あり、プロセスの増加や製造装置の増加が避けられな
い。また、分割パターン形成のために配向膜上にレジス
トを塗布して露光、現像、剥離等の処理を行う必要があ
るが、このとき、配向膜表面へのレジストの付着、現像
液や剥離液の浸透による異物の付着、表面変質、さらに
はイオン性不純物による液晶セルの信頼性低下等の危険
性が高く、良品率が低下したり品質が不安定になる等の
問題が避けられない。さらに、ラビング処理工程の増加
が不可欠である。
However, in order to perform the orientation division by the above-described method, it is necessary to add a new process, and an increase in the number of processes and an increase in the number of manufacturing apparatuses are inevitable. In addition, in order to form a divided pattern, it is necessary to apply a resist on the alignment film and perform processes such as exposure, development, and stripping. There is a high risk of adhesion of foreign matter due to permeation, surface deterioration, and further reduction in reliability of the liquid crystal cell due to ionic impurities, and inevitable problems such as a decrease in non-defective product rate and unstable quality. Furthermore, an increase in the rubbing process is indispensable.

【0017】このように、従来の液晶表示装置では視野
角特性は向上できるものの、製造コストが大幅に増加す
るため、量産することは非常に困難である。
As described above, in the conventional liquid crystal display device, although the viewing angle characteristics can be improved, it is very difficult to mass-produce it because the manufacturing cost is greatly increased.

【0018】一方、上述の斜め電界方式の液晶表示装置
によれば、電極(導電体部)の両側で斜め方向の電界が
対称な方向に形成されるので、電圧印加時に液晶分子を
対称的に動作させることができる。よって、複数回のラ
ビング処理を行って液晶分子の初期配向方向が異なる複
数の領域を形成しなくても、配向分割して視野角特性を
向上させることができる。
On the other hand, according to the above-described oblique electric field type liquid crystal display device, since an oblique electric field is formed in a symmetrical direction on both sides of the electrode (conductor portion), the liquid crystal molecules are symmetrically formed when a voltage is applied. Can work. Therefore, the viewing angle characteristics can be improved by performing alignment division without forming a plurality of regions having different initial alignment directions of liquid crystal molecules by performing a plurality of rubbing treatments.

【0019】しかし、このような斜め方向の電界領域に
おける液晶分子の光学変調を利用する場合には、液晶層
内の電場の方向及び強度分布を均一にすることが難しい
という問題がある。
However, when utilizing the optical modulation of liquid crystal molecules in such an oblique electric field region, it is difficult to make the direction and intensity distribution of the electric field in the liquid crystal layer uniform.

【0020】液晶層内の電場の方向及び強度の分布が不
均一であると、液晶分子の配向方向の均一性が損なわ
れ、液晶層の光学変調もそれに応じて部分的に異なり、
画素内で透過光ムラが生じてしまう。
If the distribution of the direction and intensity of the electric field in the liquid crystal layer is not uniform, the uniformity of the alignment direction of the liquid crystal molecules is impaired, and the optical modulation of the liquid crystal layer partially differs accordingly.
The transmitted light unevenness occurs in the pixel.

【0021】このように、画素内での透過光のムラは、
特に、プロジェクション装置等の拡大画面の場合にはざ
らつきとして感じられ、表示品位を著しく低下させる。
また、ムラが直接認識されないような画素密度が高い液
晶表示装置の場合でも、画素内の透過光の濃淡が生じる
ため、電圧印加時に黒表示または白表示を行う場合に各
画素内に部分的に各々白表示部分または黒表示部分が残
り、コントラストや明るさの低下を引き起こすという問
題がある。
As described above, the unevenness of the transmitted light within the pixel is as follows.
In particular, in the case of an enlarged screen of a projection device or the like, it is perceived as rough, and the display quality is significantly reduced.
Further, even in the case of a liquid crystal display device having a high pixel density such that unevenness is not directly recognized, since the density of transmitted light in the pixel occurs, when a black display or a white display is performed at the time of applying a voltage, a part of each pixel is partially displayed. There is a problem that a white display portion or a black display portion remains, respectively, which causes a decrease in contrast and brightness.

【0022】従って、表示品位及び表示性能を確保する
ためにはより均一な電場を形成する必要があり、例え
ば、一対の基板面に、水平方向における距離(隙間部)
を液晶層の厚さよりも充分に広げた電極を形成すればよ
い。
Therefore, in order to ensure display quality and display performance, it is necessary to form a more uniform electric field. For example, a horizontal distance (gap) is formed between a pair of substrate surfaces.
The electrode may be formed by expanding the thickness sufficiently from the thickness of the liquid crystal layer.

【0023】しかしながら、電極間距離を増加させると
電場が減少するため、電極間にさらに高い駆動電圧を与
えなければならず、消費電力の増加が生じたり、ドライ
バー耐圧を増加させるためのコストアップが生じたりす
ることは避けられない。
However, when the distance between the electrodes is increased, the electric field is reduced, so that a higher driving voltage must be applied between the electrodes, which causes an increase in power consumption and an increase in cost for increasing the withstand voltage of the driver. Inevitable.

【0024】このように斜め電界方式の液晶表示装置で
は、表示品位及び表示性能の向上と、消費電力の低減及
びコストダウンとを両立させることは本質的に困難であ
る。
As described above, in the oblique electric field type liquid crystal display device, it is essentially difficult to achieve both improvement in display quality and display performance and reduction in power consumption and cost.

【0025】本発明はこのような従来技術の課題を解決
すべくなされたものであり、量産化が可能な方法により
各画素内に液晶分子の配向方向が異なる複数の領域を形
成して、視野角特性、コントラストおよび応答速度を向
上すると共に、消費電力の低減及び製造コストの低廉化
を図ることができる液晶表示装置を提供することを目的
とする。
The present invention has been made to solve such problems of the prior art, and forms a plurality of regions in each pixel having different alignment directions of liquid crystal molecules by a method capable of mass production, thereby providing a visual field. It is an object of the present invention to provide a liquid crystal display device capable of improving angular characteristics, contrast, and response speed, reducing power consumption, and reducing manufacturing costs.

【0026】[0026]

【課題を解決するための手段】本発明の液晶表示装置
は、電極を各々有する一対の基板の間隙に液晶層が挟持
されて複数の画素がマトリクス状に構成された液晶表示
装置であって、該一対の基板の各々の上の電極が、各画
素内に電極が形成されていない隙間部を互いに重ならな
いように有し、電圧を印加しているときに各隙間部の周
縁部近傍の液晶層部分に基板面に対して斜め方向の電場
が形成され、各隙間部の周縁部近傍以外の両電極に挟ま
れた液晶層部分に基板面に対して垂直方向の電場が形成
され、そのことにより上記目的が達成される。
A liquid crystal display device according to the present invention is a liquid crystal display device in which a liquid crystal layer is sandwiched between a pair of substrates each having an electrode, and a plurality of pixels are arranged in a matrix. An electrode on each of the pair of substrates has a gap where no electrode is formed in each pixel so as not to overlap with each other, and a liquid crystal near a periphery of each gap when a voltage is applied. An electric field in a direction oblique to the substrate surface is formed in the layer portion, and an electric field in a direction perpendicular to the substrate surface is formed in the liquid crystal layer portion sandwiched between the two electrodes except for the vicinity of the periphery of each gap portion. This achieves the above object.

【0027】電圧を印加しているときに、前記隙間部の
周縁部近傍において液晶分子が前記斜め方向の電場によ
り基板面に対して所定の方向に傾き、該隙間部の周縁部
近傍の液晶分子の傾斜方向の影響を受けて、各隙間部の
周縁部近傍以外の両電極に挟まれた液晶層部分における
液晶分子の傾斜方向が制御されて光学変調することがで
きる。
When a voltage is applied, the liquid crystal molecules are inclined in a predetermined direction with respect to the substrate surface by the oblique electric field in the vicinity of the periphery of the gap, and the liquid crystal molecules in the vicinity of the periphery of the gap are formed. The tilt direction of the liquid crystal molecules in the portion of the liquid crystal layer sandwiched between the two electrodes except for the vicinity of the peripheral edge of each gap is controlled by the influence of the tilt direction of each of the gaps, whereby optical modulation can be performed.

【0028】前記液晶層内の液晶分子が負の誘電率異方
性を有し、電圧を印加しないときには基板面に対してほ
ぼ垂直に配向する構成としてもよい。
The liquid crystal molecules in the liquid crystal layer may have a negative dielectric anisotropy, and may be oriented substantially perpendicular to the substrate surface when no voltage is applied.

【0029】前記液晶層内の液晶分子が正の誘電率異方
性を有し、電圧を印加しないときには基板面に対してほ
ぼ水平に配向する構成としてもよい。
The liquid crystal molecules in the liquid crystal layer may have a positive dielectric anisotropy, and may be oriented substantially horizontally with respect to the substrate surface when no voltage is applied.

【0030】前記一方の基板上の電極の隙間部と前記他
方の基板上の電極の隙間部とが、前記各画素内において
基板面に平行な方向に沿って交互に配置されていてもよ
い。
The gaps between the electrodes on the one substrate and the gaps between the electrodes on the other substrate may be alternately arranged in each pixel along a direction parallel to the substrate surface.

【0031】前記各基板上の電極の隙間部が、前記各画
素内において互いに交差する2方向の各々に沿う部分を
有していてもよい。
The gap between the electrodes on each substrate may have a portion along each of two directions crossing each other in each pixel.

【0032】前記各基板上の電極の隙間部の幅が、両基
板上の電極間の間隔よりも大きくされていてもよい。
[0032] The width of the gap between the electrodes on each substrate may be larger than the distance between the electrodes on both substrates.

【0033】以下、本発明の作用について説明する。The operation of the present invention will be described below.

【0034】本発明にあっては、両基板上の電極の隙間
部が互いに重ならないように各画素内に配置され、電圧
を印加したときに各隙間部の周縁部近傍の液晶層部分に
基板面に対して斜め方向の電場が形成されるので、隙間
部の周縁部近傍の液晶層部分ではその斜め方向の電場に
よって液晶分子が一定方向に傾斜する。また、隙間部を
挟んで一方側と他方側とでは、斜め方向の電場の向きが
異なるので、各画素内に配向方向が異なる複数の領域が
形成される。
In the present invention, the gaps between the electrodes on both substrates are arranged in each pixel so that they do not overlap each other, and when a voltage is applied, the substrate is placed on the liquid crystal layer near the periphery of each gap. Since an electric field is formed in an oblique direction with respect to the plane, the liquid crystal molecules are inclined in a certain direction in the liquid crystal layer near the peripheral edge of the gap due to the oblique electric field. Further, since the directions of the electric field in the oblique direction are different between one side and the other side across the gap, a plurality of regions having different alignment directions are formed in each pixel.

【0035】電圧印加時には、上記隙間部の周縁部近傍
において、斜め方向の電場により液晶分子を基板面に対
して所定の方向に傾かせる。各隙間部の周縁部近傍以外
の両電極に挟まれた液晶層部分には基板面に対して垂直
方向の電場が形成されるが、この部分でも、液晶分子の
弾性によって上記隙間部の周縁部近傍の液晶分子の傾斜
方向の影響を受け、液晶分子の傾斜方向が制御されて光
学変調する。よって、広い対称的な視野角特性が得られ
ると共に、画素の大部分の領域である画素電極と対向電
極との重なり部において基板に対して垂直方向に均一な
電場を与えることができ、画素内で生じる表示ムラを防
止して極めて優れた光学特性を得ることができる。
When a voltage is applied, the liquid crystal molecules are inclined in a predetermined direction with respect to the substrate surface by an oblique electric field near the periphery of the gap. An electric field perpendicular to the substrate surface is formed in the liquid crystal layer portion sandwiched between the two electrodes except for the vicinity of the peripheral portion of each gap portion. Even in this portion, the peripheral portion of the gap portion is formed due to the elasticity of the liquid crystal molecules. Under the influence of the tilt direction of the nearby liquid crystal molecules, the tilt direction of the liquid crystal molecules is controlled and optically modulated. Therefore, a wide symmetrical viewing angle characteristic can be obtained, and a uniform electric field can be given in the vertical direction to the substrate in the overlapping portion of the pixel electrode and the counter electrode, which is the most area of the pixel, and the To prevent display unevenness from occurring, thereby obtaining extremely excellent optical characteristics.

【0036】液晶層内の液晶分子が負の誘電率異方性を
有し、電圧を印加しないときには基板面に対してほぼ垂
直に配向する構成としてもよく、液晶層内の液晶分子が
正の誘電率異方性を有し、電圧を印加しないときには基
板面に対してほぼ水平に配向する構成としてもよい。い
ずれの場合にも、電圧印加時には、隙間部の周縁部近傍
において、斜め方向の電場により液晶分子が基板面に対
して所定の方向に傾き、その傾き方向に応じて、画素の
大部分の領域である画素電極と対向電極との重なり部に
おいて基板に対して垂直方向に均一な電場を与えられた
液晶分子は、その傾斜方向が制御されるので、均一な配
向方向の制御を容易に行うことができる。
The liquid crystal molecules in the liquid crystal layer may have a negative dielectric anisotropy and may be oriented substantially perpendicular to the substrate surface when no voltage is applied. It is also possible to adopt a configuration that has dielectric anisotropy and is oriented substantially horizontally with respect to the substrate surface when no voltage is applied. In any case, when a voltage is applied, the liquid crystal molecules are tilted in a predetermined direction with respect to the substrate surface due to an oblique electric field in the vicinity of the peripheral edge of the gap, and most of the area of the pixel according to the tilt direction. Liquid crystal molecules that are given a uniform electric field in the direction perpendicular to the substrate at the overlap between the pixel electrode and the counter electrode are controlled in the tilt direction, so that the uniform alignment direction can be easily controlled. Can be.

【0037】また、本発明にあっては、一方の基板上の
電極の隙間部と他方の基板上の電極の隙間部とが、各画
素内において基板面に平行な方向に沿って交互に配置さ
れているので、各画素内に基板面に対して斜め方向の電
場により配向方向が異なる複数の領域が交互に形成され
る。
In the present invention, the gaps between the electrodes on one substrate and the gaps between the electrodes on the other substrate are alternately arranged in each pixel along a direction parallel to the substrate surface. Accordingly, a plurality of regions having different orientations are alternately formed in each pixel by an electric field oblique to the substrate surface.

【0038】また、本発明にあっては、各基板上の電極
の隙間部が各画素内において互いに交差する2方向の各
々に沿う部分を有しているので、各画素内に基板面に対
して斜め方向の電場が4方向に形成される。
Further, in the present invention, since the gap between the electrodes on each substrate has portions along each of two directions intersecting each other in each pixel, each pixel has a portion with respect to the substrate surface. Thus, oblique electric fields are formed in four directions.

【0039】さらに、本発明にあっては、各基板上の電
極隙間部の幅が両基板上の電極間の間隔よりも大きくさ
れているので、基板面に対して斜め方向の電場の横方向
(基板面に対して平行な方向)の成分が大きくなる。
Further, in the present invention, since the width of the electrode gap on each substrate is larger than the distance between the electrodes on both substrates, the width of the electric field in the oblique direction with respect to the substrate surface is reduced. The component (in the direction parallel to the substrate surface) increases.

【0040】[0040]

【発明の実施の形態】以下、本発明の実施の形態につい
て説明する。
Embodiments of the present invention will be described below.

【0041】(実施形態1)本実施形態1の液晶表示装
置は、図9に示した従来の液晶表示装置と同様に、マト
リクス基板と対向基板との間に液晶層を挟み、両側に偏
光板を貼り付けた構造となっており、この液晶表示装置
の背面に光源、いわゆるバックライトを配置して光シャ
ッターとして使用するものである。
(Embodiment 1) The liquid crystal display device of Embodiment 1 has a liquid crystal layer sandwiched between a matrix substrate and a counter substrate and polarizers on both sides, similarly to the conventional liquid crystal display device shown in FIG. And a light source, a so-called backlight, is arranged on the back surface of the liquid crystal display device and used as an optical shutter.

【0042】図1に本実施形態1におけるマトリクス基
板の平面図を示し、図2に対向基板の平面図を示し、図
3に図1のA−A’線部分の断面図を示す。
FIG. 1 is a plan view of a matrix substrate according to the first embodiment, FIG. 2 is a plan view of a counter substrate, and FIG. 3 is a cross-sectional view taken along the line AA ′ of FIG.

【0043】このマトリクス基板は、ゲートライン1と
ソースライン7とが互いに交差して設けられ、各ライン
の交差部近傍にスイッチング素子としての薄膜トランジ
スタ4が設けられている。マトリクス状に設けられた画
素電極10は各画素内に隙間部15を有しており、各薄
膜トランジスタ4を介してゲートライン1とソースライ
ン7とに接続されている。対向基板は、画素電極10に
対応した開口部12を有する遮光膜13とカラーフィル
タ(図示せず)とが設けられ、その上に隙間部16を除
く全面に対向電極14が設けられている。なお、図2
は、対向基板を基板側から見たものである。このマトリ
クス基板と対向基板との上には電圧無印加時に液晶分子
を垂直配向させるための配向膜(図示せず)が形成さ
れ、この配向膜はラビング処理されていない。
In this matrix substrate, a gate line 1 and a source line 7 are provided to intersect each other, and a thin film transistor 4 as a switching element is provided near an intersection of each line. The pixel electrodes 10 provided in a matrix have a gap 15 in each pixel, and are connected to the gate line 1 and the source line 7 via each thin film transistor 4. The opposing substrate is provided with a light-shielding film 13 having an opening 12 corresponding to the pixel electrode 10 and a color filter (not shown), and an opposing electrode 14 is provided on the entire surface excluding the gap 16. Note that FIG.
Shows the counter substrate viewed from the substrate side. An alignment film (not shown) for vertically aligning liquid crystal molecules when no voltage is applied is formed on the matrix substrate and the counter substrate, and this alignment film is not subjected to a rubbing process.

【0044】薄膜トランジスタ4は、図3に示すよう
に、ゲートライン1から分岐したゲート電極2が設けら
れ、その上を覆うようにゲート絶縁膜3が設けられてい
る。ゲート絶縁膜3の上にはゲート電極2に重畳するよ
うにa−Si層5が設けられ、a−Si層5の上には2
つに分断されたn+−a−Si層6a、6bが設けられ
ている。n+−a−Si層6aの上にはソースライン7
から分岐したソース電極8が設けられ、n+−a−Si
層6bの上にはドレイン電極8が設けられている。ドレ
イン電極8の上に一部重畳して画素電極10が設けら
れ、その上を覆うように保護膜11が設けられている。
As shown in FIG. 3, the thin film transistor 4 is provided with a gate electrode 2 branched from a gate line 1 and a gate insulating film 3 provided thereon. An a-Si layer 5 is provided on the gate insulating film 3 so as to overlap the gate electrode 2.
N + -a-Si layers 6a and 6b are provided. The source line 7 is formed on the n + -a-Si layer 6a.
A source electrode 8 branching from n + -a-Si
The drain electrode 8 is provided on the layer 6b. A pixel electrode 10 is provided so as to partially overlap the drain electrode 8, and a protective film 11 is provided so as to cover the pixel electrode 10.

【0045】この液晶表示装置は、例えば以下のように
して製造することができる。
This liquid crystal display device can be manufactured, for example, as follows.

【0046】まず、マトリクス基板は、スパッタリング
法によりTa膜を成膜してフォトリソグラフィ法により
パターニングしてゲートライン1とゲートライン1から
分岐したゲート電極2を形成する。
First, on the matrix substrate, a Ta film is formed by a sputtering method and patterned by a photolithography method to form a gate line 1 and a gate electrode 2 branched from the gate line 1.

【0047】その上に、PE−CVD法によりSiNx
からなるゲート絶縁膜4とa−Si膜とPをドープした
+−a−Si膜とを連続して成膜し、a−Si層5と
+−a−Si層6a、6bとを薄膜トランジスタ4の
形成部に残してパターニングする。
On top of that, SiN x was formed by PE-CVD.
A gate insulating film 4 made of and an a-Si film and an n + -a-Si film doped with P are continuously formed, and the a-Si layer 5 and the n + -a-Si layers 6a and 6b are formed. The patterning is performed while leaving the portion where the thin film transistor 4 is formed.

【0048】次に、スパッタリング法によりTi膜を成
膜してフォトリソグラフィ法によりパターニングしてソ
ースライン7、ソースライン7から分岐したソース電極
8およびドレイン電極9を形成する。このとき、同じレ
ジストパターンを用いてn+−a−Si層6a、6bの
エッチングを行うことにより、ソース電極8およびドレ
イン電極9からはみ出したn+−a−Si層6a、6b
を除去する。
Next, a Ti film is formed by a sputtering method and patterned by a photolithography method to form a source line 7, a source electrode 8 and a drain electrode 9 branched from the source line 7. In this case, n + -a-Si layer 6a by using the same resist pattern, by etching the 6b, n + -a-Si layer 6a protruding from the source electrode 8 and drain electrode 9, 6b
Is removed.

【0049】続いて、スパッタリング法によりITO膜
を成膜し、これをパターニングして各画素内に隙間部1
5を有する画素電極10を形成する。この実施形態で
は、画素電極10の中央部に、ゲートライン1に沿う方
向の隙間部15を幅5μmで形成した。
Subsequently, an ITO film is formed by a sputtering method, and is patterned to form a gap 1 in each pixel.
5 is formed. In this embodiment, a gap 15 in the direction along the gate line 1 is formed at a center of the pixel electrode 10 with a width of 5 μm.

【0050】その後、PE−CVD法によりSiNx
らなる保護膜11を形成してマトリクス基板を完成す
る。
Thereafter, a protective film 11 made of SiN x is formed by the PE-CVD method to complete the matrix substrate.

【0051】次に、対向基板は、開口部12を設けたC
rからなる遮光膜13の上にカラーフィルタ(図示せ
ず)を形成し、その上に各画素内に隙間部16を有する
ITOからなる対向電極14を形成した。この実施形態
では、画素電極10の外形に対応した開口部12より内
側の上下2箇所に、ゲートライン1に沿う方向の隙間部
16を幅5μmで形成した。なお、この対向基板は、上
述したマトリクス基板よりも先に作製してもよい。
Next, the counter substrate is formed of a C having an opening 12.
A color filter (not shown) was formed on the light-shielding film 13 made of r, and a counter electrode 14 made of ITO having a gap 16 in each pixel was formed thereon. In this embodiment, the gap 16 in the direction along the gate line 1 is formed with a width of 5 μm at two locations above and below the opening 12 corresponding to the outer shape of the pixel electrode 10. This counter substrate may be manufactured before the matrix substrate described above.

【0052】以上のようにして作製したマトリクス基板
と対向基板との双方に配向膜(図示せず)を印刷塗布に
より形成し、両基板を貼り合わせる。この実施形態で
は、マトリクス基板と対向基板との間にスペーサーを挟
んで、画素電極10と対向電極14との間隔を4μmと
なるように設定した。また、ラビング処理は必要ではな
いので行わなかった。
An alignment film (not shown) is formed by printing on both the matrix substrate and the counter substrate prepared as described above, and the substrates are bonded together. In this embodiment, the distance between the pixel electrode 10 and the counter electrode 14 is set to 4 μm with a spacer interposed between the matrix substrate and the counter substrate. Rubbing was not performed because it was not necessary.

【0053】最後に、両基板の間隙に負の誘電率異方性
を有する液晶を注入して注入口を封止し、両面に偏光板
を貼り合わせることにより、本実施形態の液晶表示装置
が完成する。
Finally, a liquid crystal having a negative dielectric anisotropy is injected into a gap between the two substrates, the injection port is sealed, and a polarizing plate is bonded on both sides, whereby the liquid crystal display device of this embodiment is completed. Complete.

【0054】このとき、一対の偏光板の吸収軸を互いに
直交させてゲートラインに対して45゜、すなわち画面
に対して45゜の角度で配置することにより、電圧無印
加状態の垂直配向時に光が遮断されるノーマリブラック
の表示が得られる。これにより、電圧無印加時の複屈折
の無い状態で黒表示を行うことができるので、画面の法
線方向におけるコントラストを高くすることができる。
また、液晶層にはツイスト構造を用いていないので応答
速度を速くすることができる。
At this time, by arranging the absorption axes of the pair of polarizers at right angles to each other and at an angle of 45 ° to the gate line, that is, at an angle of 45 ° to the screen, the light is not vertically applied when no voltage is applied. , And a normally black display is obtained. Thus, black display can be performed in a state where there is no birefringence when no voltage is applied, so that the contrast in the normal direction of the screen can be increased.
Further, since the liquid crystal layer does not use a twist structure, the response speed can be increased.

【0055】得られた液晶表示装置に電圧を印加したと
きの液晶分子の傾斜方向について、図1のB−B’線に
相当する部分の断面図である図4を参照しながら説明す
る。
The tilt direction of the liquid crystal molecules when a voltage is applied to the obtained liquid crystal display device will be described with reference to FIG. 4, which is a cross-sectional view of a portion corresponding to line BB 'in FIG.

【0056】この液晶表示装置は、画素電極10の中心
部に幅5μmの隙間部15があり、対向電極14には両
端部に幅5μmの隙間部16があり、隙間部15、16
の幅は画素電極10と対向電極14との間隔に対して大
きく設定してあるので、電極間に電圧を印加したときに
電極の端部a、b(隙間部の周縁部)近傍で電場17に
歪みが生じる。
In this liquid crystal display device, a gap 15 having a width of 5 μm is provided at the center of the pixel electrode 10, and a gap 16 having a width of 5 μm is provided at both ends of the counter electrode 14.
Is set to be larger than the distance between the pixel electrode 10 and the counter electrode 14, so that when a voltage is applied between the electrodes, the electric field 17 near the ends a and b (peripheral edge of the gap) of the electrodes. Is distorted.

【0057】液晶としては負の誘電率異方性を有するも
のを用いているため、電圧無印加時に基板に対してほぼ
垂直方向に配向していた液晶分子に電圧が印加される
と、図4中のAの領域では、その端部に相当するaの領
域において電場方向が斜めに形成形成されているので、
液晶分子に対して電場方向に直交するように左側(画面
上側)に傾斜させるトルクが働く。
Since a liquid crystal having a negative dielectric anisotropy is used as a liquid crystal, when a voltage is applied to liquid crystal molecules which are oriented in a direction substantially perpendicular to the substrate when no voltage is applied, FIG. In the region A in the middle, since the electric field direction is formed obliquely in the region a corresponding to the end,
A torque is applied to the liquid crystal molecules to incline to the left (upper side of the screen) so as to be orthogonal to the electric field direction.

【0058】一方、Aの領域の大部分に相当する、隙間
部の周縁部近傍以外の画素電極10と対向電極14とに
挟まれた領域では、電場方向が基板に対して垂直な方向
に形成されており、基板に対してほぼ垂直に初期配向さ
れている液晶分子に働くトルクの傾斜方向は局部的な斜
め方向の電場には影響されない。しかし、aの領域で左
回転に傾斜している液晶分子から及ぼされる液晶分子間
の弾性力の影響を受けて、垂直方向の電場しかない領域
においても液晶分子が同様に左回転に傾斜し、このとき
のトルクは垂直方向の電場強度に依存することが確認で
きた。
On the other hand, in a region between the pixel electrode 10 and the counter electrode 14 other than the vicinity of the periphery of the gap, which corresponds to most of the region A, the direction of the electric field is perpendicular to the substrate. The tilt direction of the torque acting on the liquid crystal molecules initially aligned substantially perpendicular to the substrate is not affected by the local oblique electric field. However, under the influence of the elastic force between the liquid crystal molecules exerted by the liquid crystal molecules tilting counterclockwise in the region a, the liquid crystal molecules similarly tilt counterclockwise in the region where there is only a vertical electric field, It was confirmed that the torque at this time depends on the electric field strength in the vertical direction.

【0059】Bの領域においても、同様の原理によっ
て、液晶分子には右回転(画面下側)に傾斜させるトル
クが働く。
In the region B, a torque for tilting the liquid crystal molecules clockwise (downward on the screen) acts on the liquid crystal molecules according to the same principle.

【0060】この結果、画素全面にわたって液晶分子の
配向方向を制御することができ、1画素内で画面に対し
て上下方向に液晶分子の配向方向が分割される。よっ
て、画面に対して上下対称な視野角特性が得られた。
As a result, the alignment direction of the liquid crystal molecules can be controlled over the entire surface of the pixel, and the alignment direction of the liquid crystal molecules is vertically divided with respect to the screen within one pixel. Therefore, a vertically symmetric viewing angle characteristic with respect to the screen was obtained.

【0061】なお、本発明は、特開平9−160041
号公報、特開平9−160042号公報や特開平9−1
60061号公報のように斜め方向の電界領域における
液晶分子の光学変調を利用するものではない。電極の隙
間部は、斜め方向の電場を隙間部の周縁部近傍に形成す
るものであり、周縁部近傍以外の画素の大部分の領域で
は、画素電極と対向電極とを対向させて基板面に対して
垂直方向に電場を生じさせる。従って、電極の隙間部が
画素内で占める割合が大きすぎたり、画素電極と対向電
極との重なり部が画素内で占める割合が小さすぎたりす
るのは好ましくない。
The present invention relates to a method disclosed in Japanese Patent Application Laid-Open No. 9-160041.
JP-A-9-160042 and JP-A-9-10042
It does not utilize optical modulation of liquid crystal molecules in an oblique electric field region as in JP-A-60061. The gap between the electrodes forms an oblique electric field in the vicinity of the periphery of the gap, and in most regions of the pixel other than the vicinity of the periphery, the pixel electrode and the counter electrode are opposed to each other on the substrate surface. An electric field is generated in a direction perpendicular to the electric field. Therefore, it is not preferable that the ratio of the gap between the electrodes in the pixel is too large, or the ratio of the overlap between the pixel electrode and the counter electrode in the pixel is too small.

【0062】なお、本実施形態1においては、画素電極
及び対向電極の隙間部をゲートラインに沿う方向に形成
したが、ソースラインに沿う方向に形成してもよく、画
素電極と対向電極の隙間部が基板平面に沿って交互に配
置されていれば、他の方向であってもよい。
In the first embodiment, the gap between the pixel electrode and the counter electrode is formed in the direction along the gate line. However, the gap may be formed in the direction along the source line. Other directions may be used as long as the parts are alternately arranged along the substrate plane.

【0063】(実施形態2)本実施形態2の液晶表示装
置は、マトリクス基板に図5に示すような隙間部20を
有する画素電極18を設け、対向基板に図6に示すよう
な隙間部21を有する対向電極19を設けた以外は実施
形態1と同様の液晶表示装置を作製した。隙間部20、
21の幅は5μmとし、画素電極18と対向電極19と
の重なり幅は20μmとした。隙間部20、21は互い
に直交する2方向の各々に沿う部分、ここではゲートラ
イン1に沿う部分とソースライン7に沿う部分とを有す
る。また、画素電極18の隙間部20と対向電極19の
隙間部21とは基板面に沿う方向に交互に配置した。
(Embodiment 2) In the liquid crystal display device of Embodiment 2, a pixel electrode 18 having a gap 20 as shown in FIG. 5 is provided on a matrix substrate, and a gap 21 as shown in FIG. A liquid crystal display device similar to that of the first embodiment was manufactured except that a counter electrode 19 having the following structure was provided. Gap 20,
The width of 21 was 5 μm, and the overlap width of the pixel electrode 18 and the counter electrode 19 was 20 μm. The gap portions 20 and 21 have portions along each of two directions orthogonal to each other, here, a portion along the gate line 1 and a portion along the source line 7. The gaps 20 of the pixel electrode 18 and the gaps 21 of the counter electrode 19 are alternately arranged in a direction along the substrate surface.

【0064】得られた液晶表示装置に電圧を印加したと
きの動作原理は実施形態1と同様であり、この場合の液
晶分子の傾斜方向について、図5のC−C’線に相当す
る部分の断面図である図7を参照しながら説明する。
The principle of operation when a voltage is applied to the obtained liquid crystal display device is the same as that of the first embodiment. In this case, the inclination direction of the liquid crystal molecules in the portion corresponding to the line CC ′ in FIG. This will be described with reference to FIG. 7 which is a sectional view.

【0065】この液晶表示装置は、隙間部20、21の
幅を画素電極18と対向電極19との間隔に対して大き
く設定してあるので、電極間に電圧を印加したときに電
極の端部(隙間部の周縁部)近傍で電場22に歪みが生
じる。液晶としては負の誘電率異方性を有するものを用
いているため、電圧無印加時に垂直方向に配向していた
液晶分子に電圧が印加されると、図7のAの領域では液
晶分子が右側に傾斜し、図7のBの領域では液晶分子が
左側に傾斜する。これにより、電極の隙間部20、21
の両側で液晶分子が反対方向に配向した領域が得られ
る。また、本実施形態2では、電極の隙間部20、21
が互いに直交する2方向に沿って設けられているので、
液晶分子の傾斜方向が各々上下左右の4方向となった4
種類の領域に分割され、画面に対して上下左右対称な視
野角特性が得られた。
In this liquid crystal display device, the width of the gaps 20 and 21 is set to be larger than the distance between the pixel electrode 18 and the counter electrode 19, so that when a voltage is applied between the electrodes, the ends of the electrodes are closed. The electric field 22 is distorted near the (peripheral edge of the gap). Since a liquid crystal having a negative dielectric anisotropy is used as the liquid crystal, when a voltage is applied to the liquid crystal molecules that are aligned in the vertical direction when no voltage is applied, the liquid crystal molecules in the region A in FIG. The liquid crystal molecules tilt to the right, and in the region B of FIG. 7, the liquid crystal molecules tilt to the left. Thereby, the gap portions 20 and 21 of the electrode
Are obtained on both sides of the substrate. In the second embodiment, the gaps 20 and 21 of the electrodes are provided.
Are provided along two directions orthogonal to each other,
The inclination directions of the liquid crystal molecules are four directions of up, down, left and right, respectively.
It was divided into different types of regions, and the viewing angle characteristics symmetrical with respect to the screen were obtained.

【0066】なお、上記実施形態2では、電極の隙間部
を互いに直交する2方向に沿って形成したが、他の角度
で交差する2方向に沿って形成してもよく、さらに、3
方向以上の方向に沿って形成してもよい。
In the second embodiment, the gaps between the electrodes are formed in two directions orthogonal to each other. However, the gaps may be formed in two directions intersecting at other angles.
It may be formed along the direction more than the direction.

【0067】上記実施形態1及び実施形態2では、垂直
配向モードの液晶表示装置に本発明を適用した例につい
て説明したが、以下の実施形態3では、水平配向モード
の液晶表示装置に本発明を適用した例について説明す
る。
In the first and second embodiments, an example in which the present invention is applied to a liquid crystal display device in a vertical alignment mode has been described. In the third embodiment, the present invention is applied to a liquid crystal display device in a horizontal alignment mode. An example of application will be described.

【0068】(実施形態3)本実施形態3においては、
実施形態1と同様にして作製したマトリクス基板と対向
基板との双方に配向膜を印刷塗布により形成し、両基板
を貼り合わせる。この実施形態では、マトリクス基板と
対向基板との間にスペーサーを挟んで、画素電極と対向
電極との間隔を4μmとなるように設定した。また、ラ
ビング処理はマトリクス基板では画素電極の隙間部に直
交する方向に1回行い、対向基板では対向電極の隙間部
に直交する方向に1回行った。
(Embodiment 3) In Embodiment 3,
An alignment film is formed by printing on both the matrix substrate and the counter substrate manufactured in the same manner as in the first embodiment, and the two substrates are bonded to each other. In this embodiment, the distance between the pixel electrode and the counter electrode is set to 4 μm with a spacer interposed between the matrix substrate and the counter substrate. The rubbing treatment was performed once in the direction orthogonal to the gap between the pixel electrodes on the matrix substrate, and once in the direction orthogonal to the gap between the counter electrodes on the counter substrate.

【0069】そして、両基板の間隙に正の誘電率異方性
を有する液晶を注入して注入口を封止し、両面に偏光板
を貼り合わせることにより、本実施形態の液晶表示装置
を作製した。
Then, a liquid crystal having a positive dielectric anisotropy is injected into a gap between the two substrates, the injection port is sealed, and a polarizing plate is bonded on both sides to manufacture the liquid crystal display device of the present embodiment. did.

【0070】このとき、一対の偏光板の吸収軸を互いに
平行にしてゲートラインに対して45゜、すなわち画面
に対して45゜の角度で配置することにより、電圧無印
加状態の水平配向時に光が液晶層内で複屈折されて遮断
されるノーマリブラックの表示が得られる。これによ
り、電圧無印加時の液晶分子が均一な状態で黒表示を行
うことができるので、画面の法線方向におけるコントラ
ストを高くすることができる。また、液晶層にはツイス
ト構造を用いていないので応答速度を速くすることがで
きる。
At this time, by arranging the absorption axes of the pair of polarizing plates parallel to each other and arranging them at an angle of 45 ° with respect to the gate line, that is, at an angle of 45 ° with respect to the screen, light is not horizontally applied in the horizontal alignment. Is normally birefringent in the liquid crystal layer and is cut off. Accordingly, black display can be performed in a state where the liquid crystal molecules are uniform when no voltage is applied, so that the contrast in the normal direction of the screen can be increased. Further, since the liquid crystal layer does not use a twist structure, the response speed can be increased.

【0071】得られた液晶表示装置に電圧を印加したと
きの液晶分子の傾斜方向について、画素電極と対向電極
との対向部分を示す図8を参照しながら説明する。
The tilt direction of liquid crystal molecules when a voltage is applied to the obtained liquid crystal display device will be described with reference to FIG. 8, which shows a portion where a pixel electrode and a counter electrode face each other.

【0072】この液晶表示装置は、画素電極210の中
心部に幅5μmの隙間部215があり、対向電極214
には両端部に幅5μmの隙間部216があり、隙間部2
15、216の幅は画素電極210と対向電極214と
の間隔に対して大きく設定してあるので、電極間に電圧
を印加したときに電極の端部a、b(隙間部の周縁部)
近傍で電場217に歪みが生じる。
In this liquid crystal display device, a gap 215 having a width of 5 μm is provided at the center of the pixel electrode 210 and the opposite electrode 214 is formed.
Has a gap 216 with a width of 5 μm at both ends.
Since the widths of the electrodes 15 and 216 are set to be larger than the distance between the pixel electrode 210 and the counter electrode 214, when a voltage is applied between the electrodes, the ends a and b of the electrodes (peripheries of the gaps)
The electric field 217 is distorted in the vicinity.

【0073】液晶としては正の誘電率異方性を有するも
のを用いているため、電圧無印加時に基板に対してほぼ
水平方向に配向していた液晶分子に電圧が印加される
と、図8中のAの領域では、その端部に相当するaの領
域において電場方向が斜めに形成形成されているので、
液晶分子218(aの領域)に対して電場方向に直交す
るように右側(画面下側)に傾斜させるトルクが働く。
Since a liquid crystal having a positive dielectric anisotropy is used as the liquid crystal, when a voltage is applied to the liquid crystal molecules which are oriented substantially horizontally with respect to the substrate when no voltage is applied, FIG. In the region A in the middle, since the electric field direction is formed obliquely in the region a corresponding to the end,
A torque acts on the liquid crystal molecules 218 (region a) to incline rightward (downward on the screen) so as to be orthogonal to the electric field direction.

【0074】一方、Aの領域の大部分に相当する、隙間
部の周縁部近傍以外の画素電極210と対向電極214
とに挟まれた領域では、電場方向が基板に対して垂直な
方向に形成されており、基板面に対してほぼ水平に初期
配向されている液晶分子に働くトルクの傾斜方向は局部
的な斜め方向の電場には影響されない。しかし、aの領
域で右回転に傾斜している液晶分子218から及ぼされ
る液晶分子間の弾性力の影響を受けて、垂直方向の電場
しかない領域においても液晶分子218が同様に右回転
に傾斜し、このときのトルクは垂直方向の電場強度に依
存することが確認できた。
On the other hand, the pixel electrode 210 and the counter electrode 214 other than near the periphery of the gap, which correspond to most of the region A,
In the region between the two, the direction of the electric field is perpendicular to the substrate, and the tilt direction of the torque acting on the liquid crystal molecules that are initially aligned almost horizontally to the substrate surface is locally oblique. Unaffected by directional electric field. However, under the influence of the elastic force between the liquid crystal molecules exerted by the liquid crystal molecules 218 tilted clockwise in the region a, the liquid crystal molecules 218 similarly tilt clockwise in the region where there is only an electric field in the vertical direction. However, it was confirmed that the torque at this time depends on the electric field strength in the vertical direction.

【0075】Bの領域においても、同様の原理によっ
て、液晶分子218には左回転(画面上側)に傾斜させ
るトルクが働く。
Also in the region B, a torque for tilting the liquid crystal molecules 218 counterclockwise (upward on the screen) acts on the liquid crystal molecules 218 according to the same principle.

【0076】この結果、画素全面にわたって液晶分子の
配向方向を制御することができ、1画素内で画面に対し
て上下方向に液晶分子の配向方向が分割される。よっ
て、画面に対して上下対称な視野角特性が得られた。
As a result, the alignment direction of the liquid crystal molecules can be controlled over the entire surface of the pixel, and the alignment direction of the liquid crystal molecules is vertically divided with respect to the screen within one pixel. Therefore, a vertically symmetric viewing angle characteristic with respect to the screen was obtained.

【0077】なお、本実施形態3においては、画素電極
及び対向電極の隙間部をゲートラインに沿う方向に形成
したが、ソースラインに沿う方向に形成してもよく、画
素電極と対向電極の隙間部が基板平面に沿って交互に配
置されていれば、他の方向であってもよい。また、実施
形態2のように、電極の隙間部を互いに直交する2方向
に形成してもよく、この場合には、ラビング方向は電極
の隙間部の方向に対して45゜の方向とする。
In the third embodiment, the gap between the pixel electrode and the counter electrode is formed in the direction along the gate line. However, the gap may be formed in the direction along the source line. Other directions may be used as long as the parts are alternately arranged along the substrate plane. Further, as in the second embodiment, the gaps between the electrodes may be formed in two directions perpendicular to each other. In this case, the rubbing direction is set at 45 ° with respect to the direction of the gaps between the electrodes.

【0078】このように、斜め方向の電場を形成する領
域が画素電極及び対向電極の隙間部の周縁部近傍にのみ
形成され、この部分の液晶分子の傾斜方向によって、画
素電極と対向電極で挟まれた領域では電場が垂直方向で
あるにも関わらず、液晶分子の傾斜方向が制御され、画
素全面にわたって配向方向を制御できる。
As described above, the region for forming the oblique electric field is formed only in the vicinity of the periphery of the gap between the pixel electrode and the counter electrode, and is sandwiched between the pixel electrode and the counter electrode by the tilt direction of the liquid crystal molecules in this portion. In the region where the electric field is vertical, the tilt direction of the liquid crystal molecules is controlled, and the alignment direction can be controlled over the entire surface of the pixel.

【0079】このことは、電圧無印加時に垂直配向させ
た負の誘電率異方性を有する液晶分子に対して、または
電圧無印加時に水平配向させた正の誘電率異方性を有す
る液晶分子に対して、電場を垂直方向に印加する場合、
隙間部の周縁部近傍の液晶分子から及ぼされる弾性力の
作用によって、周縁部近傍以外の部分の液晶分子の傾斜
方向を容易に制御することができるという極めて特徴的
な現象を利用していることにより達成されるものであ
る。
This is because liquid crystal molecules having a negative dielectric anisotropy which are vertically aligned when no voltage is applied or liquid crystal molecules having a positive dielectric anisotropy which are horizontally aligned when no voltage is applied. When an electric field is applied vertically,
Utilizing an extremely characteristic phenomenon that the tilt direction of the liquid crystal molecules in the portion other than the vicinity of the periphery can be easily controlled by the action of the elastic force exerted by the liquid crystal molecules in the vicinity of the periphery of the gap. Is achieved by:

【0080】これにより、広い対称的な視野角特性が得
られると共に、画素の大部分の領域である画素電極と対
向電極との重なり部において、基板に垂直方向の均一な
電場を与えることができるので、画素内で生じるムラを
防止することができ、極めて優れた光学特性を得ること
ができる。
As a result, a wide symmetrical viewing angle characteristic can be obtained, and a uniform electric field in the vertical direction can be applied to the substrate in the overlapping portion between the pixel electrode and the counter electrode, which is the most area of the pixel. Therefore, it is possible to prevent unevenness occurring in the pixel, and to obtain extremely excellent optical characteristics.

【0081】電極の隙間部の周縁部における電場が歪ん
だ領域では、液晶の配向状態が他の部分と異なるが、電
圧無印加時に黒表示を行うノーマリブラックモードの液
晶表示装置の場合には、黒表示時に電圧が無印加である
ため、電場の歪みによる影響はなく、良好な黒表示が得
られる。さらに、この部分に遮光膜を形成すれば、表示
性能に対する影響を完全に防止することも可能である。
In the region where the electric field is distorted in the peripheral portion of the gap between the electrodes, the alignment state of the liquid crystal is different from the other portions. However, in the case of a normally black mode liquid crystal display device which performs black display when no voltage is applied, Since no voltage is applied at the time of black display, there is no influence of electric field distortion, and a good black display can be obtained. Further, if a light-shielding film is formed in this portion, it is possible to completely prevent the influence on the display performance.

【0082】なお、本発明は上述した実施形態に限ら
ず、画素電極の形状や対向電極の形状は、隙間部の周縁
部近傍に斜め方向の電場を生じさせ、隙間部の周縁部以
外の両電極で挟まれた部分には垂直方向の電場を生じさ
せて、液晶分子の傾斜方向を異なる複数の領域に分割で
きる形状であればどのような形状を組み合わせて用いて
も良く、画素電極の隙間部や対向電極の隙間部が曲線的
な形状であっても良い。
The present invention is not limited to the above embodiment. The shape of the pixel electrode and the shape of the counter electrode may generate an oblique electric field near the peripheral edge of the gap, and may cause the electric field in both directions other than the peripheral edge of the gap. Any shape may be used in combination so long as a vertical electric field is generated in the portion sandwiched between the electrodes and the shape of the liquid crystal molecules can be divided into a plurality of different regions in a tilt direction. The portion and the gap between the opposing electrodes may have a curved shape.

【0083】上記実施形態では、電圧無印加時に黒表示
を行うノーマリブラックモードの液晶表示装置について
説明したが、電圧無印加時に白表示を行うノーマリホワ
イトモードの液晶表示装置に本発明を適用することも可
能である。
In the above-described embodiment, the normally black mode liquid crystal display device that performs black display when no voltage is applied has been described. However, the present invention is applied to a normally white mode liquid crystal display device that performs white display when no voltage is applied. It is also possible.

【0084】また、上記実施形態ではスイッチング素子
として薄膜トランジスタを用いた液晶表示装置について
説明しているが、複数の画素がマトリクス状に形成され
ている構造であれば、MIM等の2端子素子を用いた液
晶表示装置や、単純マトリクス型の液晶表示装置に本発
明を適用することも可能である。
In the above embodiment, a liquid crystal display device using a thin film transistor as a switching element has been described. However, if a plurality of pixels are formed in a matrix, a two-terminal element such as an MIM may be used. The present invention can be applied to a liquid crystal display device that has been used or a simple matrix type liquid crystal display device.

【0085】[0085]

【発明の効果】以上詳述したように、本発明によれば、
画素電極や対向電極のパターニング時に隙間部を形成す
ることにより各画素内の液晶分子の傾斜方向を制御して
配向分割することができるので、従来技術のように配向
膜表面へのレジストの付着、現像液や剥離液の浸透によ
る異物の付着、表面変質、さらにはイオン性不純物によ
る液晶セルの信頼性低下等の危険性や、良品率が低下し
たり品質が不安定になる等の問題が生じない。また、ラ
ビング処理等の配向処理工程が不要であるため、この工
程に関わる不良の発生を防ぐことができる。
As described in detail above, according to the present invention,
By forming a gap at the time of patterning the pixel electrode and the counter electrode, it is possible to control the tilt direction of the liquid crystal molecules in each pixel to perform alignment division. Risks such as adhesion of foreign substances due to penetration of the developing solution and stripping solution, deterioration of the surface, and a decrease in the reliability of the liquid crystal cell due to ionic impurities, and problems such as a decrease in non-defective products and unstable quality. Absent. Further, since an alignment treatment step such as a rubbing treatment is not required, it is possible to prevent the occurrence of a defect relating to this step.

【0086】その結果、液晶分子の傾斜方向に依存した
視野角特性を傾斜方向が相対する一対の領域で相殺し
て、対称的な広げられた視野角特性を有すると共に高コ
ントラストで応答速度が速く、表示ムラ、ざらつき等に
よる表示品位の低下が生じない極めて優れた表示性能が
得られ、さらに、消費電力の増加もなく、量産性にも優
れた液晶表示装置を得ることができる。
As a result, the viewing angle characteristics depending on the tilt direction of the liquid crystal molecules are canceled out by a pair of regions where the tilt directions are opposed to each other, so that the display device has a symmetrical wide viewing angle characteristic, and has a high contrast and a high response speed. In addition, it is possible to obtain a liquid crystal display device having excellent display performance in which display quality is not degraded due to display unevenness, roughness, and the like, and which has no increase in power consumption and is excellent in mass productivity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施形態1におけるマトリクス基板の平面図で
ある。
FIG. 1 is a plan view of a matrix substrate according to a first embodiment.

【図2】実施形態1における対向基板の平面図である。FIG. 2 is a plan view of a counter substrate according to the first embodiment.

【図3】図1のA−A’線部分の断面図である。FIG. 3 is a sectional view taken along line A-A 'of FIG.

【図4】図1のB−B’線に相当する部分の断面図であ
る。
FIG. 4 is a cross-sectional view of a portion corresponding to line BB ′ in FIG. 1;

【図5】実施形態2におけるマトリクス基板の平面図で
ある。
FIG. 5 is a plan view of a matrix substrate according to a second embodiment.

【図6】実施形態2における対向基板の平面図である。FIG. 6 is a plan view of a counter substrate according to a second embodiment.

【図7】図5のC−C’線部分の断面図である。FIG. 7 is a sectional view taken along line C-C 'of FIG.

【図8】実施形態3における画素電極と対向電極との対
向部分を示す断面図である。
FIG. 8 is a cross-sectional view illustrating a portion where a pixel electrode and a counter electrode face each other according to a third embodiment.

【図9】従来の液晶表示装置を示す断面図である。FIG. 9 is a sectional view showing a conventional liquid crystal display device.

【図10】従来のマトリクス基板の平面図である。FIG. 10 is a plan view of a conventional matrix substrate.

【図11】従来の対向基板の平面図である。FIG. 11 is a plan view of a conventional counter substrate.

【図12】従来の液晶表示装置における電極構造を示す
断面図である。
FIG. 12 is a cross-sectional view showing an electrode structure in a conventional liquid crystal display device.

【符号の説明】[Explanation of symbols]

1 ゲートライン 2 ゲート電極 3 ゲート絶縁膜 4 薄膜トランジスタ 5 a−Si層 6a、6b n+−a−Si層 7 ソースライン 8 ソース電極 9 ドレイン電極 10、18、210 画素電極 11 保護膜 12 開口部 13 遮光膜 14、19、214 対向電極 15、16、20、21、215、216 隙間部 17、22、217 電場 218 液晶分子DESCRIPTION OF SYMBOLS 1 Gate line 2 Gate electrode 3 Gate insulating film 4 Thin film transistor 5 a-Si layer 6a, 6bn + -a-Si layer 7 Source line 8 Source electrode 9 Drain electrode 10, 18, 210 Pixel electrode 11 Protective film 12 Opening 13 Light-shielding film 14, 19, 214 Counter electrode 15, 16, 20, 21, 215, 216 Gap 17, 22, 217 Electric field 218 Liquid crystal molecules

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 電極を各々有する一対の基板の間隙に液
晶層が挟持されて複数の画素がマトリクス状に構成され
た液晶表示装置であって、 該一対の基板の各々の上の電極が、各画素内に電極が形
成されていない隙間部を互いに重ならないように有し、
電圧を印加しているときに各隙間部の周縁部近傍の液晶
層部分に基板面に対して斜め方向の電場が形成され、各
隙間部の周縁部近傍以外の両電極に挟まれた液晶層部分
に基板面に対して垂直方向の電場が形成される液晶表示
装置。
1. A liquid crystal display device comprising a plurality of pixels arranged in a matrix by sandwiching a liquid crystal layer in a gap between a pair of substrates each having an electrode, wherein the electrodes on each of the pair of substrates are: Having a gap where no electrode is formed in each pixel so as not to overlap each other,
When a voltage is applied, an electric field that is oblique to the substrate surface is formed on the liquid crystal layer near the periphery of each gap, and the liquid crystal layer is sandwiched between both electrodes except for the vicinity of the periphery of each gap. A liquid crystal display device in which an electric field perpendicular to the substrate surface is formed in a portion.
【請求項2】 電圧を印加しているときに、前記隙間部
の周縁部近傍において液晶分子が前記斜め方向の電場に
より基板面に対して所定の方向に傾き、該隙間部の周縁
部近傍の液晶分子の傾斜方向の影響を受けて、各隙間部
の周縁部近傍以外の両電極に挟まれた液晶層部分におけ
る液晶分子の傾斜方向が制御されて光学変調する請求項
1に記載の液晶表示装置。
2. When a voltage is applied, liquid crystal molecules are tilted in a predetermined direction with respect to a substrate surface by the oblique electric field in the vicinity of the peripheral edge of the gap, and the liquid crystal molecules in the vicinity of the peripheral edge of the gap are 2. The liquid crystal display according to claim 1, wherein the optical modulation is performed by controlling the tilt direction of the liquid crystal molecules in a portion of the liquid crystal layer sandwiched between the two electrodes except for the vicinity of the peripheral edge of each gap, under the influence of the tilt direction of the liquid crystal molecules. apparatus.
【請求項3】 前記液晶層内の液晶分子が負の誘電率異
方性を有し、電圧を印加しないときには基板面に対して
ほぼ垂直に配向する請求項1または請求項2に記載の液
晶表示装置。
3. The liquid crystal according to claim 1, wherein liquid crystal molecules in the liquid crystal layer have a negative dielectric anisotropy and are oriented substantially perpendicular to a substrate surface when no voltage is applied. Display device.
【請求項4】 前記液晶層内の液晶分子が正の誘電率異
方性を有し、電圧を印加しないときには基板面に対して
ほぼ水平に配向する請求項1または請求項2に記載の液
晶表示装置。
4. The liquid crystal according to claim 1, wherein the liquid crystal molecules in the liquid crystal layer have a positive dielectric anisotropy and are oriented substantially horizontally with respect to the substrate surface when no voltage is applied. Display device.
【請求項5】 前記一方の基板上の電極の隙間部と前記
他方の基板上の電極の隙間部とが、前記各画素内におい
て基板面に平行な方向に沿って交互に配置されている請
求項1乃至請求項4のいずれかに記載の液晶表示装置。
5. A gap between electrodes on the one substrate and a gap between electrodes on the other substrate are alternately arranged in each of the pixels along a direction parallel to a substrate surface. The liquid crystal display device according to claim 1.
【請求項6】 前記各基板上の電極の隙間部が、前記各
画素内において互いに交差する2方向の各々に沿う部分
を有する請求項1乃至請求項5のいずれかに記載の液晶
表示装置。
6. The liquid crystal display device according to claim 1, wherein the gap between the electrodes on each of the substrates has a portion along each of two directions intersecting each other in each of the pixels.
【請求項7】 前記各基板上の電極の隙間部の幅が、両
基板上の電極間の間隔よりも大きくされている請求項1
乃至請求項6のいずれかに記載の液晶表示装置。
7. The width of the gap between the electrodes on each substrate is larger than the distance between the electrodes on both substrates.
The liquid crystal display device according to claim 6.
JP19216398A 1997-10-06 1998-07-07 Liquid crystal display Expired - Lifetime JP3356273B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP19216398A JP3356273B2 (en) 1997-10-06 1998-07-07 Liquid crystal display
KR1019980041849A KR100327927B1 (en) 1997-10-06 1998-10-07 Liquid crystal display device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP27316497 1997-10-06
JP9-273164 1997-10-06
JP19216398A JP3356273B2 (en) 1997-10-06 1998-07-07 Liquid crystal display

Publications (2)

Publication Number Publication Date
JPH11174482A true JPH11174482A (en) 1999-07-02
JP3356273B2 JP3356273B2 (en) 2002-12-16

Family

ID=26507151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19216398A Expired - Lifetime JP3356273B2 (en) 1997-10-06 1998-07-07 Liquid crystal display

Country Status (2)

Country Link
JP (1) JP3356273B2 (en)
KR (1) KR100327927B1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010063302A (en) * 1999-12-22 2001-07-09 박종섭 Vertical alignment mode lcd
KR100350643B1 (en) * 1999-10-29 2002-08-28 삼성전자 주식회사 a liquid crystal display
US7202928B2 (en) 2003-10-16 2007-04-10 Lg. Philips Lcd Co., Ltd Array substrate for in-plane switching mode liquid crystal display device and method of fabricating the same
US7304709B2 (en) 2003-12-12 2007-12-04 Lg. Philips Lcd Co., Ltd. Fringe field switching mode liquid crystal display device and method of fabricating the same
CN100356251C (en) * 2002-03-29 2007-12-19 三星电子株式会社 A vertically aligned mode liquid crystal display
JP2008129050A (en) * 2006-11-16 2008-06-05 Stanley Electric Co Ltd Liquid crystal display element
JP2015207022A (en) * 2015-07-16 2015-11-19 スタンレー電気株式会社 liquid crystal display device
US9207471B2 (en) 2007-05-10 2015-12-08 Stanley Electric Co., Ltd. Vertical alignment type liquid crystal display apparatus having improved display uniformity

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100706220B1 (en) * 1999-12-17 2007-04-11 삼성전자주식회사 A display panel in a transmissive reflective type tft lcd
KR100507282B1 (en) * 2002-02-20 2005-08-09 비오이 하이디스 테크놀로지 주식회사 Apparatus for vertical alligned mode liquid crystal display
KR100973802B1 (en) * 2003-06-11 2010-08-03 삼성전자주식회사 Liquid crystal display

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3164702B2 (en) * 1993-07-27 2001-05-08 シャープ株式会社 Liquid crystal display

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100350643B1 (en) * 1999-10-29 2002-08-28 삼성전자 주식회사 a liquid crystal display
KR20010063302A (en) * 1999-12-22 2001-07-09 박종섭 Vertical alignment mode lcd
CN100356251C (en) * 2002-03-29 2007-12-19 三星电子株式会社 A vertically aligned mode liquid crystal display
US7202928B2 (en) 2003-10-16 2007-04-10 Lg. Philips Lcd Co., Ltd Array substrate for in-plane switching mode liquid crystal display device and method of fabricating the same
CN100354729C (en) * 2003-10-16 2007-12-12 Lg.菲利浦Lcd株式会社 Array substrate of in-plane switching type liquid crystal display and its manufacturing method
US7528920B2 (en) 2003-10-16 2009-05-05 Lg Display Co., Ltd. Array substrate for in-plane switching mode liquid crystal display device and method of fabricating the same
US7304709B2 (en) 2003-12-12 2007-12-04 Lg. Philips Lcd Co., Ltd. Fringe field switching mode liquid crystal display device and method of fabricating the same
JP2008129050A (en) * 2006-11-16 2008-06-05 Stanley Electric Co Ltd Liquid crystal display element
US9207471B2 (en) 2007-05-10 2015-12-08 Stanley Electric Co., Ltd. Vertical alignment type liquid crystal display apparatus having improved display uniformity
USRE46345E1 (en) 2007-05-10 2017-03-21 Stanley Electric Co., Ltd Vertical alignment type liquid crystal display apparatus having improved display uniformity
JP2015207022A (en) * 2015-07-16 2015-11-19 スタンレー電気株式会社 liquid crystal display device

Also Published As

Publication number Publication date
KR100327927B1 (en) 2002-06-20
JP3356273B2 (en) 2002-12-16
KR19990036906A (en) 1999-05-25

Similar Documents

Publication Publication Date Title
JP3492582B2 (en) Liquid crystal display device and method of manufacturing the same
US6501524B1 (en) Liquid crystal display device
JP3850002B2 (en) Liquid crystal electro-optical device
JPH06222397A (en) Liquid crystal display device
US20020008828A1 (en) Fringe field switching mode LCD
KR100685936B1 (en) IPS mode Liquid Crystal Display Device and method of manufacturing the same
JPH1124068A (en) Method for forming dual domain inside liquid crystal layer, manufacture of liquid crystal display device using the method and liquid crystal display device
JP2001242466A (en) Multi-domain liquid crystal display device
JP3042491B2 (en) Liquid crystal display panel and liquid crystal display device
US5757454A (en) Liquid crystal display device with homeotropic alignment in which two liquid crystal regions on the same subtrate have different pretilt directions because of rubbing
KR20060136163A (en) IPS mode Liquid Crystal Display Device and method of manufacturing the same
JP4156342B2 (en) Liquid crystal display
JP3356273B2 (en) Liquid crystal display
JPH07225389A (en) Liquid crystal display element and its manufacture
JP2956652B2 (en) Active matrix type liquid crystal display
JP5332548B2 (en) Color filter and liquid crystal display device including the same
JP2002214613A (en) Liquid crystal display
JP3549177B2 (en) Liquid crystal display
JP4031658B2 (en) Liquid crystal display
KR100685938B1 (en) IPS mode Liquid Crystal Display Device and method of manufacturing the same
JP2004163746A (en) Liquid crystal display
US7369197B2 (en) Polarizer, panel for a liquid crystal display, and liquid crystal display, including a scattering layer
JP2748951B2 (en) Liquid crystal display
JPH06342154A (en) Liquid crystal display device
JP2001125144A (en) Liquid crystal display device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020918

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071004

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081004

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081004

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091004

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091004

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101004

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111004

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121004

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131004

Year of fee payment: 11

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D04

EXPY Cancellation because of completion of term