JPH11173377A - Buffer body of damping device and laminated buffer body - Google Patents

Buffer body of damping device and laminated buffer body

Info

Publication number
JPH11173377A
JPH11173377A JP34327197A JP34327197A JPH11173377A JP H11173377 A JPH11173377 A JP H11173377A JP 34327197 A JP34327197 A JP 34327197A JP 34327197 A JP34327197 A JP 34327197A JP H11173377 A JPH11173377 A JP H11173377A
Authority
JP
Japan
Prior art keywords
buffer
deformation
laminated
lower plates
shock absorber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34327197A
Other languages
Japanese (ja)
Inventor
Mitsuru Kageyama
満 蔭山
Hirofumi Okuda
浩文 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP34327197A priority Critical patent/JPH11173377A/en
Publication of JPH11173377A publication Critical patent/JPH11173377A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve the nonlinear property of a buffer body of a damping device without complicating a configuration thereof and changing a material and blending of an elastic body itself and suppress vibration effectively over a wide scope from small vibration to large vibration. SOLUTION: Upper and lower plates 22, 22a are opposingly arranged at a predetermined interval, and a rubber body 24a formed like a circular column is provided at four corners of these upper and lower plates 22, 22a. The rubber body 24a is fixed on these upper and lower plates 22, 22a by vulcanization bonding in a condition in which an upper end part is initially deformed by a predetermined amount 8 so that elastic forces are cancelled mutually toward the central direction of the upper and lower plates 22, 22a. By setting the initial deformation of the rubber body 24a toward different directions, a peak of the relation between rigidity and deformation is not concentrated at a neutral point as the whole buffer body and is deviated and dispersed to the surroundings so that a peak of spring rigidity is lowered and smoothed and a resonance region can be expanded by the amount.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、制振対象物を制振
する制振装置に用いられる緩衝体及び積層緩衝体に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a shock absorber and a laminated shock absorber used in a vibration damping device for damping an object to be damped.

【0002】[0002]

【従来の技術】近年、中,高層ビルでは地震や強風等の
振動外力による揺動を抑制するための制振装置として、
例えば特開平9−189144号公報(Int.Cl.E04H 9/
02)等に開示されるチューンドマスダンパー(TMD)
が実用化されるに至っている。このTMDは、建物の外
側(屋上)に緩衝体を介して質量体を取り付けたもの
で、質量体の共振周期を建物の固有周期に一致させるよ
うに予め緩衝体のバネ剛性をチューニングしておき、振
動外力による建物の振動を質量体の振動で吸収して減衰
させるものである。
2. Description of the Related Art In recent years, in middle and high-rise buildings, as a vibration damping device for suppressing oscillation due to external vibrations such as earthquakes and strong winds,
For example, JP-A-9-189144 (Int. Cl. E04H 9 /
02) Tuned mass damper (TMD)
Has been put to practical use. In this TMD, a mass body is attached to the outside of a building (on the roof) via a buffer, and the spring rigidity of the buffer is tuned in advance so that the resonance period of the mass body matches the natural period of the building. In addition, the vibration of the building caused by the external force is absorbed by the vibration of the mass body and attenuated.

【0003】ここで、上記緩衝体としては一般的には鋼
板と弾性体となるゴム体とを交互に積層形成した積層ゴ
ムでなるアイソレータが用いられている。
Here, an isolator made of laminated rubber in which a steel plate and a rubber body serving as an elastic body are alternately laminated is generally used as the buffer.

【0004】[0004]

【発明が解決しようとする課題】ところで、このような
制振装置に用いる緩衝体は、図13(a)のバネ特性の
グラフ中に破線A1 で示すように、変形量に対してバネ
剛性が変化しない、荷重−変形特性が線形性を呈するこ
とが望ましい。すなわち、振動体上にバネ剛性kの緩衝
体を介して質量mの物体を水平方向に振動可能に支持し
た場合、この質量体の固有周期Tは、 T=2π(m/k)1/2 …… として与えられるが、このバネ剛性kが一定であれば変
形量(つまり水平方向の振動外力の大きさ)に拘わら
ず、同図(b)の変形量−周期特性のグラフに破線B1
で示すように固有周期Tが一定になり、大振動から小振
動に亘って建物の固有振動に同調させて理想的な制振作
用を発揮させることができる。
Meanwhile, as shown by a broken line A1 in the spring characteristic graph of FIG. 13A, the shock absorber used in such a vibration damping device has a spring rigidity with respect to the deformation amount. It is desirable that the load-deformation characteristics that do not change exhibit linearity. That is, when an object having a mass m is supported on a vibrator via a buffer having a spring rigidity k so as to be able to vibrate in the horizontal direction, the natural period T of the mass is T = 2π (m / k) 1/2 ... If the spring stiffness k is constant, a broken line B1 is shown in the graph of the deformation amount-period characteristic in FIG. 10B regardless of the deformation amount (that is, the magnitude of the horizontal external force).
The natural period T becomes constant as shown by, and an ideal vibration damping action can be exhibited by tuning from the large vibration to the small vibration to the natural vibration of the building.

【0005】しかしながら、緩衝体として用いている従
来の積層ゴムでは、図13(a)のグラフに実線Aで示
すように、荷重(振動外力)の大小に応じてバネ剛性が
変化する非線形の荷重−変形特性(バネ剛性特性)を有
しており、またこれに相応して、同図(b)のグラフに
実線Bで示すように固有周期も変形量の大小に応じて変
化する周期−変形特性を有している。
However, in the conventional laminated rubber used as the shock absorber, as shown by the solid line A in the graph of FIG. 13A, a nonlinear load in which the spring stiffness changes in accordance with the magnitude of the load (external vibration force). -Has a deformation characteristic (spring stiffness characteristic), and correspondingly, the natural period changes according to the magnitude of the deformation as shown by the solid line B in the graph of FIG. Has characteristics.

【0006】従って、従来の積層ゴムではそのバネ剛性
は理想的な線形特性のばね剛性特性A1 に対してある1
点でしか一致させることができず、例えばP点で一致さ
せるようにチューニングすると、このP点近傍の極狭い
変形幅の領域Xでしか質量体は共振しない。すなわち、
従来の積層ゴムを用いた制振装置では大振幅から小振幅
の広い変形領域に亘って質量体の共振周期を建物の固有
周期に同調させることができず、建物と同調可能な振幅
領域は極狭い設定範囲内になってしまう。例えば、普通
の中小地震時に適するようにチューニングして、上記範
囲Xを設定すると、それよりも大きい地震時に、制振効
果が著しく低減してしまうという課題があった。なお、
当該課題は積層ゴムの場合に顕著になるが、コイルバネ
等の弾性体にあっても同様の課題を有している。
Accordingly, in the conventional laminated rubber, the spring stiffness thereof is a certain value relative to the ideal linear stiffness characteristic A1.
Matching can be made only at the point. For example, if tuning is performed so as to match at the point P, the mass body resonates only in the region X having a very small deformation width near the point P. That is,
In a conventional vibration damping device using laminated rubber, the resonance period of the mass body cannot be tuned to the natural period of the building over a wide deformation region from large amplitude to small amplitude, and the amplitude region that can be tuned to the building is extremely small. It will be within a narrow setting range. For example, when tuning is performed so as to be suitable for a normal small and medium earthquake and the range X is set, there is a problem that the vibration damping effect is significantly reduced during an earthquake larger than that. In addition,
Although this problem is remarkable in the case of a laminated rubber, the same problem exists in an elastic body such as a coil spring.

【0007】本発明はかかる従来の課題に鑑みて成され
たものであり、その目的は、小振幅から大振幅に亘る広
い変形領域の振動に対して効果的に振動を抑制すること
ができる制振装置の緩衝体及び積層緩衝体を提供するこ
とを目的とする。
The present invention has been made in view of such a conventional problem, and an object of the present invention is to control vibrations in a wide deformation region from a small amplitude to a large amplitude effectively. An object of the present invention is to provide a shock absorber and a laminated shock absorber for a vibration device.

【0008】[0008]

【課題を解決するための手段】かかる目的を達成するた
めに本発明の制振装置の緩衝体及び積層緩衝体の構成を
各請求項毎に示す。
Means for Solving the Problems In order to achieve the above object, the structures of the shock absorber and the laminated shock absorber of the vibration damping device of the present invention are shown in each claim.

【0009】(1)請求項1の緩衝体は、所定間隔をあ
けて上下に対向配置される上下板と、これら上下板間に
並設固定されて水平方向の相対変位を許容する複数の弾
性体とを備え、該弾性体にはそのうちの少なくとも2つ
以上に、相互に水平方向成分の弾性力を打ち消し合う初
期変形が与えられていることを特徴とする。
(1) The shock absorber according to the first aspect of the present invention has upper and lower plates which are vertically opposed to each other at a predetermined interval, and a plurality of elastic members which are fixed in parallel between the upper and lower plates and allow relative displacement in the horizontal direction. The elastic body is characterized in that at least two or more of the elastic bodies are given an initial deformation that cancels the elastic force of the horizontal component mutually.

【0010】(2)請求項2の緩衝体は、上記請求項1
において、上記弾性体が2つでなり、上下板の水平方向
に対称に配置したことを特徴とする。
(2) The cushioning member of the second aspect is the first aspect.
Wherein the two elastic members are arranged symmetrically in the horizontal direction of the upper and lower plates.

【0011】(3)請求項3の緩衝体は、上記請求項1
または2において、上記弾性体がゴム体でなることを特
徴とする。
(3) The buffer according to claim 3 is the above-mentioned claim 1.
Or 2) wherein the elastic body is a rubber body.

【0012】(4)請求項4の積層緩衝体は、上記請求
項3に記載の緩衝体を最小単位要素にして、該緩衝体の
最小単位要素を上下方向に複数段積層形成してなること
を特徴とする。
(4) A laminated buffer according to a fourth aspect of the present invention includes the buffer according to the third aspect as a minimum unit element, and the minimum unit element of the buffer is laminated in a plurality of layers in the vertical direction. It is characterized by.

【0013】(5)請求項5の緩衝体は、上記請求項3
に記載の緩衝体を第1の最小単位要素にするとともに、
水平方向の初期変形を与えずに複数のゴム体でなる弾性
体を上下板間に並設固定した緩衝体を第2の最小単位要
素にして、これら第1の最小単位要素と第2の最小単位
要素とを適宜数ずつ交互に積層形成してなることを特徴
とする。
(5) The shock absorber of claim 5 is the above-mentioned claim 3.
As the first minimum unit element,
A buffer body in which a plurality of elastic bodies made of rubber bodies are fixed between the upper and lower plates without giving horizontal initial deformation is used as a second minimum unit element, and these first minimum unit element and second minimum unit are used. It is characterized by being formed by alternately laminating unit elements in appropriate numbers.

【0014】以上の構成により、本発明の制振装置の緩
衝体の作用を各請求項毎に以下述べる。
The operation of the shock absorber of the vibration damping device according to the present invention having the above structure will be described below for each claim.

【0015】(1)請求項1では、上下板間に並設固定
される複数の弾性体の少なくとも2つ以上に、相互に水
平方向成分の弾性力を打ち消し合う初期変形が与えられ
て緩衝体が構成されているから、これら複数の弾性体を
複合させてなる緩衝体のバネ剛性は個々の弾性体のバネ
剛性を合成したものとして得られる。つまり、緩衝体の
バネ剛性特性(荷重−変形特性)としては、初期変形が
与えられた弾性体の数に一致して、水平面内においてそ
れらの初期変形方向及び大きさに相応した位置に剛性の
ピークが分散して存在するものとなる。このため、初期
変形を与えずに複数の弾性体を並設固定して複合し、も
って中立点において全ての弾性体の剛性のピークが加算
的に集中するバネ剛性特性となっていた従来の緩衝体に
比べ、本発明の緩衝体は剛性のピーク値が圧倒的に低
く、しかも水平面内で広範囲に亘ってバネ剛性変化量が
少ない平滑化されたバネ剛性特性を備えたものとなる。
よって、制振装置で同調させたい所望の固有周期の振動
に対し、小振幅から大振幅に亘って広範に同調させるこ
とができるようになり、制振可能な振幅領域の可及的な
拡大が図れる。
(1) In the first aspect, at least two or more of the plurality of elastic bodies fixed and arranged in parallel between the upper and lower plates are provided with an initial deformation which cancels the elastic force of the horizontal component mutually. , The spring stiffness of the shock absorber formed by combining these plurality of elastic bodies is obtained as a combination of the spring stiffnesses of the individual elastic bodies. In other words, the spring stiffness characteristics (load-deformation characteristics) of the shock absorbers correspond to the number of elastic bodies to which the initial deformation has been given, and the stiffness at a position corresponding to their initial deformation direction and size in the horizontal plane. The peaks are dispersed and present. For this reason, the conventional shock absorber has a spring rigidity characteristic in which a plurality of elastic bodies are juxtaposed and fixed without giving initial deformation, and the peaks of the rigidities of all the elastic bodies are additively concentrated at the neutral point. Compared with the body, the shock absorber according to the present invention has a spring rigidity characteristic in which the peak value of the rigidity is overwhelmingly low and the amount of change in the spring rigidity is small over a wide range in the horizontal plane.
Therefore, it is possible to tune a wide range of vibrations from a small amplitude to a large amplitude with respect to a vibration having a desired natural period that is desired to be tuned by the vibration damping device. I can do it.

【0016】(2)請求項2では、上下板間に設ける弾
性体の数を最小構成の2つにして、初期変形を水平方向
に対称に与えるようにしたので、単一方向の往復振動に
対してその制振可能な振幅領域を可及的に拡大化した小
型の緩衝体を得ることができる。
(2) According to the second aspect, the number of elastic bodies provided between the upper and lower plates is set to a minimum of two, and the initial deformation is given symmetrically in the horizontal direction. On the other hand, it is possible to obtain a small-sized buffer body in which the amplitude range in which the vibration can be suppressed is enlarged as much as possible.

【0017】(3)請求項3では、弾性体をゴム体で構
成したので、バネ剛性特性を設定するにあたって、上下
板間に並設固定する複数のゴム体相互の径(平断面積)
や厚みを変化させたり、初期変形を与えないゴム体も付
加することも含めてゴム体の本数を変えたりすることに
よって、ゴム体自体の材質や配合等を変更することなく
緩衝体の非線形性を任意に改善することができる。
(3) According to the third aspect, since the elastic body is made of a rubber body, the diameter (flat cross-sectional area) of the plurality of rubber bodies fixed in parallel between the upper and lower plates when setting the spring rigidity characteristics.
By changing the number of rubber bodies, including changing the thickness and thickness, and adding rubber bodies that do not give initial deformation, the non-linearity of the buffer body does not change without changing the material or composition of the rubber body itself Can be arbitrarily improved.

【0018】(4)請求項4では、上記請求項3の緩衝
体を最小単位要素として緩衝体単体を構成し、この緩衝
体単体を上下方向に複数段積層したので、荷重変動が作
用した際の変位量が大きくなるとともに、全体のバネ剛
性はそれぞれのゴム体が直列配置されるため、全体のバ
ネ剛性を変動させることができ、共振周期のチューニン
グ領域の拡大とともに、剛性の大きなゴム体にあっても
その共振周期を制振対象物の固有周期に一致させるため
の調整を容易に行うことができる。
(4) According to a fourth aspect of the present invention, the shock absorber of the third aspect is used as a minimum unit element to constitute a shock absorber alone, and the shock absorbers are stacked in a plurality of stages in the vertical direction. As the amount of displacement increases, the overall spring stiffness of each rubber body is arranged in series, so the overall spring stiffness can be varied. Even so, adjustment for making the resonance period coincide with the natural period of the object to be damped can be easily performed.

【0019】(5)請求項5では、ゴム体に初期変形が
与えられた緩衝体単体を第1の最小要素単位とし、ゴム
体に初期変形を与えていない緩衝体単体を第2の最小要
素単位にして、これら第1最小要素単位と第2最小要素
単位とを適宜数ずつ交互に積層して構成しているから、
ゴム体に初期変形が与えられた緩衝体単体と初期変形が
与えられていない緩衝体単体との兼ね合いで、それぞれ
の緩衝体単体を多層積層した場合の全体のばね定数を任
意に調整することができ、共振周期のチューニングを精
度良く行うことができるようになる。
(5) In the fifth aspect, a single buffer having the rubber body subjected to the initial deformation is defined as the first minimum element unit, and a single buffer body having no initial deformation applied to the rubber body is defined as the second minimum element. As a unit, the first minimum element unit and the second minimum element unit are formed by laminating an appropriate number of them alternately.
It is possible to arbitrarily adjust the overall spring constant when each of the shock absorbers is laminated in multiple layers in consideration of the shock absorber with initial deformation applied to the rubber body and the shock absorber without initial deformation. As a result, the resonance period can be tuned with high accuracy.

【0020】[0020]

【発明の実施の形態】以下、本発明の実施形態について
添付図面を参照しつつ詳細に説明する。図1から図9は
本発明にかかる制振装置の緩衝体及び積層緩衝体の好適
な実施形態を示し、図1は積層緩衝体を用いた制振装置
の正面図、図2は同制振装置の平面図、図3は積層緩衝
体を構成する最小単位要素の緩衝体単体の1つを示す断
面図、図4は同緩衝体単体の平面図、図5は同緩衝体単
体を複数積層してなる積層緩衝体を示す正面図、図6は
緩衝体単体の剛性−変形特性図、図7は積層緩衝体の荷
重−変形特性図、図8は同積層緩衝体の周期−変形特性
図である。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. 1 to 9 show a preferred embodiment of a shock absorber and a laminated shock absorber of a vibration damping device according to the present invention. FIG. 1 is a front view of a vibration damping device using a laminated shock absorber, and FIG. FIG. 3 is a cross-sectional view showing one of the buffer units as a minimum unit element constituting the laminated buffer, FIG. 4 is a plan view of the buffer unit alone, and FIG. 5 is a plurality of the buffer units laminated. FIG. 6 is a stiffness-deformation characteristic diagram of a single buffer member, FIG. 7 is a load-deformation characteristic diagram of the laminated buffer member, and FIG. 8 is a cycle-deformation characteristic diagram of the laminated buffer member. It is.

【0021】即ち、図1に示すように本実施形態の積層
緩衝体10が適用される制振装置12はTMDとして構
成される場合に例を取って示し、この制振装置12は制
振対象物となる建物14の屋上に設置される。制振装置
12は、上記積層緩衝体10と、この積層緩衝体10の
上端に取り付けられる質量体16とによって概略構成さ
れ、質量体16と上記建物14との間に、質量体16の
振動を減衰するためのダンパー18が取り付けられてい
る。
That is, as shown in FIG. 1, an example is shown in which the vibration damping device 12 to which the laminated buffer body 10 of the present embodiment is applied is configured as a TMD. It is installed on the roof of the building 14 that is the object. The vibration damping device 12 is roughly constituted by the laminated buffer body 10 and a mass body 16 attached to the upper end of the laminated buffer body 10. The vibration of the mass body 16 is interposed between the mass body 16 and the building 14. A damper 18 for damping is attached.

【0022】そして、地震等の振動が建物14に入力さ
れると、この建物14の振動は屋上から緩衝体10を介
して質量体16に遅延されて伝達され、更にこの質量体
16の振動が逆に緩衝体10を介して建物14に遅延さ
れて伝達される間に半波長分の位相差を発生させて、建
物14の振動をこの質量体16の振動で打ち消すように
なっている。このため、上記積層緩衝体10のバネ剛性
は、質量体16の共振周期が建物14の固有周期と一致
するように決定される。
When a vibration such as an earthquake is input to the building 14, the vibration of the building 14 is transmitted from the rooftop to the mass 16 via the buffer 10 with a delay, and the vibration of the mass 16 is further transmitted. Conversely, a phase difference of a half wavelength is generated while being delayed and transmitted to the building 14 via the buffer 10, so that the vibration of the building 14 is canceled by the vibration of the mass body 16. For this reason, the spring rigidity of the laminated buffer 10 is determined so that the resonance period of the mass body 16 matches the natural period of the building 14.

【0023】上記質量体16は図2に示すように矩形状
に形成され、その四隅に上記積層緩衝体10がそれぞれ
配置される。積層緩衝体10は、図3,図4に示す最小
単位の緩衝体単体20を図5に示すように複数積層して
構成されるようになっている。この緩衝体単体20は、
所定間隔を設けて上下対向配置される上下板22,22
aと、これら上下板22,22a間に並設固定される複
数の弾性体24とを備え、これら複数の弾性体24のう
ち少なくとも2つ以上に相互に水平方向の弾性力を打ち
消す合うような水平方向の初期変形量が与えられてい
る。
The mass body 16 is formed in a rectangular shape as shown in FIG. 2, and the laminated buffer bodies 10 are respectively arranged at four corners. The laminated buffer 10 is configured by laminating a plurality of buffer units 20 of the minimum unit shown in FIGS. 3 and 4 as shown in FIG. This buffer body 20 is
Upper and lower plates 22, 22 which are vertically opposed to each other with a predetermined interval.
a, and a plurality of elastic bodies 24 fixed side by side between the upper and lower plates 22, 22a. At least two or more of the plurality of elastic bodies 24 cancel each other out of the horizontal elastic force. An initial deformation amount in the horizontal direction is given.

【0024】より具体的には、上記各弾性体24は、短
い円柱形状に形成されるゴム体24aで形成されるとと
もに、上記上下板22,22aは矩形状に形成されて水
平配置され、この上下板22,22aの四隅に4個の上
記ゴム体24aが配置される。これらゴム体24aは、
上端部を上下板22,22aの中心O方向に向かって所
定量δ分だけ初期変形させた状態で、これら上下板2
2,22aに加硫接着等により固着してあり、上記初期
変形量δはそれぞれのゴム体24aの傾斜角が対称とな
るように等しく設定される。
More specifically, each of the elastic members 24 is formed of a rubber member 24a formed in a short cylindrical shape, and the upper and lower plates 22, 22a are formed in a rectangular shape and arranged horizontally. Four rubber bodies 24a are arranged at four corners of the upper and lower plates 22, 22a. These rubber bodies 24a
In a state where the upper end portion is initially deformed by a predetermined amount δ toward the center O of the upper and lower plates 22, 22a, the upper and lower plates 2
2, 22a are fixed by vulcanization bonding or the like, and the initial deformation amount δ is set to be equal so that the inclination angles of the respective rubber bodies 24a are symmetrical.

【0025】ここで、上記緩衝体単体20を複数積層す
る際、上下方向に隣設される緩衝体単体20どうしは、
上方の緩衝体単体20の下板22aと下方の緩衝体単体
20の上板22とが共有される。
Here, when a plurality of the buffer bodies 20 are laminated, the buffer bodies 20 which are vertically adjacent to each other are:
The lower plate 22a of the upper buffer unit 20 and the upper plate 22 of the lower buffer unit 20 are shared.

【0026】従って、本実施形態の積層緩衝体10を用
いた制振装置12は、地震や強風等により建物14が振
動し、この振動が積層緩衝体10を介して質量体16に
伝達される際、および質量体16から建物14に伝達さ
れる際、当該積層緩衝体10を構成する各緩衝体単体2
0に水平方向の荷重変動が生ずる。このとき、緩衝体単
体20はそれぞれのゴム体24aに弾性力を相互に相殺
し合うように水平方向の初期変形が異なる方向に向けて
与えられているので、上記荷重変動により上板22と下
板22aとに相対変位が生じると、個々の弾性体24a
の変形量に差が生じ、これにより個々のゴム体24aの
剛性に相違が生ずることになる。
Therefore, in the vibration damping device 12 using the laminated buffer 10 of the present embodiment, the building 14 vibrates due to an earthquake, a strong wind, or the like, and this vibration is transmitted to the mass body 16 via the laminated buffer 10. And when transmitted from the mass body 16 to the building 14, each of the buffer bodies 2 constituting the laminated buffer body 10
0 causes horizontal load fluctuation. At this time, since the buffer body 20 is given initial deformation in the horizontal direction in different directions so as to mutually cancel the elastic force to the rubber members 24a, the upper plate 22 and the lower plate 22 are caused by the load fluctuation. When a relative displacement occurs with the plate 22a, the individual elastic members 24a
Of the rubber members 24a, resulting in differences in the rigidity of the individual rubber bodies 24a.

【0027】つまり、本実施形態では上記各ゴム体24
aは上板22の中心に向けて相互に弾性力を打ち消すよ
うに初期変形されているので、全体として釣り合った中
立状態にある緩衝体単体20において、個々のゴム体2
4aにおける各中立点はそれぞれ緩衝体単体20の中心
に対して図4に示すように上板22の対角線上の4箇所
に放射状に分散して位置しており、緩衝体単体20に水
平荷重が作用して上板22と下板22aとに相対変位が
生じた場合には、各ゴム体24aの剛性は個々にその変
位位置から中立点までの距離(すなわち変形量)に応じ
たものになる。
That is, in the present embodiment, each of the rubber members 24
Since a is initially deformed toward the center of the upper plate 22 so as to negate each other's elastic force, each of the rubber members 2
As shown in FIG. 4, each neutral point 4 a is radially dispersed at four positions on the diagonal line of the upper plate 22 with respect to the center of the buffer body 20. When the relative displacement occurs between the upper plate 22 and the lower plate 22a due to the action, the rigidity of each rubber body 24a individually depends on the distance from the displacement position to the neutral point (that is, the deformation amount). .

【0028】これを剛性−変形量の関係のバネ剛性特性
グラフで説明すると、図6に示すようになる。尚、当該
図6のグラフでは説明の便宜上、一方の対角線上に対称
に初期変形が与えられた2つのゴム体24aについて示
してあり、他方の対角線上に配置された2つのゴム体に
ついては割愛している。また、変形方向は対角線に沿っ
た方向である。同図のグラフにおいて中心軸Oは、全体
として釣り合い状態にあって上板22と下板22aとに
相対変位が生じていない中立状態の緩衝体単体20の中
立点を示し、破線Cと破線Dは上下板22,22a間に
逆向きの初期変形を与えられて並設固定された2つのゴ
ム体の個々のバネ剛性特性を示すものである。図示する
ようにこの2つのゴム体のバネ剛性特性C,Dは、その
ピークが中心軸Oに対して逆方向に同量(初期変形量)
だけずれてシフトされている点のみが相違するだけで、
ゴム自体の特性としては全く同じである。
This will be described with reference to a spring rigidity characteristic graph of the relationship between rigidity and deformation amount, as shown in FIG. In the graph of FIG. 6, two rubber bodies 24a whose initial deformations are symmetrically provided on one diagonal line are shown for convenience of explanation, and two rubber bodies arranged on the other diagonal line are omitted. doing. The deformation direction is a direction along a diagonal line. In the graph of FIG. 7, the central axis O indicates the neutral point of the buffer body 20 in the neutral state in which the upper plate 22 and the lower plate 22a are in a balanced state as a whole and the relative displacement does not occur between the upper plate 22 and the lower plate 22a. Shows the respective spring stiffness characteristics of the two rubber bodies fixed in parallel by giving the initial deformation in the opposite direction between the upper and lower plates 22, 22a. As shown in the figure, the spring rigidity characteristics C and D of the two rubber bodies have the same amount in the opposite direction with respect to the center axis O (initial deformation amount).
The only difference is that they are shifted
The properties of the rubber itself are exactly the same.

【0029】そして、上記緩衝体単体20全体として得
られる剛性−変形関係のバネ剛性特性は、これらゴム体
24a個々の特性C,Dを合成した特性Eとして得られ
る。つまり、合成された上記特性Eは全体的に平坦化さ
れ、変形量に対する剛性の変化量を広範囲に亘って減少
することができる。尚、図9は上記図6と比較するため
に、ゴム体に初期変形を与えていない従来の通常緩衝体
単体(後述する通常緩衝体単体30と同様の構成とな
る。)で得られる剛性−変形関係の特性Fを示し、中立
点0で高いピークを示して、このピークから変位するに
従って急激に剛性が低下される。従って、本実施形態の
緩衝体単体20では従来の通常緩衝体単体に比較してチ
ューニング領域を著しく拡大できることが理解される。
The spring stiffness characteristic of the stiffness-deformation relationship obtained as a whole of the buffer body 20 is obtained as a characteristic E obtained by combining the characteristics C and D of the rubber body 24a. That is, the combined characteristic E is flattened as a whole, and the amount of change in rigidity with respect to the amount of deformation can be reduced over a wide range. FIG. 9 shows the rigidity obtained by a conventional normal shock absorber having no initial deformation applied to the rubber body (having the same configuration as a normal shock absorber 30 described later) for comparison with FIG. The characteristic F of the deformation relationship is shown, a high peak is shown at the neutral point 0, and the rigidity is rapidly reduced as the peak is displaced from this peak. Therefore, it is understood that the tuning range can be significantly expanded in the buffer body 20 of the present embodiment as compared with the conventional normal buffer body alone.

【0030】また、本実施形態では実際には上記ゴム体
24aが各緩衝体単体20毎に4個ずつ設けられて、そ
れぞれが上板22の中心に向けて点対称に初期変形され
ているから、もう一方の対角線上に配置された2つのゴ
ム体における当該対角線に沿った変形量に対する剛性の
変化のグラフも、上記図6のグラフと全く同様になり、
かつその変形量を示す横軸は図6のグラフ上で中心軸を
通って紙面に直交する方向になる。
Also, in the present embodiment, actually, four rubber bodies 24a are provided for each buffer body 20 and each is initially deformed point-symmetrically toward the center of the upper plate 22. The graph of the change in rigidity of the two rubber bodies arranged on the other diagonal line with respect to the deformation amount along the diagonal line is completely the same as the graph of FIG.
In addition, the horizontal axis indicating the deformation amount passes through the central axis on the graph of FIG.

【0031】つまり、緩衝体単体20のバネ剛性特性
(荷重−変形特性)としては、初期変形が与えられた4
つの弾性体24aの数に一致して、水平面内においてそ
れらの初期変形方向及び大きさに相応して2つの対角線
上に剛性のピークが4つに分散して顕れるものとなる。
このため、初期変形を与えずに複数の弾性体を並設固定
して複合し、もって中立点において全ての弾性体の剛性
のピークが加算的に集中するバネ剛性特性となっていた
従来の緩衝体に比べ、本発明の緩衝体は剛性のピーク値
が圧倒的に低く、しかも水平面内で広範囲に亘ってバネ
剛性変化量が少ない平滑化されたバネ剛性特性を備えた
ものとなる。よって、制振装置で同調させたい所望の固
有周期の振動に対し、小振幅から大振幅に亘って広範に
同調させることができるようになり、制振可能な振幅領
域の可及的な拡大が図れる。
That is, the spring stiffness characteristic (load-deformation characteristic) of the buffer body 20 is determined by the initial deformation 4
In accordance with the number of the elastic bodies 24a, the rigidity peaks appear in two diagonal lines in a horizontal plane, corresponding to their initial deformation directions and magnitudes.
For this reason, the conventional shock absorber has a spring rigidity characteristic in which a plurality of elastic bodies are juxtaposed and fixed without giving initial deformation, and the peaks of the rigidities of all the elastic bodies are additively concentrated at the neutral point. Compared with the body, the shock absorber according to the present invention has a spring rigidity characteristic in which the peak value of the rigidity is overwhelmingly low and the amount of change in the spring rigidity is small over a wide range in the horizontal plane. Therefore, it is possible to tune a wide range of vibrations from a small amplitude to a large amplitude with respect to a vibration having a desired natural period that is desired to be tuned by the vibration damping device. I can do it.

【0032】更に、図5に示したように上記緩衝体単体
20を複数積層した積層緩衝体10の場合には、このと
きの全体のバネ剛性Kは、各緩衝体単体20のバネ剛性
をk1 ,k2 ,k3 …とすると、1/K=(1/k1 )
+(1/k2 )+(1/k3)…となり、全体のバネ剛
性Kを変動させることができ、このときの荷重−変形関
係は図7中実線に示すような特性Gが得られ、かつ、周
期−変形関係は図8中実線に示すような特性Hが得られ
る。また、積層によってバネ剛性を変動させることによ
り、ゴム体24aの剛性が大きな場合にあっても、制振
装置12の共振周期を建物14の固有周期と一致させる
ための調整を容易に行うことができる。
Further, as shown in FIG. 5, in the case of the laminated shock absorber 10 in which a plurality of the shock absorbers 20 are stacked, the overall spring stiffness K at this time is k 1, the spring stiffness of each shock absorber 20. , K2, k3..., 1 / K = (1 / k1)
+ (1 / k2) + (1 / k3)..., And the overall spring stiffness K can be varied. In this case, the load-deformation relationship has a characteristic G as shown by a solid line in FIG. The characteristic H as shown by the solid line in FIG. Further, by varying the spring stiffness by lamination, even when the rigidity of the rubber body 24a is large, it is possible to easily adjust the resonance period of the vibration damping device 12 to match the natural period of the building 14. it can.

【0033】つまり、上記図7に示した荷重−変形関係
では、実線で示した本実施形態の特性Gは、破線で示し
た従来の特性Aに比較して、同図中一点鎖線に示す理想
的な線形特性A1 により近づけることができる。また、
上記図8に示した周期−変形関係では、実線で示した本
実施形態の特性Hは、破線で示した従来の特性Bに比較
して、同図中一点鎖線に示す理想的な周期特性B1 によ
り近づけることができる。 従って、このように本実施
形態では荷重−変形および周期−変形の特性を理論値に
より近づけることができるため、制振装置12の質量体
16の振動周期を、広範囲に亘って建物14の振動周期
と略一致させることができ、もって過大な地震や強風に
より建物14が大きく振動する場合にも、制振装置12
の機能を十分に発揮して建物14の制振を効果的に抑制
することができる。
That is, in the load-deformation relationship shown in FIG. 7, the characteristic G of the present embodiment shown by the solid line is compared with the conventional characteristic A shown by the broken line, Linear characteristic A1 can be approximated. Also,
In the cycle-deformation relationship shown in FIG. 8, the characteristic H of the present embodiment shown by the solid line is different from the conventional characteristic B shown by the broken line in the ideal cycle characteristic B1 shown by the one-dot chain line in FIG. Can be brought closer. Therefore, in this embodiment, since the characteristics of the load-deformation and the cycle-deformation can be made closer to the theoretical values, the vibration cycle of the mass body 16 of the vibration damping device 12 can be changed over a wide range. Therefore, even when the building 14 vibrates greatly due to an excessive earthquake or strong wind, the vibration damping device 12
Function can be fully exhibited, and the vibration suppression of the building 14 can be effectively suppressed.

【0034】また、緩衝体単体のバネ剛性特性を設定す
るにあたっては上下板22,22a間に並設固定する複
数のゴム体は必ずしも全く同一形状のものを使用する必
要はなく、径(平断面積)や厚みを変化させたり、初期
変形を与えないゴム体も付加することも含めてゴム体の
本数を変えたりすることによって、ゴム体24a自体の
材質や配合等を変更することなく緩衝体の非線形性を任
意に改善することができる。
In setting the spring stiffness characteristic of the shock absorber alone, the plurality of rubber bodies fixed in parallel between the upper and lower plates 22 and 22a do not necessarily need to have exactly the same shape. By changing the number of rubber bodies, including changing the area and thickness, and adding a rubber body that does not cause initial deformation, the cushioning body can be changed without changing the material and composition of the rubber body 24a itself. Can be arbitrarily improved.

【0035】尚、本実施形態では上記ゴム体24aの初
期変形方向は上方が中心Oに近づく方向となって、安定
性を確保できるようになっているが、これとは逆にゴム
体24aの下方が中心Oに近づくように初期変形を与え
ても良い。
In this embodiment, the initial deformation direction of the rubber body 24a is such that the upper side is closer to the center O, so that the stability can be ensured. The initial deformation may be given so that the lower side approaches the center O.

【0036】図10から図12は積層緩衝体の変形実施
形態を示し、図10は正面図、図11は荷重−変形関係
の特性図、図12は周期−変形関係の特性図である。
尚、当該変形実施形態では上記実施形態と同一構成部分
に同一符号を付して重複する説明を省略して述べる。
FIGS. 10 to 12 show modified embodiments of the laminated buffer, FIG. 10 is a front view, FIG. 11 is a characteristic diagram of a load-deformation relationship, and FIG. 12 is a characteristic diagram of a cycle-deformation relationship.
In the modified embodiment, the same components as those in the above-described embodiment will be denoted by the same reference numerals, and redundant description will be omitted.

【0037】即ち、この変形実施形態における積層緩衝
体10aでは図10に示すように、上記実施形態に示す
緩衝体単体20を第1の最小要素単位とする一方、ゴム
体に初期変形を与えていない通常緩衝体単体30を第2
の最小要素単位として、この通常緩衝体単体30の積層
部分間に上記実施形態の緩衝体単体20を適宜介在させ
ることにより構成してある。即ち、通常緩衝体単体30
は、ゴム体24aは自然状態でこれの上下端に上下板2
2,22aが加硫接着されるようになっている。
That is, in the laminated buffer 10a in this modified embodiment, as shown in FIG. 10, the buffer body 20 shown in the above embodiment is used as the first minimum element unit, while the rubber body is given an initial deformation. No normal buffer 30 alone
As a minimum element unit, the buffer body 20 of the above embodiment is appropriately interposed between the laminated portions of the normal buffer body 30. That is, the normal buffer body 30
The rubber body 24a is in a natural state and the upper and lower plates 2
2, 22a are vulcanized and adhered.

【0038】そして、本実施形態ではゴム体に初期変形
が与えられた前述の緩衝体単体20と上記通常緩衝体単
体30とは上下方向に交互に積層されることにより上記
緩衝体10aが構成される。また、この実施形態にあっ
ても上下方向に隣設される偏心緩衝体単体20と通常緩
衝体単体30は、上方に配置される下板22aと下方に
配置される上板22とが共有される。
In the present embodiment, the buffer body 10a is formed by alternately stacking the above-described buffer body 20 and the normal buffer body 30 in which the rubber body is given an initial deformation in the vertical direction. You. Also in this embodiment, the eccentric shock absorber 20 and the normal shock absorber 30 that are vertically adjacent to each other share the lower plate 22a disposed above and the upper plate 22 disposed below. You.

【0039】従って、この実施形態の積層緩衝体10a
では緩衝体単体20と通常緩衝体単体30とを交互に積
層したので、これら緩衝体単体20と通常緩衝体単体3
0との兼ね合いでそれぞれの緩衝体単体20,30を多
層積層した場合の全体のばね定数を任意に調整すること
ができ、共振固有周期のチューニングを精度良く行うこ
とができるようになる。尚、このときの荷重−変形関係
の特性Iを図11中実線に示し、かつ、周期−変形関係
の特性Jを図12中実線に示す。
Therefore, the laminated buffer 10a of this embodiment
In this example, the buffer body 20 and the normal buffer body 30 were alternately stacked, so that the buffer body 20 and the normal buffer body 3
The overall spring constant when each of the buffer bodies 20 and 30 is multilayered can be arbitrarily adjusted in consideration of 0, and the resonance natural period can be tuned with high accuracy. The characteristic I of the load-deformation relationship at this time is shown by a solid line in FIG. 11, and the characteristic J of the period-deformation relationship is shown by a solid line in FIG.

【0040】また、この実施形態では緩衝体単体20と
通常緩衝体単体30とを交互に積層した場合を開示した
が、これに限ることなく通常緩衝体単体30の複数段毎
に緩衝体単体20を介在させても良く、また、緩衝体単
体20の複数段毎に通常緩衝体単体30を介在させるこ
ともできる。
In this embodiment, the case where the buffer body 20 and the normal buffer body 30 are alternately laminated is disclosed. However, the present invention is not limited to this. May be interposed, or the normal buffer body 30 may be interposed at every plural stages of the buffer body 20.

【0041】更には、緩衝体単体のゴム体の厚みを充分
に大きくして、緩衝体単体単独で構成することもでき
る。また、基本となる最小構成としては上下板間に2つ
のゴム体を対称に初期変形させて並設固定したもので良
く、この場合には一方向に往復振動する対象物の制振装
置への適用に好適で、小型化が図れる。もちろんこれを
直交方向に組み合わせて配置し、水平平面内の全方向の
振動に対応させることもできる。
Further, the thickness of the rubber body of the buffer alone may be made sufficiently large, and the buffer alone may be constituted. Further, as a basic minimum configuration, two rubber bodies may be initially deformed symmetrically between the upper and lower plates and fixed side by side, and in this case, an object which reciprocates in one direction to the vibration damping device may be used. It is suitable for application and can be downsized. Of course, it is also possible to arrange them in a combination in the orthogonal direction to cope with vibrations in all directions in the horizontal plane.

【0042】一方、上記各実施形態では弾性体24とし
てゴム体24aを用いた場合を開示したが、これに限る
ことなく緩衝作用をもって伸縮される部材、例えばスプ
リング等を用いることもできる。また、上記各実施形態
の開示形態に限らず、本発明の緩衝体に求められる設定
が可能である限り、種々に変更して組み合わせて構成す
ることができることは勿論である。更に、本発明の積層
緩衝体10を用いた制振装置12としてパッシブに働く
TMDを開示したが、これに限ることなく質量体をアク
ティブに作動させるアクティブ制振装置や、これらを複
合させたハイブリッド制振装置、あるいは建物14と基
礎との間に介在するアイソレータとして構成することも
できる。
On the other hand, in each of the above embodiments, the case where the rubber body 24a is used as the elastic body 24 is disclosed. However, the present invention is not limited to this. In addition, the present invention is not limited to the disclosed forms of the above embodiments, but may be variously modified and combined as long as the setting required for the buffer of the present invention is possible. Furthermore, a TMD that works passively as the vibration damping device 12 using the laminated shock absorber 10 of the present invention has been disclosed. However, the present invention is not limited to this, and an active vibration damping device that actively operates a mass body, or a hybrid in which these are combined It may be configured as a vibration damping device or an isolator interposed between the building 14 and the foundation.

【0043】[0043]

【発明の効果】以上説明したように本発明の制振装置の
緩衝体の効果を各請求項毎に以下述べる。
As described above, the effects of the shock absorber of the vibration damping device of the present invention will be described below for each claim.

【0044】(1)請求項1の緩衝体は、上下板間に並
設固定される複数の弾性体の少なくとも2つ以上に、相
互に水平方向成分の弾性力を打ち消し合う初期変形が与
えられて構成されているから、これら複数の弾性体を複
合させてなる緩衝体のバネ剛性は個々の弾性体のバネ剛
性を合成したものとして得られ、よって緩衝体のバネ剛
性特性(荷重−変形特性)としては、初期変形が与えら
れた弾性体の数に一致して、水平面内においてそれらの
初期変形方向及び大きさに相応した位置に剛性のピーク
が分散して存在するものとなる。このため、初期変形を
与えずに複数の弾性体を並設固定して複合し、もって中
立点において全ての弾性体の剛性のピークが加算的に集
中するバネ剛性特性となっていた従来の緩衝体に比べ、
本発明の緩衝体は剛性のピーク値が圧倒的に低く、しか
も水平面内で広範囲に亘ってバネ剛性変化量が少ない平
滑化されたバネ剛性特性を備えたものとなる。よって、
制振装置で同調させたい所望の固有周期の振動に対し、
小振幅から大振幅に亘って広範に同調させることができ
るようになり、制振可能な振幅領域の可及的な拡大が図
れる。
(1) In the shock absorber according to the first aspect, at least two or more of the plurality of elastic bodies fixed in parallel between the upper and lower plates are given an initial deformation in which the elastic force of the horizontal component is mutually canceled. Therefore, the spring stiffness of the shock absorber composed of a plurality of these elastic bodies is obtained as a composite of the spring stiffnesses of the individual elastic bodies. ), The rigidity peaks are dispersed and present at positions corresponding to their initial deformation directions and sizes in the horizontal plane, in accordance with the number of elastic bodies to which the initial deformation has been given. For this reason, the conventional shock absorber has a spring rigidity characteristic in which a plurality of elastic bodies are juxtaposed and fixed without giving initial deformation, and the peaks of the rigidities of all the elastic bodies are additively concentrated at the neutral point. Compared to the body
The shock absorber of the present invention has a spring rigidity characteristic in which the peak value of the rigidity is extremely low and the spring rigidity change amount is small over a wide range in the horizontal plane. Therefore,
For the vibration of the desired natural period to be tuned by the vibration damper,
Tuning can be performed over a wide range from a small amplitude to a large amplitude, and the amplitude range where vibration can be suppressed can be expanded as much as possible.

【0045】(2)請求項2の緩衝体は、上下板間に設
ける弾性体の数を最小構成の2つにして、初期変形を水
平方向に対称に与えるようにしたので、単一方向の往復
振動に対してその制振可能な振幅領域を可及的に拡大化
した小型の緩衝体を得ることができる。
(2) In the shock absorber according to the second aspect, the number of elastic bodies provided between the upper and lower plates is set to the minimum two, and the initial deformation is given symmetrically in the horizontal direction. It is possible to obtain a small-sized shock absorber in which the amplitude range in which the reciprocating vibration can be suppressed is expanded as much as possible.

【0046】(3)請求項3の緩衝体は、弾性体をゴム
体で構成したので、バネ剛性特性を設定するにあたっ
て、上下板間に並設固定する複数のゴム体相互の径(平
断面積)や厚みを変化させたり、初期変形を与えないゴ
ム体も付加することも含めてゴム体の本数を変えたりす
ることによって、ゴム体自体の材質や配合等を変更する
ことなく緩衝体の非線形性を任意に改善することができ
る。
(3) In the cushioning member of the third aspect, since the elastic body is made of a rubber body, the diameter of the plurality of rubber bodies fixed in parallel between the upper and lower plates (flat cross section) is set when setting the spring rigidity characteristics. Area and thickness, and by changing the number of rubber bodies, including adding rubber bodies that do not cause initial deformation, without changing the material and composition of the rubber bodies themselves. The nonlinearity can be arbitrarily improved.

【0047】(4)請求項4の積層緩衝体は、上記請求
項3の緩衝体を最小単位要素として緩衝体単体を構成
し、この緩衝体単体を上下方向に複数段積層したので、
荷重変動が作用した際の変位量が大きくなるとともに、
全体のバネ剛性はそれぞれのゴム体が直列配置されるた
め、全体のバネ剛性を低下させることができ、共振固有
周期のチューニング領域の拡大とともに、剛性の大きな
ゴム体にあってもその共振周波数を制振対象物の固有周
期と一致させるための調整を容易に行うことができる。
(4) In the laminated buffer of the fourth aspect, a single buffer is constituted by using the buffer of the third aspect as a minimum unit element, and the single buffer is laminated in a plurality of stages in the vertical direction.
As the amount of displacement when load fluctuations are applied increases,
Since the entire rubber stiffness is arranged in series, the overall spring stiffness can be reduced. Adjustment to match the natural period of the vibration damping object can be easily performed.

【0048】(5)請求項5の緩衝体は、ゴム体に初期
変形が与えられた緩衝体単体を第1の最小要素単位と
し、ゴム体に初期変形を与えていない緩衝体単体を第2
の最小要素単位にして、これら第1最小要素単位と第2
最小要素単位とを適宜数ずつ交互に積層して構成してい
るから、ゴム体に初期変形が与えられた緩衝体単体と初
期変形が与えられていない緩衝体単体との兼ね合いで、
それぞれの緩衝体単体を多層積層した場合の全体のばね
定数を任意に調整することができ、共振固有周期のチュ
ーニングを精度良く行うことができるようになる。
(5) In the shock absorber according to the fifth aspect, the shock absorber having an initial deformation applied to the rubber body is used as the first minimum element unit, and the shock absorber having no initial deformation applied to the rubber body is used as the second minimum element.
, The first minimum element unit and the second
Since the minimum element unit and the appropriate number are alternately laminated, the rubber body has a buffer body with initial deformation and a buffer body without initial deformation.
The overall spring constant when each of the shock absorbers is multilayered can be arbitrarily adjusted, and the resonance natural period can be tuned with high accuracy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の積層緩衝体を用いた制振装置の一実施
形態を示す正面図である。
FIG. 1 is a front view showing an embodiment of a vibration damping device using a laminated buffer according to the present invention.

【図2】本発明の積層緩衝体を用いた制振装置の一実施
形態を示す平面図である。
FIG. 2 is a plan view showing an embodiment of a vibration damping device using the laminated buffer of the present invention.

【図3】本発明の基本構成をなし、積層緩衝体の最小単
位要素となる緩衝体単体の1つを示すもので、図2中の
III −III 線部の矢視断面図である。
FIG. 3 shows a basic structure of the present invention, and shows one of the shock absorbers as a minimum unit element of the laminated shock absorber.
It is arrow sectional drawing of the III-III line part.

【図4】本発明の基本構成をなし、積層緩衝体の最小単
位要素となる緩衝体単体の1つを示す平面図である。
FIG. 4 is a plan view showing one of the buffer bodies alone, which constitutes the basic structure of the present invention and is the minimum unit element of the laminated buffer body.

【図5】本発明の積層緩衝体の一実施形態を示すもの
で、最小単位要素の緩衝体単体を複数積層してなる積層
緩衝体の正面図である。
FIG. 5 is a front view of a laminated buffer body according to an embodiment of the present invention, in which a plurality of buffer units as minimum unit elements are laminated.

【図6】本発明の一実施形態を示す緩衝体単体の剛性−
変形特性図である。
FIG. 6 shows the rigidity of the shock absorber alone showing one embodiment of the present invention.
It is a deformation characteristic diagram.

【図7】本発明の一実施形態を示す緩衝体単体を複数積
層した積層緩衝体の荷重−変形特性図である。
FIG. 7 is a load-deformation characteristic diagram of a laminated buffer body in which a plurality of buffer bodies according to one embodiment of the present invention are laminated.

【図8】本発明の一実施形態を示す緩衝体単体を複数積
層した積層緩衝体の周期−変形特性図である。
FIG. 8 is a cycle-deformation characteristic diagram of a laminated buffer body in which a plurality of buffer bodies alone according to an embodiment of the present invention are laminated.

【図9】図6に示す本発明の剛性−変形特性と比較して
示す従来の剛性−変形特性図である。
9 is a conventional rigidity-deformation characteristic diagram shown in comparison with the rigidity-deformation characteristic of the present invention shown in FIG.

【図10】本発明の積層緩衝体の変形実施形態を示すも
ので、第1の最小単位要素の緩衝体単体と第2の最小単
位要素の通常緩衝体単体とを積層してなる積層緩衝体の
正面図である。
FIG. 10 shows a modified embodiment of the laminated buffer of the present invention, in which a laminated single buffer of the first minimum unit element and a normal buffer of the second minimum unit element are laminated. FIG.

【図11】本発明の積層緩衝体の変形実施形態における
荷重−変形関係を示す特性図である。
FIG. 11 is a characteristic diagram showing a load-deformation relationship in a modified embodiment of the laminated buffer of the present invention.

【図12】本発明の積層緩衝体の変形実施形態における
荷重−変形関係の特性図である。
FIG. 12 is a characteristic diagram of a load-deformation relationship in a modified embodiment of the laminated buffer body of the present invention.

【図13】従来の緩衝体の荷重−変形関係を(a)に、
周期−変形関係を(b)にそれぞれ示す特性図である。
FIG. 13 shows the load-deformation relationship of the conventional shock absorber in (a).
It is a characteristic view which shows a period-deformation relationship in (b), respectively.

【符号の説明】[Explanation of symbols]

10 積層緩衝体 12 制振装置 14 建物(免振対象物) 16 質量体 20 緩衝体単体(第1の最小単位要素) 22 上板 22a 下板 24 弾性体 24a ゴム体 30 通常緩衝体単体(第2の最小単位要素) DESCRIPTION OF SYMBOLS 10 Laminated buffer 12 Vibration suppression device 14 Building (object of vibration isolation) 16 Mass body 20 Buffer body alone (first minimum unit element) 22 Upper plate 22a Lower plate 24 Elastic body 24a Rubber body 30 Normal buffer body (No. 2 minimum unit element)

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 所定間隔をあけて上下に対向配置される
上下板と、これら上下板間に並設固定されて水平方向の
相対変位を許容する複数の弾性体とを備え、該弾性体に
はそのうちの少なくとも2つ以上に、相互に水平方向成
分の弾性力を打ち消し合う初期変形が与えられているこ
とを特徴とする制振装置の緩衝体。
An upper plate and a lower plate which are vertically opposed to each other at a predetermined interval; and a plurality of elastic members fixedly arranged in parallel between the upper and lower plates and permitting relative displacement in the horizontal direction. A shock absorber for a vibration damping device, characterized in that at least two or more of them are provided with initial deformations that cancel each other out of the elastic force of the horizontal component.
【請求項2】 上記弾性体が2つでなり、上下板の水平
方向に対称に配置したことを特徴とする請求項1に記載
の制振装置の緩衝体。
2. The shock absorber according to claim 1, wherein the elastic member comprises two elastic members, and the elastic members are arranged symmetrically in the horizontal direction of the upper and lower plates.
【請求項3】 上記弾性体がゴム体でなることを特徴と
する請求項1または2に記載の制振装置の緩衝体。
3. The shock absorber according to claim 1, wherein the elastic body is a rubber body.
【請求項4】 上記請求項3に記載の緩衝体を最小単位
要素にして、該緩衝体の最小単位要素を上下方向に複数
段積層形成してなることを特徴とする制振装置の積層緩
衝体。
4. A laminated damper for a vibration damping device, wherein the buffer according to claim 3 is used as a minimum unit element, and the minimum unit element of the buffer is formed by laminating a plurality of stages in the vertical direction. body.
【請求項5】 上記請求項3に記載の緩衝体を第1の最
小単位要素にするとともに、水平方向の初期変形を与え
ずに複数のゴム体でなる弾性体を上下板間に並設固定し
た緩衝体を第2の最小単位要素にして、これら第1の最
小単位要素と第2の最小単位要素とを適宜数ずつ交互に
積層形成してなることを特徴とする制振装置の緩衝体。
5. The buffer according to claim 3 as a first minimum unit element, and a plurality of elastic bodies made of a rubber body are juxtaposed and fixed between the upper and lower plates without giving an initial deformation in a horizontal direction. A buffer body for a vibration damping device, characterized in that the buffer body thus formed is used as a second minimum unit element, and the first minimum unit element and the second minimum unit element are formed alternately in an appropriate number. .
JP34327197A 1997-12-12 1997-12-12 Buffer body of damping device and laminated buffer body Pending JPH11173377A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34327197A JPH11173377A (en) 1997-12-12 1997-12-12 Buffer body of damping device and laminated buffer body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34327197A JPH11173377A (en) 1997-12-12 1997-12-12 Buffer body of damping device and laminated buffer body

Publications (1)

Publication Number Publication Date
JPH11173377A true JPH11173377A (en) 1999-06-29

Family

ID=18360240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34327197A Pending JPH11173377A (en) 1997-12-12 1997-12-12 Buffer body of damping device and laminated buffer body

Country Status (1)

Country Link
JP (1) JPH11173377A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130074341A1 (en) * 2011-09-28 2013-03-28 Hitachi Automotive Systems, Ltd. Method of manufacturing cylinder apparatus
CN103591212A (en) * 2013-11-29 2014-02-19 安徽同济建设集团有限责任公司 Construction equipment rubber vibration isolation device and installation method of construction equipment rubber vibration isolation device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130074341A1 (en) * 2011-09-28 2013-03-28 Hitachi Automotive Systems, Ltd. Method of manufacturing cylinder apparatus
US9309947B2 (en) * 2011-09-28 2016-04-12 Hitachi Automotive Systems, Ltd. Method of manufacturing cylinder apparatus
CN103591212A (en) * 2013-11-29 2014-02-19 安徽同济建设集团有限责任公司 Construction equipment rubber vibration isolation device and installation method of construction equipment rubber vibration isolation device

Similar Documents

Publication Publication Date Title
KR101777319B1 (en) Self-tuned mass damper and system comprising the same
CA2524547A1 (en) Fork configuration dampers and method of using same
CN108240415B (en) Large-load high-damping vibration absorber of composite bending beam/plate negative-stiffness dynamic vibration absorber
JPH0552237A (en) Vibration controling device
JPH11173377A (en) Buffer body of damping device and laminated buffer body
JP6622568B2 (en) Building vibration control structure
JP2888807B2 (en) Vertical shock absorbing laminated rubber bearing
JPH11141180A (en) Laminated rubber type vibration isolation device
JP3157352U (en) Elliptical leaf spring unit, elliptical multi-stage leaf spring device, vertical vibration damping device, horizontal uniaxial vibration damping device, and upper and lower floor seismic isolation device
JPH08338467A (en) Multistage laminated rubber
JP6134099B2 (en) Vibration control device and building
JP2938095B2 (en) Dynamic vibration absorber for buildings
JPH11141181A (en) Laminated rubber type vibration isolation device
JP4573709B2 (en) Passive damper
JPH11117569A (en) Steel-made vibration control damper
JP2940731B2 (en) Structure vibration control device
JPH02194233A (en) Anti-seismic device
JPH112048A (en) Vibration control device for large-space structure consisting of single layer
JPH02248550A (en) Device for exempting lightweight building from vibration
JP3807163B2 (en) Damping device for building structure
JP3114603B2 (en) Seismic isolation device
JP7220100B2 (en) Vibration damping device and method of designing a vibration damping device
JPH08326841A (en) Base isolation support device
JP2002115743A (en) Damper
JPH10266447A (en) Floor vibration proof system