JPH1117097A - Lead frame and semiconductor device using the same - Google Patents

Lead frame and semiconductor device using the same

Info

Publication number
JPH1117097A
JPH1117097A JP9184498A JP18449897A JPH1117097A JP H1117097 A JPH1117097 A JP H1117097A JP 9184498 A JP9184498 A JP 9184498A JP 18449897 A JP18449897 A JP 18449897A JP H1117097 A JPH1117097 A JP H1117097A
Authority
JP
Japan
Prior art keywords
epoxy resin
lead frame
copper
semiconductor device
copper material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9184498A
Other languages
Japanese (ja)
Inventor
Masachika Yoshino
正親 吉野
Toshio Shiobara
利夫 塩原
Naoya Noguchi
直也 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP9184498A priority Critical patent/JPH1117097A/en
Publication of JPH1117097A publication Critical patent/JPH1117097A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor device superior in adhesiveness by sealing a copper material having a copper alloy layer containing a specified amount of silicon atoms for the thickness of a specified range on a surface layer with the hardening object of an epoxy resin composition constituted of an epoxy resin, hardener and inorganic filler. SOLUTION: The lead frame 2 is formed of the copper material and the copper alloy layer containing 8-50 atom % of the silicon atoms for the thickness of 10-10000 angstroms on the surface layer of the copper material. A semiconductor element 1 is adhered to the lead frame 2 by the die bonding agent 3 of solder and silver paste and it is wire-bonded to an arbitrary circuit by wire 4. The lead frame is sealed with the hardening object 5 of epoxy resin composition containing epoxy resin, hardener and inorganic filler. Thus, the semiconductor device where adhesiveness with epoxy resin composition is improved can be provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は封止樹脂との接着が
強固な半導体装置パッケージのリードフレーム及び該リ
ードフレームを用いた高信頼性半導体装置に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lead frame of a semiconductor device package having strong adhesion to a sealing resin and a highly reliable semiconductor device using the lead frame.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】近年、
半導体産業の中で樹脂封止型のダイオード、トランジス
タ、IC、LSI、超LSIが主流となっている。この
封止樹脂としてエポキシ樹脂は、一般に他の熱硬化性樹
脂に比べて成形性、接着性、電気特性、機械特性、耐湿
性などに優れているため、エポキシ樹脂組成物で半導体
装置を封止することが多く行われている。
2. Description of the Related Art In recent years,
In the semiconductor industry, resin-sealed diodes, transistors, ICs, LSIs, and super LSIs have become mainstream. Epoxy resin as a sealing resin is generally superior in moldability, adhesiveness, electrical properties, mechanical properties, moisture resistance, etc. as compared with other thermosetting resins, so semiconductor devices are sealed with an epoxy resin composition. There are many things to do.

【0003】最近においては、これらの半導体装置は集
積度が益々大きくなり、それに応じてチップ寸法も大き
くなりつつある。他方において、パッケージ外形寸法
は、電子機器の小型化、軽量化の要求にともない、薄型
化が進んでいる。更に、半導体部品を回路基板に取り付
ける方法も、基板上の部品の高密度化や基板の薄型化の
ため、半導体部品の表面実装化が幅広く行われるように
なってきた。
In recent years, the degree of integration of these semiconductor devices has been increasing, and the chip size has been increasing accordingly. On the other hand, package external dimensions have been reduced in thickness in response to demands for smaller and lighter electronic devices. Further, in the method of attaching a semiconductor component to a circuit board, the surface mounting of the semiconductor component has been widely performed due to the high density of components on the substrate and the thinning of the substrate.

【0004】半導体装置を表面実装する場合、一般的
に、半導体装置全体を半田槽に浸漬するか、または半田
が溶融するような高温ゾーンを通過させる方法がとられ
る。その際の熱衝撃により、封止樹脂とフレームとの間
の接着性が低い場合には、その界面が剥離したり、封止
樹脂層にクラックが発生したりして、半導体装置の信頼
性が損なわれるという問題があった。
When a semiconductor device is surface-mounted, generally, a method of immersing the entire semiconductor device in a solder bath or passing the semiconductor device through a high-temperature zone where solder is melted is used. If the adhesiveness between the sealing resin and the frame is low due to the thermal shock at that time, the interface is peeled off or cracks are generated in the sealing resin layer, and the reliability of the semiconductor device is reduced. There was a problem of being damaged.

【0005】このため、半導体装置を封止するエポキシ
樹脂組成物に対する改良は種々提案されているが、封止
される半導体装置、特にリードフレームの材質の面から
の改良提案は殆んどなされていない。
[0005] For this reason, various improvements have been proposed for epoxy resin compositions for encapsulating semiconductor devices. However, almost all proposals have been made to improve the semiconductor devices to be encapsulated, particularly from the viewpoint of the material of the lead frame. Absent.

【0006】本発明は上記事情に鑑みなされたもので、
封止樹脂、特にエポキシ樹脂との接着性に優れたリード
フレーム及びこのリードフレームをエポキシ樹脂組成物
の硬化物で封止した半導体装置を提供することを目的と
する。
The present invention has been made in view of the above circumstances,
An object of the present invention is to provide a lead frame having excellent adhesion to a sealing resin, particularly an epoxy resin, and a semiconductor device in which the lead frame is sealed with a cured product of an epoxy resin composition.

【0007】[0007]

【課題を解決するための手段及び発明の実施の形態】本
発明者は、上記目的を達成するため鋭意検討を重ねた結
果、表層に10〜1000オングストロームの厚さのケ
イ素原子を8〜50原子%含む銅合金層を有する銅材を
リードフレームに用い、エポキシ樹脂と硬化剤と無機質
充填剤とを含有してなるエポキシ樹脂組成物の硬化物に
より封止することにより接着性に優れた半導体装置を得
られることを見出し、本発明をなすに至ったものであ
る。
Means for Solving the Problems and Embodiments of the Invention As a result of intensive studies to achieve the above object, the present inventor has found that the surface layer has 8 to 50 silicon atoms with a thickness of 10 to 1000 angstroms. Semiconductor device having excellent adhesion by using a copper material having a copper alloy layer containing 0.1% by weight for a lead frame and sealing with a cured product of an epoxy resin composition containing an epoxy resin, a curing agent, and an inorganic filler. And found that the present invention can be obtained.

【0008】即ち、本発明は、(1)銅材により形成さ
れ、該銅材の表層に、10〜1000オングストローム
の厚さのケイ素原子を8〜50原子%含む銅合金層を有
することを特徴とするリードフレーム、(2)銅材によ
り形成され、該銅材の表層に、10〜1000オングス
トロームの厚さのケイ素原子を8〜50原子%含む銅合
金層を有するリードフレームが、エポキシ樹脂と硬化剤
と無機質充填剤とを含有してなるエポキシ樹脂組成物の
硬化物により封止されたことを特徴とする半導体装置を
提供する。
That is, the present invention is characterized in that (1) a copper alloy layer formed of a copper material and having a surface layer of the copper material and having a thickness of 10 to 1000 angstroms and containing 8 to 50 atomic% of silicon atoms. (2) a lead frame formed of a copper material and having a copper alloy layer containing 8 to 50 atomic% of silicon atoms having a thickness of 10 to 1000 angstroms on a surface layer of the copper material; A semiconductor device characterized by being sealed with a cured product of an epoxy resin composition containing a curing agent and an inorganic filler.

【0009】以下、本発明につき更に詳しく説明する。
本発明の樹脂封止性に優れたリードフレームは、銅を基
礎材とする。好ましくはケイ素原子を0.01〜5原子
%含有する銅合金とする。更に好ましくは銅基材はケイ
素原子を0.03〜3原子%含有する銅合金とする。
Hereinafter, the present invention will be described in more detail.
The lead frame of the present invention having excellent resin sealing properties is based on copper. Preferably, it is a copper alloy containing 0.01 to 5 atomic% of silicon atoms. More preferably, the copper substrate is a copper alloy containing 0.03 to 3 atomic% of silicon atoms.

【0010】本発明のリードフレームは、上記銅材から
形成されるが、その表層に10〜1000オングストロ
ームの厚さのケイ素原子を8〜50原子%含む銅合金層
を有するものである。この銅リードフレーム材の表層の
ケイ素原子を8〜50原子%含む銅合金層はケイ素原子
を含まない純銅或いは銅合金を金属ケイ素の液体にドー
ピングしても得られるが、市販のCu−Ni−Si(コ
ルソン系)銅合金のようなケイ素原子を0.01〜5原
子%含有する銅材を、通常の金属の焼鈍処理を行ってい
る還元処理条件や、半導体素子の半田付けを行っている
還元処理条件を通過させることにより容易に得ることが
できる。市販しているケイ素を有する銅材にはOMCL
−1(三菱伸銅社製)、KLF−1(神戸製鋼社製)、
KLF−116(神戸製鋼社製)、KLF−125(神
戸製鋼社製)、NK164(日本マイニング社製)、C
−7025(オーリンプラス社製)などが挙げられる。
The lead frame of the present invention is formed of the above copper material, and has a copper alloy layer having a thickness of 10 to 1000 angstroms and containing 8 to 50 atomic% of silicon atoms on its surface. The copper alloy layer containing 8 to 50 atomic% of silicon atoms in the surface layer of this copper lead frame material can be obtained by doping pure copper or copper alloy containing no silicon atoms into a liquid of metallic silicon, but commercially available Cu-Ni- A copper material containing 0.01 to 5 atomic% of silicon atoms, such as a Si (Corson-based) copper alloy, is subjected to a reduction treatment condition in which a normal metal annealing treatment is performed, and a semiconductor element is soldered. It can be easily obtained by passing the conditions for reduction treatment. OMCL is a commercially available silicon-containing copper material.
-1 (manufactured by Mitsubishi Shindoh), KLF-1 (manufactured by Kobe Steel),
KLF-116 (manufactured by Kobe Steel), KLF-125 (manufactured by Kobe Steel), NK164 (manufactured by Nippon Mining), C
-7025 (manufactured by Ohrin Plus Co., Ltd.) and the like.

【0011】還元処理条件としては水素含有量0.5体
積%以上の雰囲気ガス存在下100〜600℃の温度で
処理を行うことにより、容易に銅材の表層に10〜10
00オングストロームの厚さのケイ素原子を8〜50原
子%含む銅合金の層を形成することができる。この還元
処理の時間は前記条件の下で30秒〜2時間、より好ま
しくは1分〜1時間である。30秒未満では十分な還元
処理が行えず、2時間を超えると表層のケイ素原子濃度
が高くなりすぎ、銅材としての性能が低下する。還元処
理を行う条件としては、水素含有量0.5体積%以上の
雰囲気ガスの下で100〜600℃の温度で30秒〜2
時間還元処理を行うことにより、銅材の表層は表面から
少なくとも10オングストロームの間ケイ素原子を8原
子%以上含む銅合金層で覆われるものである。
The conditions of the reduction treatment are as follows: by performing the treatment at a temperature of 100 to 600 ° C. in the presence of an atmosphere gas having a hydrogen content of 0.5% by volume or more, the surface of the copper material can be easily reduced to 10 to 10
A layer of copper alloy containing 8 to 50 atomic% silicon atoms with a thickness of 00 Å can be formed. The time of the reduction treatment is 30 seconds to 2 hours, more preferably 1 minute to 1 hour under the above conditions. If the time is less than 30 seconds, a sufficient reduction treatment cannot be performed. If the time exceeds 2 hours, the silicon atom concentration in the surface layer becomes too high, and the performance as a copper material is reduced. The conditions for performing the reduction treatment are as follows: an atmosphere gas having a hydrogen content of 0.5% by volume or more and a temperature of 100 to 600 ° C. for 30 seconds to 2 hours.
By performing the time reduction treatment, the surface layer of the copper material is covered with a copper alloy layer containing at least 8 atomic% of silicon atoms for at least 10 angstroms from the surface.

【0012】銅材の表層のケイ素原子を8〜50原子%
含む銅合金層の厚さは銅材表層の表面から少なくとも1
0オングストロームが必要である。10オングストロー
ム未満では樹脂封止したときの樹脂の密着性が十分でな
い。好ましくは表面から25オングストローム以上、更
に好ましくは50オングストローム以上あるものが好ま
しい。また、この表層のケイ素原子を8〜50原子%含
む銅合金層は樹脂封止したときの樹脂の密着性を良好に
するための合金層であるため1000オングストローム
より厚くすることは必要ではない。
8 to 50 atomic% of silicon atoms in the surface layer of the copper material
The thickness of the copper alloy layer is at least 1 mm from the surface of the copper material surface layer.
0 Angstroms is required. If the thickness is less than 10 angstroms, the adhesiveness of the resin when the resin is sealed is not sufficient. Preferably, it is at least 25 angstroms from the surface, more preferably at least 50 angstroms. Further, since the surface layer of the copper alloy layer containing 8 to 50 atomic% of silicon atoms is an alloy layer for improving the adhesiveness of the resin when the resin is sealed, it is not necessary to be thicker than 1000 angstroms.

【0013】銅材表面を覆うケイ素原子を8〜50原子
%含む銅合金層は、このケイ素原子の量が8原子%未満
では樹脂封止したときの樹脂の密着性が十分でない。ま
た、50原子%より多く含む銅合金層では、銅材として
の性能(電気電導性、熱伝導性)を低下させる。好まし
くはケイ素原子の量が10〜40原子%、より好ましく
は12〜30原子%の銅合金層である。
If the amount of silicon atoms in the copper alloy layer covering the copper material surface and containing 8 to 50 atomic% of silicon atoms is less than 8 atomic%, the adhesion of the resin when resin is sealed is not sufficient. Further, a copper alloy layer containing more than 50 atomic% lowers the performance (electrical conductivity and thermal conductivity) as a copper material. Preferably, the copper alloy layer has a silicon atom content of 10 to 40 at%, more preferably 12 to 30 at%.

【0014】なお、この表層のケイ素原子を8〜50原
子%含む銅合金層のケイ素原子含有濃度は必ずしも均一
である必要はなく、表面より中心に近くなるほどケイ素
原子含有濃度は少なくてよい。しかし、少なくとも表面
から10オングストロームまでの間は、ケイ素原子を1
0原子%以上含むことが好適である。
The copper alloy layer containing 8 to 50 atomic% of silicon atoms in the surface layer does not necessarily need to have a uniform silicon atom content, and may have a lower silicon atom content as it is closer to the center than the surface. However, at least up to 10 Å from the surface, one silicon atom
It is preferable to contain 0 atomic% or more.

【0015】本発明の半導体装置は、上記リードフレー
ムに、半導体素子を半田や銀ペーストなどのダイボンデ
ィング剤で接着させた後、任意の回路にワイヤーボンデ
ィングを行い、更にエポキシ樹脂、硬化剤及び無機質充
填剤を主成分として含有する半導体封止用エポキシ樹脂
組成物の硬化物で封止したもので、例えば図1に示すも
のである。
In the semiconductor device of the present invention, the semiconductor element is bonded to the above-mentioned lead frame with a die bonding agent such as solder or silver paste, and then wire-bonded to an arbitrary circuit. It is sealed with a cured product of an epoxy resin composition for semiconductor sealing containing a filler as a main component, and is, for example, shown in FIG.

【0016】ここで、図1において1は半導体素子、2
はリードフレーム、3はダイボンディング剤、4はワイ
ヤー、5はエポキシ樹脂組成物の硬化物である。
Here, in FIG. 1, 1 is a semiconductor element, 2
Is a lead frame, 3 is a die bonding agent, 4 is a wire, and 5 is a cured product of an epoxy resin composition.

【0017】本発明のエポキシ樹脂組成物を構成するエ
ポキシ樹脂としては、1分子中にエポキシ基を少なくと
も2個以上有するエポキシ樹脂であればいずれのもので
もよく、具体的にはビスフェノールA型エポキシ樹脂、
ビスフェノールF型エポキシ樹脂等のビスフェノール型
エポキシ樹脂、フェノールノボラック型エポキシ樹脂、
クレゾールノボラック型エポキシ樹脂等のノボラック型
エポキシ樹脂、トリフェノールメタン型エポキシ樹脂等
のトリフェノールアルカン型エポキシ樹脂及びその重合
物、ビフェニル型エポキシ樹脂、ジシクロペンタジエン
−フェノールノボラック型エポキシ樹脂、フェノールア
ラルキル型エポキシ樹脂、ナフタレン環含有エポキシ樹
脂、グリシジルエポキシ樹脂などを用いることができ
る。
The epoxy resin constituting the epoxy resin composition of the present invention may be any epoxy resin having at least two epoxy groups in one molecule, and specifically, a bisphenol A type epoxy resin ,
Bisphenol type epoxy resin such as bisphenol F type epoxy resin, phenol novolak type epoxy resin,
Novolak type epoxy resins such as cresol novolak type epoxy resin, triphenol alkane type epoxy resins such as triphenol methane type epoxy resin and polymers thereof, biphenyl type epoxy resin, dicyclopentadiene-phenol novolak type epoxy resin, phenol aralkyl type epoxy Resins, naphthalene ring-containing epoxy resins, glycidyl epoxy resins, and the like can be used.

【0018】これらのエポキシ樹脂は、その使用に当た
っては必ずしも1種類の使用に限定されるものではな
く、2種類又はそれ以上を混合して配合してもよい。
The use of these epoxy resins is not necessarily limited to one type, and two or more types may be mixed and compounded.

【0019】また、硬化剤は特に制限されるものではな
く、使用するエポキシ樹脂に応じて適宜選定することが
でき、例えばアミン系硬化剤、酸無水物系硬化剤、フェ
ノールノボラックなどのフェノール性水酸基を1個以上
有する各種フェノール樹脂硬化剤が挙げられるが、なか
でもフェノール樹脂硬化剤が組成物の成形性、低湿性の
面でより望ましく、好適に使用できる。なお、フェノー
ル樹脂硬化剤としては、具体的にフェノールノボラック
樹脂、クレゾールノボラック樹脂等のノボラック型フェ
ノール樹脂、ビスフェノールA、ビスフェノールF等の
ビスフェノール型樹脂、トリフェノールメタン等のトリ
フェノールアルカン型樹脂、フェノールアラルキル樹
脂、ナフタレン環含有フェノール樹脂、シクロペンタジ
エン含有フェノール樹脂、テルペン環含有フェノール樹
脂、ビフェニル型樹脂などが例示される。上記硬化剤の
配合量はエポキシ樹脂を硬化させ得る量で、通常使用さ
れる量とすることができ、フェノール樹脂硬化剤を用い
た場合、エポキシ樹脂中のエポキシ基に対する硬化剤中
のOH基との比がモル比で1:0.5〜1:1.5とな
るように配合することが好ましく、通常エポキシ樹脂1
00重量部に対して30〜120重量部、好ましくは4
0〜70重量部である。
The curing agent is not particularly limited, and can be appropriately selected depending on the epoxy resin used. Examples thereof include amine curing agents, acid anhydride curing agents, and phenolic hydroxyl groups such as phenol novolak. And various phenolic resin curing agents having at least one of the above. Among them, a phenolic resin curing agent is more desirable and more preferably used in view of moldability and low humidity of the composition. Specific examples of the phenol resin curing agent include novolak type phenol resins such as phenol novolak resin and cresol novolak resin, bisphenol type resins such as bisphenol A and bisphenol F, triphenol alkane type resins such as triphenol methane, and phenol aralkyl. Examples thereof include a resin, a naphthalene ring-containing phenol resin, a cyclopentadiene-containing phenol resin, a terpene ring-containing phenol resin, and a biphenyl-type resin. The compounding amount of the curing agent is an amount capable of curing the epoxy resin, and can be a commonly used amount. Is preferably mixed in a molar ratio of 1: 0.5 to 1: 1.5.
30 to 120 parts by weight, preferably 4 parts by weight, per 100 parts by weight
0 to 70 parts by weight.

【0020】また、エポキシ樹脂と硬化剤との反応を促
進させる目的で各種硬化促進剤、例えばイミダゾール
類、3級アミン類、ホスフィン系化合物、シクロアミジ
ン化合物などを配合することが望ましい。その配合量
は、特に制限されないが、通常全系に対して0.05〜
1重量%とすることが好ましい。
In order to accelerate the reaction between the epoxy resin and the curing agent, it is desirable to incorporate various curing accelerators, for example, imidazoles, tertiary amines, phosphine compounds, cycloamidine compounds and the like. The amount is not particularly limited, but is usually 0.05 to
It is preferably 1% by weight.

【0021】また更に、本発明では硬化物の応力を低下
させる目的で組成物中にシリコーン系ポリマーを配合し
てもよい。シリコーン系ポリマーを配合すると、硬化物
の熱衝撃テストにおけるパッケージクラックの発生を著
しく少なくすることが可能である。このシリコーン系ポ
リマーとしては、例えばエポキシ基、アミノ基、カルボ
キシル基、水酸基、ヒドロシリル基(Si−H基)、ビ
ニル基、アリル基等のアルケニル基などの官能性基を有
するシリコーンオイル(直鎖状、環状、分岐状のオルガ
ノポリシロキサン)、シリコーンレジン(三官能及び/
又は四官能性のシロキサン単位を含有する三次元網状構
造物)、シリコーンゴム(オルガノポリシロキサン架橋
弾性体)などやこれらのシリコーンポリマー(例えば、
分子中に上記官能性基を有する直鎖状ジオルガノポリシ
ロキサン)と有機重合体、例えば分子中にアルケニル基
等の官能性基を有する置換又は非置換のノボラック型の
フェノール樹脂あるいはエポキシ樹脂などとの共重合体
を挙げることができる。
Further, in the present invention, a silicone polymer may be blended in the composition for the purpose of reducing the stress of the cured product. When a silicone-based polymer is blended, the occurrence of package cracks in a thermal shock test of the cured product can be significantly reduced. Examples of the silicone polymer include silicone oils having a functional group such as an alkenyl group such as an epoxy group, an amino group, a carboxyl group, a hydroxyl group, a hydrosilyl group (Si-H group), a vinyl group and an allyl group (linear chain). , Cyclic and branched organopolysiloxanes), silicone resins (trifunctional and / or
Or a three-dimensional network structure containing tetrafunctional siloxane units), silicone rubber (organopolysiloxane crosslinked elastic body), and these silicone polymers (for example,
A linear diorganopolysiloxane having the above functional group in the molecule) and an organic polymer such as a substituted or unsubstituted novolac phenol resin or an epoxy resin having a functional group such as an alkenyl group in the molecule. Can be mentioned.

【0022】なお、シリコーン系ポリマーの添加量は特
に限定されないが、通常エポキシ樹脂と硬化剤との合計
量100重量部に対し1〜50重量部とすることが好ま
しい。
The amount of the silicone polymer to be added is not particularly limited, but is usually preferably 1 to 50 parts by weight based on 100 parts by weight of the total amount of the epoxy resin and the curing agent.

【0023】更に、本発明に用いる組成物には、従来公
知の各種無機質充填剤が用いられる。この充填剤として
は、通常エポキシ樹脂組成物に配合されるものを使用す
ることができる。具体的には、結晶性シリカ、溶融シリ
カ、窒化アルミニウム、窒化ケイ素、炭化ケイ素、アル
ミナ、ボロンナイトライド、酸化チタン、ガラス繊維な
どが挙げられ、なかでも溶融シリカが好適である。
Further, various known inorganic fillers are used in the composition used in the present invention. As the filler, those which are usually compounded in an epoxy resin composition can be used. Specifically, crystalline silica, fused silica, aluminum nitride, silicon nitride, silicon carbide, alumina, boron nitride, titanium oxide, glass fiber and the like can be mentioned. Among them, fused silica is preferable.

【0024】これら無機質充填剤の平均粒径や形状は特
に限定されないが、平均粒径(例えば、レーザー光回折
法などの手法による重量平均値として)が通常3〜30
μm、特には5〜20μmであるものが好ましく、また
高充填化やチップ表面に対する応力を小さくするため球
状のものが好ましく使用される。なお、無機質充填剤は
樹脂とその表面の結合強度を強くするため、予めシラン
カップリング剤、チタネートカップリング剤などのカッ
プリング剤で表面処理したものを使用することが低吸水
性、耐熱衝撃性及び耐クラック性を向上させる点で好ま
しい。
The average particle size and shape of these inorganic fillers are not particularly limited, but the average particle size (for example, as a weight average value by a method such as a laser diffraction method) is usually 3 to 30.
μm, particularly preferably 5 to 20 μm, and a spherical one is preferably used in order to increase the packing and reduce the stress on the chip surface. In order to increase the bonding strength between the resin and the surface of the inorganic filler, it is necessary to use a surface treatment that has been previously performed with a coupling agent such as a silane coupling agent or a titanate coupling agent. It is preferable from the viewpoint of improving crack resistance.

【0025】上記無機質充填剤は1種類を単独で使用し
ても2種類以上を併用してもよく、その配合量は特に制
限されないが、エポキシ樹脂組成物全体に対して70〜
95重量%、特に75〜92重量%の範囲とすることが
好ましい。充填剤量が70重量%に満たないと得られた
硬化物の膨張係数が大きくなってしまうため応力特性が
悪くなってしまう場合があり、95重量%を超えると成
形時の溶融粘度が高くなりすぎるためにボイド、未充填
などが発生する場合がある。
The above-mentioned inorganic fillers may be used alone or in combination of two or more. The amount of the inorganic filler is not particularly limited.
It is preferably in the range of 95% by weight, especially 75 to 92% by weight. If the amount of the filler is less than 70% by weight, the expansion coefficient of the obtained cured product becomes large, so that the stress characteristics may be deteriorated. If it exceeds 95% by weight, the melt viscosity at the time of molding becomes high. In some cases, voids, unfilled portions, etc. may occur due to too much.

【0026】本発明に用いる組成物には、更に必要によ
り各種の添加剤を配合することができ、例えばカルナバ
ワックスなどのワックス類、ステアリン酸などの脂肪酸
やその金属塩などの離型剤、有機ゴム系などの可撓性付
与剤、カーボンブラック、コバルトブルー、ベンガラな
どの顔料、酸化アンチモン、ハロゲン化合物などの難燃
化剤、γ−グリシドキシプロピルトリメトキシシランな
どのシランカップリング剤、老化防止剤、その他の添加
剤の1種類又は2種類以上を配合することができる。
The composition used in the present invention may further contain various additives, if necessary. For example, waxes such as carnauba wax, releasing agents such as fatty acids such as stearic acid and metal salts thereof, and organic compounds. Flexible agents such as rubbers, pigments such as carbon black, cobalt blue, red iron oxide, flame retardants such as antimony oxide and halogen compounds, silane coupling agents such as γ-glycidoxypropyltrimethoxysilane, aging One or more kinds of inhibitors and other additives can be blended.

【0027】本発明に用いるエポキシ樹脂組成物は上述
した成分の所定量を均一に撹拌、混合し、予め70〜9
5℃に加熱してあるニーダー、ロール、エクストルード
ミキサなどで、混練、冷却し、粉砕するなどの方法で得
ることができるが、特に押出し混練機を用いた溶融混合
法が好適に採用される。また、成分の配合順序には特に
制限はない。
In the epoxy resin composition used in the present invention, predetermined amounts of the above-mentioned components are uniformly stirred and mixed, and 70 to 9
It can be obtained by a method such as kneading, cooling and pulverizing with a kneader, roll, extruded mixer or the like heated to 5 ° C., but a melt mixing method using an extrusion kneader is particularly preferably used. . There is no particular limitation on the order of mixing the components.

【0028】ここで、半導体装置の封止を行う場合は、
従来より採用されている成形方法、例えばトランスファ
ー成形、注型法などを採用して行うことができる。この
場合、エポキシ樹脂組成物の成形温度は150〜180
℃、ポストキュアーは150〜200℃で2〜20時間
程度で行うことができる。前述したように、本発明の半
導体装置は接着性が良好であるため、上記リードフレー
ムに搭載されたIC、LSI、トランジスタ、ダイオー
ドなどの半導体装置として好適に使用することができ
る。
Here, when sealing the semiconductor device,
Conventional molding methods such as transfer molding and casting can be employed. In this case, the molding temperature of the epoxy resin composition is 150 to 180
Post-curing can be performed at 150 to 200 ° C. for about 2 to 20 hours. As described above, since the semiconductor device of the present invention has good adhesiveness, it can be suitably used as a semiconductor device such as an IC, an LSI, a transistor, and a diode mounted on the lead frame.

【0029】[0029]

【発明の効果】本発明によれば、銅材の表面に10〜1
000オングストロームの厚さのケイ素原子を8〜50
原子%含む銅合金の層を備えるリードフレームを用いた
ことにより、エポキシ樹脂組成物との接着性が改善され
た半導体装置を提供することができる。
According to the present invention, the surface of the copper material has a thickness of 10-1.
8 to 50 Angstroms thick silicon atom
By using a lead frame including a copper alloy layer containing at least atomic%, a semiconductor device with improved adhesion to an epoxy resin composition can be provided.

【0030】[0030]

【実施例】以下、実施例と比較例を示し、本発明を具体
的に説明するが、本発明は下記の実施例に制限されるも
のではない。
EXAMPLES The present invention will be described below in detail with reference to examples and comparative examples, but the present invention is not limited to the following examples.

【0031】〔実施例、比較例〕コルソン系銅材KLF
−1(神戸製鋼社製、Ni含有量3.4原子%、Si含
有量1.5原子%、Zn含有量0.3原子%)を用い
て、熱間圧延、焼鈍、研削、冷間圧延の工程を経て、K
LF−1銅フレームを得た(フレームGとする)。
[Examples and Comparative Examples] Kolson copper material KLF
Hot rolling, annealing, grinding, cold rolling using -1 (manufactured by Kobe Steel, Ni content 3.4 at%, Si content 1.5 at%, Zn content 0.3 at%) Through the process of K
An LF-1 copper frame was obtained (referred to as frame G).

【0032】このKLF−1銅フレームを、水素ガス
8.2体積%含むDXガス(CO27.0体積%、CO
10.2体積%、CH40.5体積%、N274体積%)
の雰囲気下、350℃で30分間還元処理を行った(フ
レームAとする)。
A DX gas containing 7.0 vol% of CO 2 , CO gas containing 8.2 vol% of hydrogen gas,
10.2 vol%, CH 4 0.5% by volume, N 2 74 vol%)
Under an atmosphere of 350 ° C. for 30 minutes (referred to as frame A).

【0033】同様に、KLF−1銅フレームを水素ガス
75体積%含むAXガス(N225体積%)の雰囲気
下、250℃で60分間還元処理を行った(フレームB
とする)。
Similarly, a reduction treatment was performed at 250 ° C. for 60 minutes in an atmosphere of AX gas (25% by volume of N 2 ) containing 75% by volume of a KLF-1 copper frame in hydrogen gas (Frame B).
And).

【0034】更に同様に、KLF−1銅フレームを水素
ガス75体積%含むAXガス(N225体積%)の雰囲
気下、350℃で15分間還元処理を行った(フレーム
Cとする)。
Similarly, a reduction treatment was performed at 350 ° C. for 15 minutes in an atmosphere of an AX gas (25% by volume of N 2 ) containing a KLF-1 copper frame of 75% by volume of hydrogen gas (referred to as a frame C).

【0035】同様に、KLF−1銅フレームを水素ガス
75体積%含むAXガス(N225体積%)の雰囲気
下、350℃で60分間還元処理を行った(フレームD
とする)。
Similarly, a reduction treatment was performed at 350 ° C. for 60 minutes in an atmosphere of AX gas (25% by volume of N 2 ) containing 75% by volume of a KLF-1 copper frame in hydrogen gas (Frame D).
And).

【0036】同様に、KLF−1銅フレームを水素ガス
75体積%含むAXガス(N225体積%)の雰囲気
下、500℃で1分間還元処理を行った(フレームEと
する)。
Similarly, a reduction treatment was performed at 500 ° C. for 1 minute in an atmosphere of AX gas (25% by volume of N 2 ) containing 75% by volume of a KLF-1 copper frame in a hydrogen gas (referred to as frame E).

【0037】また、コルソン系銅材NK164(日本マ
イニング社製、Ni含有量1.7原子%、Si含有量
0.9原子%、Zn含有量0.4原子%)を用いて、熱
間圧延、焼鈍、研削、冷間圧延の工程を経て、NK16
4銅フレームを得た(フレームHとする)。
Hot rolling was carried out using Corson copper material NK164 (manufactured by Nippon Mining Co., Ni content 1.7 at%, Si content 0.9 at%, Zn content 0.4 at%). Through the processes of annealing, grinding and cold rolling, NK16
A 4 copper frame was obtained (referred to as frame H).

【0038】このNK164銅フレームを、水素ガス7
5体積%含むAXガス(N225体積%)の雰囲気下、
400℃で30分間還元処理を行った(フレームFとす
る)。
The NK164 copper frame was supplied with hydrogen gas 7
Under the atmosphere of AX gas (25% by volume of N 2 ) containing 5% by volume,
A reduction treatment was performed at 400 ° C. for 30 minutes (referred to as frame F).

【0039】次に、これらの銅フレームA〜Fの表面を
X線ワイドスキャンスペクトルで表面分析を行ったとこ
ろ、ケイ素原子を10原子%以上含有していた。その結
果を表1に示す。
Next, when the surfaces of these copper frames A to F were subjected to a surface analysis using an X-ray wide scan spectrum, they contained 10 atom% or more of silicon atoms. Table 1 shows the results.

【0040】更に、この銅材をArスパッタにより25
オングストローム表面を除去し、X線ワイドスキャンス
ペクトルで表面分析を行った。その結果を表1に併記す
る。
Further, this copper material was 25
The angstrom surface was removed, and the surface was analyzed using an X-ray wide scan spectrum. The results are also shown in Table 1.

【0041】また、上記銅リードフレームを用い、下記
方法でエポキシ樹脂組成物の硬化物との密着性を測定し
た。結果を表1に併記する。エポキシ樹脂組成物 エポキシ樹脂組成物としては以下のものを用いた。な
お、以下の組成で部とあるのは重量部のことである。
Using the above copper lead frame, the adhesion to the cured product of the epoxy resin composition was measured by the following method. The results are also shown in Table 1. Epoxy resin composition The following were used as the epoxy resin composition. In the following composition, “parts” means “parts by weight”.

【0042】エポキシ当量198、軟化温度80℃のエ
ポキシ化クレゾールノボラック樹脂51部、エポキシ当
量280の臭素化エポキシ化フェノールノボラック樹脂
6部、下記式(1)で示される化合物60部と下記式
(2)で示される化合物40部との反応生成物10部、
溶融シリカ(平均粒径15μm)450部、三酸化アン
チモン10部、カルナバワックス1.2部、γ−グリシ
ドキシプロピルトリメトキシシラン1.0部、カーボン
ブラック1.0部及びフェノール当量110、軟化温度
90℃のフェノールノボラック樹脂33部、トリフェニ
ルホスフィン0.65部を80℃のミキシングロールで
5分間溶融混合した後、シート状にして取り出し、これ
を冷却してエポキシ樹脂組成物を得た。
An epoxy equivalent of 198, a softening temperature of 80 ° C., 51 parts of epoxidized cresol novolak resin, an epoxy equivalent of 280, 6 parts of a brominated epoxidized phenol novolak resin, 60 parts of a compound represented by the following formula (1) and the following formula (2) 10 parts of a reaction product with 40 parts of a compound represented by the formula:
450 parts of fused silica (average particle size 15 μm), 10 parts of antimony trioxide, 1.2 parts of carnauba wax, 1.0 part of γ-glycidoxypropyltrimethoxysilane, 1.0 part of carbon black and phenol equivalent weight 110, softening 33 parts of a phenol novolak resin at a temperature of 90 ° C. and 0.65 parts of triphenylphosphine were melt-mixed for 5 minutes using a mixing roll at an temperature of 80 ° C., then taken out into a sheet, and cooled to obtain an epoxy resin composition.

【0043】[0043]

【化1】 Embedded image

【0044】樹脂の密着性 前記銅フレームから樹脂密着性評価試験のための試験片
(20×20×0.3mm)を切り出し、これに上記エ
ポキシ樹脂組成物を用いて図2の(A)、(B)に示す
形状の樹脂ブロックを175℃で2分間成形し、作成し
た。得られた樹脂ブロックを180℃で4時間ポストキ
ュアーし、剪断接着力を測定した。なお、図中11はリ
ードフレーム、12は樹脂ブロック(底面の直径3.5
68mm、頂面の直径3mm、高さ3mm)を示す。吸湿後の密着性(耐IRリフロー) 上記銅リードフレームで14×20×1.2mmの64
PIN−QFPフレームを作成し、8.0×10.0×
0.3mmの大きさのシリコンチップを銀ペーストで接
着させ、これにエポキシ樹脂組成物を175℃、70k
gf/cm2、成形時間2分で成形し、180℃で4時
間ポストキュアーした。このパッケージを85℃×85
%Rhの雰囲気中168時間放置して吸湿処理を行った
後、これを240℃赤外線リフロー炉を通過させ、この
ときのクラックの発生したパッケージ数を調べた(n=
8)。
[0044] From adhesion the copper frame of the resin cut specimens for the resin adhesion evaluation test (20 × 20 × 0.3mm), this by using the epoxy resin composition of FIG. 2 (A), A resin block having the shape shown in (B) was formed by molding at 175 ° C. for 2 minutes. The obtained resin block was post-cured at 180 ° C. for 4 hours, and the shear adhesive strength was measured. In the figure, 11 is a lead frame, 12 is a resin block (3.5 mm in diameter at the bottom).
68 mm, top surface diameter 3 mm, height 3 mm). Adhesion after moisture absorption (IR reflow resistance) 14 × 20 × 1.2 mm 64 with the above copper lead frame
Create a PIN-QFP frame and make it 8.0 × 10.0 ×
A silicon chip having a size of 0.3 mm is adhered with a silver paste, and an epoxy resin composition is added thereto at 175 ° C. and 70 k.
Molding was performed at gf / cm 2 for 2 minutes, and post-curing was performed at 180 ° C. for 4 hours. 85 ° C x 85
After leaving it in a% Rh atmosphere for 168 hours to perform a moisture absorption process, it was passed through an infrared reflow furnace at 240 ° C., and the number of cracked packages at this time was examined (n =
8).

【0045】[0045]

【表1】 [Table 1]

【図面の簡単な説明】[Brief description of the drawings]

【図1】半導体装置の一例を示す概略図である。FIG. 1 is a schematic view illustrating an example of a semiconductor device.

【図2】樹脂ブロックを示し、(A)は平面図、(B)
は樹脂ブロックをフレームに接着した状態の断面図であ
る。
FIG. 2 shows a resin block, wherein (A) is a plan view and (B)
FIG. 3 is a cross-sectional view of a state where a resin block is bonded to a frame.

【符号の説明】[Explanation of symbols]

1 半導体素子 2 リードフレーム 3 ダイボンディング剤 4 ワイヤー 5 エポキシ樹脂組成物の硬化物 11 フレーム 12 樹脂ブロック REFERENCE SIGNS LIST 1 semiconductor element 2 lead frame 3 die bonding agent 4 wire 5 cured product of epoxy resin composition 11 frame 12 resin block

フロントページの続き (72)発明者 野口 直也 群馬県安中市磯部2丁目13番1号 信越化 学工業株式会社磯部工場内Continued on the front page (72) Inventor Naoya Noguchi 2-13-1, Isobe, Annaka-shi, Gunma Shin-Etsu Chemical Co., Ltd. Isobe Plant

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 銅材により形成され、該銅材の表層に、
10〜1000オングストロームの厚さのケイ素原子を
8〜50原子%含む銅合金層を有することを特徴とする
リードフレーム。
Claims: 1. A copper material formed on a surface layer of a copper material,
A lead frame having a copper alloy layer having a thickness of 10 to 1000 angstroms and containing 8 to 50 atomic% of silicon atoms.
【請求項2】 銅材により形成され、該銅材の表層に、
10〜1000オングストロームの厚さのケイ素原子を
8〜50原子%含む銅合金層を有するリードフレーム
が、エポキシ樹脂と硬化剤と無機質充填剤とを含有して
なるエポキシ樹脂組成物の硬化物により封止されたこと
を特徴とする半導体装置。
2. Formed by a copper material, a surface layer of the copper material,
A lead frame having a copper alloy layer having a thickness of 10 to 1000 angstroms and containing 8 to 50 atomic% of silicon atoms is sealed with a cured product of an epoxy resin composition containing an epoxy resin, a curing agent and an inorganic filler. A semiconductor device characterized by being stopped.
JP9184498A 1997-06-25 1997-06-25 Lead frame and semiconductor device using the same Pending JPH1117097A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9184498A JPH1117097A (en) 1997-06-25 1997-06-25 Lead frame and semiconductor device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9184498A JPH1117097A (en) 1997-06-25 1997-06-25 Lead frame and semiconductor device using the same

Publications (1)

Publication Number Publication Date
JPH1117097A true JPH1117097A (en) 1999-01-22

Family

ID=16154247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9184498A Pending JPH1117097A (en) 1997-06-25 1997-06-25 Lead frame and semiconductor device using the same

Country Status (1)

Country Link
JP (1) JPH1117097A (en)

Similar Documents

Publication Publication Date Title
JPH04342719A (en) Epoxy resin composition and semiconductor device
WO2006011662A1 (en) Epoxy resin composition and semiconductor device
JP4692885B2 (en) Epoxy resin composition and semiconductor device
JPH04300914A (en) Epoxy resin composition and semiconductor device
JP4736432B2 (en) Epoxy resin composition and semiconductor device
JPH06102714B2 (en) Epoxy resin composition and semiconductor device
JPH05148411A (en) Thermosetting resin composition and semiconductor device
JPH06102715B2 (en) Epoxy resin composition and semiconductor device
JP2768088B2 (en) Thermosetting resin composition and semiconductor device
JP3479812B2 (en) Epoxy resin composition and semiconductor device
JP4281104B2 (en) Resin composition and electronic component device
JPH08157696A (en) Epoxy resin composition and semiconductor device
JP2658755B2 (en) Epoxy resin composition and semiconductor device
JP2658752B2 (en) Epoxy resin composition and semiconductor device
JPH1117097A (en) Lead frame and semiconductor device using the same
JPH05206331A (en) Resin composition for sealing semiconductor
JPH09143345A (en) Epoxy resin composition
JPH04300915A (en) Epoxy resin composition and semiconductor device
JP2862777B2 (en) Epoxy resin composition
JP2843247B2 (en) Epoxy resin composition
JP2783116B2 (en) Epoxy resin composition and semiconductor device
JP3093051B2 (en) Epoxy resin composition
JP3225745B2 (en) Epoxy resin composition and semiconductor device
JPH07238147A (en) Epoxy resin composition and semiconductor device
JP2954413B2 (en) Epoxy resin composition

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040331

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040811