JPH1117066A - Substrate for mounting semiconductor chip - Google Patents

Substrate for mounting semiconductor chip

Info

Publication number
JPH1117066A
JPH1117066A JP17010197A JP17010197A JPH1117066A JP H1117066 A JPH1117066 A JP H1117066A JP 17010197 A JP17010197 A JP 17010197A JP 17010197 A JP17010197 A JP 17010197A JP H1117066 A JPH1117066 A JP H1117066A
Authority
JP
Japan
Prior art keywords
semiconductor chip
substrate
copper
thermal expansion
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17010197A
Other languages
Japanese (ja)
Inventor
Toshihiko Kira
俊彦 吉良
Shoji Kamiya
荘司 神谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiho Kogyo Co Ltd
Original Assignee
Taiho Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiho Kogyo Co Ltd filed Critical Taiho Kogyo Co Ltd
Priority to JP17010197A priority Critical patent/JPH1117066A/en
Publication of JPH1117066A publication Critical patent/JPH1117066A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/05Insulated conductive substrates, e.g. insulated metal substrate
    • H05K1/053Insulated conductive substrates, e.g. insulated metal substrate the metal substrate being covered by an inorganic insulating layer

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the strain at the junction interface to hold good radiation characteristics, by adding ceramics or metal grains having a less thermal expansion to Cu. SOLUTION: A substrate is composed of at least two plates having different thermal expansion coefficients i.e., a sintered plate composed of Cu or Cu alloy grains 20-70 vol.% and at least one kind of grains selected among ceramics and metals having smaller thermal expansion coefficients than that of Cu and ceramic plate. The metal is selected among Mo, W and Si. This reduces the thermal expansion coefficient difference between the ceramics and the metal for the metal substrate, and hence reduces the strain at the junction interface to hold good radiation characteristics.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体チップ搭載
用基板、特に放熱板に関するものである。
The present invention relates to a substrate for mounting a semiconductor chip, and more particularly to a heat sink.

【0002】[0002]

【従来の技術】パワー半導体装置におけるパッケージ構
造として、銅板上に、Al23 セラミックス板、Mo
層及びシリコン半導体をそれぞれろう付けにより接合す
る構造は公知である。これらのパッケージ構造におい
て、半導体デバイスの高密度化、高速化及び高出力化に
伴う発熱量増大に対応するため基板材料の放熱特性の向
上が要求されており、これに応じるべくAlN基板を銅
板に接合する構造も公知である。
2. Description of the Related Art As a package structure in a power semiconductor device, an Al 2 O 3 ceramic plate, Mo
A structure in which a layer and a silicon semiconductor are joined by brazing is known. In these package structures, it is required to improve the heat radiation characteristics of the substrate material in order to cope with the increase in the amount of heat generated by the increase in the density, speed, and output of the semiconductor device. Bonding structures are also known.

【0003】銅とAlN,Al23 の熱膨張率及び熱
伝導率は以下のとおりである。熱膨張率(10-6/K) 熱伝導率(W/mK) Cu 16.5 398 AlN 5.1 200 Al23 7.2 20
The coefficients of thermal expansion and thermal conductivity of copper, AlN, and Al 2 O 3 are as follows. Coefficient of thermal expansion (10 −6 / K) Thermal conductivity (W / mK) Cu 16.5 398 AlN 5.1 200 Al 2 O 3 7.2 20

【0004】[0004]

【発明が解決しようとする課題】繰返し熱負荷を受ける
セラミックスと金属系基板の接合体においては、それぞ
れの材料の熱膨張係数の違いにより界面近傍で歪み及び
応力が発生し、接合強度の低下や損傷が起こる。そこで
金属系基板としては、セラミックスとの熱膨張差が小さ
く、しかも放熱特性を良好にするためには熱伝導率が高
いことが必要である。したがって、本発明はかかる要請
に応えることができる金属系基板を提供することを目的
とする。
In a joined body of a ceramic and a metal-based substrate subjected to repeated thermal loads, strain and stress are generated near the interface due to the difference in the thermal expansion coefficients of the respective materials. Damage occurs. Therefore, a metal-based substrate needs to have a small difference in thermal expansion from ceramics and high thermal conductivity in order to improve heat radiation characteristics. Therefore, an object of the present invention is to provide a metal-based substrate that can meet such a demand.

【0005】[0005]

【課題を解決するための手段】かかる目的を達成するた
めに、本発明は、熱膨張係数が異なる少なくとも2枚の
板を接合してなる半導体チップ搭載用基板において、前
記少なくとも2枚の板が、銅または銅合金と20〜70
体積%の,Cuより熱膨張係数が小さいセラミックス及
び金属からなる群から選択された少なくとも1種の粒子
からなる焼結材の板、及びセラミックス板を含んなるこ
とを特徴とする半導体チップ搭載用基板を提供する。本
発明の金属系基板は、セラミックスと金属(放熱板)の
熱膨張の差を小さくするために、銅中に添加剤として熱
膨張が小さいセラミックス、金属粒子の添加を行ったも
のである。
In order to achieve the above object, the present invention provides a semiconductor chip mounting board comprising at least two boards having different thermal expansion coefficients joined to each other, wherein the at least two boards have different thermal expansion coefficients. , Copper or copper alloy and 20-70
A substrate for mounting a semiconductor chip, comprising: a volume% of a sintered material plate comprising at least one kind of particles selected from the group consisting of ceramics and metals having a smaller coefficient of thermal expansion than Cu; and a ceramic plate. I will provide a. The metal-based substrate of the present invention is obtained by adding ceramics and metal particles having low thermal expansion to copper as an additive in order to reduce the difference in thermal expansion between ceramics and metal (radiator plate).

【0006】かかる複合材料の内セラミックス粒子が添
加材の場合について説明すると、銅粒子はその熱膨張係
数αcuで、一方セラミックスはその熱膨張係数αcer
(αcer <αcu)で膨張する。この場合複合材料が、下
記の前提を満足すると、その熱膨張係数は αcomp=αcu・vcu+αcer ・vcer ・・・・・・ と表される(ここでvcuは銅の体積率、vcer はセラミ
ックスの体積率である)。したがって、αcomp<αcu
なる。但し、セラミックス及び銅粒子は十分に微細であ
りかつ相互に十分に均一に分散した、空孔が非常に小さ
い焼結材料を構成していることが必要である。この要請
を満たさない焼結材料は、セラミックスと銅粒子が局部
的に偏析しているかあるいは粒子が粗大であると、銅粒
子とセラミックス粒子の間に歪みが発生し複合材料全体
として均一な膨張を示さない。また空孔が非常に大きい
かあるいは多いと、各材料の熱膨張は空孔の縮小に費や
されるので材料は上記式よりかなり少ない熱膨張を示
す。
[0006] Explaining the case where the ceramic particles in the composite material are the additive, the copper particles have a coefficient of thermal expansion α cu , while the ceramics have a coefficient of thermal expansion α cer.
cercu ). In this case, when the composite material satisfies the following premise, its thermal expansion coefficient is expressed as α comp = α cu · v cu + α cer · v cer (where v cu is the volume of copper) Rate, v cer is the volume fraction of the ceramic). Therefore, α compcu . However, it is necessary that the ceramics and the copper particles are sufficiently fine and form a sintered material having extremely small pores, which are sufficiently uniformly dispersed in each other. In a sintered material that does not satisfy this requirement, if the ceramic and copper particles are locally segregated or the particles are coarse, distortion occurs between the copper particles and the ceramic particles and uniform expansion of the entire composite material occurs. Not shown. Also, if the pores are very large or large, the material will exhibit significantly less thermal expansion than the above equation since the thermal expansion of each material will be spent on pore reduction.

【0007】銅または銅合金は粒径が1〜100μmで
あることが好ましい。銅合金としては,脱酸元素であり
かつ、セラミックとの焼結の際液相を発生して焼結を促
進するPを添加することができ、その他にSn,Pb,
Znなども添加することができる。これらの添加元素は
1〜20重量%の範囲で適宜添加することができる。ま
た、これらのSn,Pb,Znは、特に金属形態で銅粉
末と混合すると空孔を発生させない効果もある。
The copper or copper alloy preferably has a particle size of 1 to 100 μm. As a copper alloy, P, which is a deoxidizing element and generates a liquid phase during sintering with ceramic to promote sintering, can be added. In addition, Sn, Pb,
Zn and the like can also be added. These additional elements can be appropriately added in the range of 1 to 20% by weight. These Sn, Pb, and Zn also have an effect of not generating vacancies, especially when mixed with copper powder in a metal form.

【0008】銅(合金)に複合するセラミックスとして
は、上記したAlN,Al23 の他に、熱膨張係数が
3,7×10-6であり、熱伝導率が270W/mKのS
iCも使用することができる。これらの例に示されるよ
うにセラミックスとしては熱膨張係数がCuの1/2以
下であり、かつ10-6であり、熱伝導率が20W/mK
以上の化合物もしくは金属間化合物系物質を使用するこ
とができる。次に、金属としては熱膨張係数が4.2×
10-6であり、熱伝導率が115.50W/mKのS
i、熱膨張係数が5.1×10-6であり、熱伝導率が1
50W/mKのMo,熱膨張係数が4.3×10-6であ
り、熱伝導率が163W/mKのWなどを使用すること
ができる。但し、Siは焼結中に銅と合金を作り易いの
で、粒径を大きくして粒子形態を焼結後も保持するよう
にする必要がある。これらの金属もしくはセラミックス
の割合は20〜70体積%であることが必要である。こ
の割合が20%未満では熱膨張係数低下の効果が少な
く、また70%を超えると熱伝導度が低下する。好まし
い割合は30〜60体積%である。セラミックス及び金
属は粒径が1〜100μmであることが好ましい。
As ceramics composited with copper (alloy), in addition to the above-mentioned AlN and Al 2 O 3 , ceramics having a thermal expansion coefficient of 3.7 × 10 -6 and a thermal conductivity of 270 W / mK are used.
iC can also be used. As shown in these examples, the ceramic has a coefficient of thermal expansion of 1/2 or less of Cu and 10 -6 and a thermal conductivity of 20 W / mK.
The above compounds or intermetallic compound-based substances can be used. Next, as a metal, the coefficient of thermal expansion is 4.2 ×
10 −6 and a thermal conductivity of 115.50 W / mK
i, the coefficient of thermal expansion is 5.1 × 10 -6 and the thermal conductivity is 1
Mo of 50 W / mK, a thermal expansion coefficient of 4.3 × 10 −6 , and a thermal conductivity of 163 W / mK can be used. However, since Si easily forms an alloy with copper during sintering, it is necessary to increase the particle size so that the particle form is maintained after sintering. The proportion of these metals or ceramics must be 20 to 70% by volume. If this ratio is less than 20%, the effect of lowering the thermal expansion coefficient is small, and if it exceeds 70%, the thermal conductivity is reduced. A preferred ratio is 30 to 60% by volume. Ceramics and metals preferably have a particle size of 1 to 100 μm.

【0009】続いて、焼結材の製造法を説明する。まず
金属系粉末とセラミックス粉末を混合する。銅合金粉末
を使用する場合、銅粉末の調製法としては、(a)最終
合金組成の粉末を用意する方法、(b)銅粉末とSnな
どの金属元素の粉末を用意し焼結中に合金化する方法、
(c)銅粉末、予備合金銅粉末(Sn含有量が最終組成
より高いCu−Sn合金粉末)、Snなどの金属粉末を
用意し焼結中に合金化する方法、(d)表面にSnの無
電解めっきした銅合金粉末を用意する方法などを採用す
ることができる。銅(合金)粒子とセラミックスなどの
粒子の均一分散の程度は、粒径がほぼ同じ銅(合金)粒
子とセラミックスなどの粒子をV型ブレンダーで30分
以上、ボールミルで10分以上混合することにより実現
することができる。
Next, a method for producing a sintered material will be described. First, a metal powder and a ceramic powder are mixed. When a copper alloy powder is used, the method of preparing the copper powder is as follows: (a) a method of preparing a powder having a final alloy composition; How to
(C) a method of preparing a copper powder, a pre-alloyed copper powder (Cu-Sn alloy powder having a higher Sn content than the final composition), a metal powder such as Sn, and alloying during sintering; A method of preparing electroless-plated copper alloy powder or the like can be adopted. The degree of uniform dispersion of copper (alloy) particles and particles of ceramics and the like can be determined by mixing copper (alloy) particles and particles of ceramics and the like having substantially the same particle size in a V-type blender for 30 minutes or more and in a ball mill for 10 minutes or more. Can be realized.

【0010】焼結は圧粉と焼結を別に行う通常の焼結法
により行うことができる。但し、圧粉と焼結は繰り返す
ことが好ましい。圧粉圧力は焼結前には4〜8ton/
cm2 、焼結後は1〜10ton/cm2 の圧力で行う
が、焼結回数ととも圧力を高めて、最終焼結前に6〜1
0ton/cm2 とすることが好ましい。なお、ホット
プレス法、熱間押出し法などの広義の焼結法でも所望の
高密度が得られるが、通常の焼結法でも十分に高い密度
を得ることができる。但し、上下面もしくは片面に金属
板をのせ、一体焼結するときは圧粉の前に仮焼結を行っ
たほうが、金属板のはがれが少ない。焼結温度は800
〜950℃が好ましい。ここで、上記の(b)〜(d)
を採用すると焼結温度より低温で液相が発生して焼結が
促進する効果がある。発生した液相は焼結温度ではほと
んど銅粒子と合金化され、一部は粒子界面に残存する。
焼結後に行う圧粉は焼結空孔を縮小して密度を高めると
ともに、銅合金粒子とセラミック粒子の接合面を増大し
て次の焼結におけるこれら粒子間の反応を高め、銅合金
粒子がセラミックス粒子を結合する役割を高める。この
ような方法により密度が理論密度に対して95%以上の
焼結体を得ることができる。
The sintering can be carried out by a usual sintering method in which the compacting and the sintering are performed separately. However, it is preferable to repeat the compacting and the sintering. The compacting pressure is 4 to 8 ton /
cm 2, after sintering is carried out at a pressure of 1~10ton / cm 2, to enhance the sintering times together with pressure, prior to final sintering 6-1
Preferably, it is 0 ton / cm 2 . Although a desired high density can be obtained by a sintering method in a broad sense such as a hot press method or a hot extrusion method, a sufficiently high density can be obtained by a normal sintering method. However, when the metal plate is placed on the upper and lower surfaces or on one surface and sintering is performed integrally, temporary sintering is performed before compacting, so that the metal plate is less likely to peel off. Sintering temperature is 800
~ 950 ° C is preferred. Here, the above (b) to (d)
Adopting has the effect of promoting the sintering by generating a liquid phase at a temperature lower than the sintering temperature. The generated liquid phase is almost alloyed with the copper particles at the sintering temperature, and a part thereof remains at the particle interface.
The compacting performed after sintering reduces the sintering pores to increase the density, and also increases the bonding surface between the copper alloy particles and the ceramic particles to enhance the reaction between these particles in the next sintering, and the copper alloy particles Enhance the role of binding ceramic particles. By such a method, a sintered body having a density of 95% or more of the theoretical density can be obtained.

【0011】なお、焼結板がセラミックス板と接する側
でのセラミックス含有比率vcer を高くすることにより
両板界面での熱膨張差をさらに小さくすることができ
る。セラミックス含有比率vcer を厚さ方向に変化させ
るためには粉末充填時にvcerが異なる粉末を順次充填
するか、もしくは予備焼結でセラミックス含有率Vcer
が異なる板を複数枚の板を作り、これらを圧粉もしくは
ホットプレスし、その後焼結する方法を採用することが
できる。
The difference in thermal expansion between the two plates can be further reduced by increasing the ceramic content ratio v cer on the side where the sintered plate contacts the ceramic plate. In order to change the ceramic content ratio v cer in the thickness direction, powders having different v cers are sequentially filled at the time of powder filling, or the ceramic content ratio V cer is obtained by pre-sintering.
However, it is possible to adopt a method in which a plurality of plates are prepared from different plates, these are pressed or hot pressed, and then sintered.

【0012】続いて、本発明に係る焼結材の使用法を説
明する。本発明の焼結材ははんだまたはろうによりAl
N,Al23 などのセラミックス板と接合して使用さ
れ、特に従来の銅板に代わる放熱板として一面を表出さ
せて好ましく使用することができる。焼結板の表面に一
体焼結した純銅などの金属板を用いるとさらに放熱面の
放熱性が向上する。また焼結材の欠け等がなく、材料強
度も向上する。焼結材の厚さは1〜10mmの範囲とす
ることが望ましい。焼結材の片面又は両面に金属板が固
着されたものについて、金属板の厚さは、焼結材が含有
するセラミックスの量が20体積%の場合は全体の厚さ
の10%以下、70体積%の場合は全体の厚さの50%
以下が望ましい。以下、実施例により本発明をより詳し
く説明する。
Next, the method of using the sintered material according to the present invention will be described. The sintered material of the present invention is made of Al
It is used by being bonded to a ceramic plate such as N, Al 2 O 3, etc., and it can be preferably used by exposing one side as a heat sink instead of a conventional copper plate. The use of a metal plate such as pure copper integrally sintered on the surface of the sintered plate further improves the heat radiation of the heat radiation surface. Further, there is no chipping of the sintered material and the material strength is improved. It is desirable that the thickness of the sintered material be in the range of 1 to 10 mm. When the metal plate is fixed to one or both surfaces of the sintered material, the thickness of the metal plate is 10% or less of the total thickness when the amount of the ceramic contained in the sintered material is 20% by volume. 50% of the total thickness in the case of volume%
The following is desirable. Hereinafter, the present invention will be described in more detail with reference to examples.

【0013】[0013]

【実施例】銅粉末(平均粒径30μm),銅−リン合金
粉末(平均粒径10μm),すず粉末(平均粒径15μ
m),鉛粉末(平均粒径20μm),亜鉛末粉末(平均
粒径15μm)、SiC粉末(平均粒径20μm),A
lN粉末(平均粒径10μm)、Al23 粉末(平均
粒径20μm),W粉末(平均粒径20μm)、Mo粉
末(平均粒径20μm)、Si粉末(平均粒径30μ
m)を表1に示す組成になるように配合し、V型ブレン
ダーで30分間混合した。なお、セラミックス粒子の割
合(Vf )はタップ密度で測定した各粉末のみかけ密度
を基に計算した。混合粉をステンレス製有底型の凹部に
詰め、表面をはんだ付けのための銅板(厚さ0.03〜
0.3mm)で覆った。その後水素気流中での800℃
で予備焼結;1〜2t/cm2 の圧力での中間圧粉に続
く水素気流中での800℃で中間焼結;6t/cm2
圧力での圧粉に続く水素気流中での800℃での最終焼
結を順次行った。得られた焼結板は厚さが2mm、密度
比が96%であった。焼結材の熱膨張係数を20〜30
0℃で測定した結果を表1に示す。熱膨張係数の測定は
上下の銅板を切削除去した試料を使い、また銅版がつい
たままのもの(B)と、除去したもの(A)をそれぞれ
について曲げ強度を測定した結果を図2に示す。
EXAMPLES Copper powder (average particle size 30 μm), copper-phosphorus alloy powder (average particle size 10 μm), tin powder (average particle size 15 μm)
m), lead powder (average particle size 20 μm), zinc dust powder (average particle size 15 μm), SiC powder (average particle size 20 μm), A
1N powder (average particle diameter 10 μm), Al 2 O 3 powder (average particle diameter 20 μm), W powder (average particle diameter 20 μm), Mo powder (average particle diameter 20 μm), Si powder (average particle diameter 30 μm)
m) was blended to have the composition shown in Table 1 and mixed for 30 minutes in a V-type blender. The ratio (V f ) of the ceramic particles was calculated based on the apparent density of each powder measured at the tap density. The mixed powder is packed into a stainless steel bottomed concave portion, and the surface is coated with a copper plate (0.03-
0.3 mm). Then 800 ° C in a hydrogen stream
800 at 6t / cm followed powder in 2 pressure hydrogen stream; in presintering; 1~2t / cm intermediate sintered at 800 ° C. in a hydrogen stream in following the intermediate powder in second pressure Final sintering at <RTIgt; The obtained sintered plate had a thickness of 2 mm and a density ratio of 96%. The coefficient of thermal expansion of the sintered material is 20-30.
Table 1 shows the results measured at 0 ° C. The coefficient of thermal expansion was measured using a sample obtained by cutting and removing the upper and lower copper plates. FIG. 2 shows the results of measuring the bending strength of each of the sample with the copper plate attached (B) and the sample with the copper plate removed (A). .

【0014】[0014]

【表1】 銅(合金)粒子 セラミックス粒子 熱膨張係数 種類 割合(Vf )% (×10-6/K) 純銅 SiC 30 12.7 純銅 SiC 50 10.4 純銅 SiC 64 8.7 Cu−5%Sn SiC 50 10.8 Cu−10%Sn SiC 50 11.5 Cu−5%Pb SiC 50 10.9 Cu−10%Pb SiC 50 11.6 Cu−20%Zn SiC 50 11.7 Cu− 5%Zn SiC 50 10.7 Cu−0.1%P SiC 50 10.7 純銅 AlN 50 11.0 純銅 Al23 50 11.8 純銅 W 50 10.5 純銅 Mo 50 11.1 純銅 Si 50 10.7 [Table 1] Copper (alloy) particles Ceramic particles Thermal expansion coefficient Kind Ratio (V f )% (× 10 −6 / K) Pure copper SiC 30 12.7 Pure copper SiC 50 10.4 Pure copper SiC 64 8.7 Cu-5% Sn SiC 50 10.8 Cu-10% Sn SiC 50 11.5 Cu-5% Pb SiC 50 10.9 Cu-10% Pb SiC 50 11.6 Cu-20% Zn SiC 50 11.7 Cu-5% Zn SiC 50 10.7 Cu-0.1% P SiC 50 10.7 Pure copper AlN 50 11.0 Pure copper Al 2 O 3 50 11.8 Pure copper W 50 10.5 Pure copper Mo 50 11.1 Pure copper Si 50 10.7

【0015】表1に示すように、純銅の熱膨張率である
16.5×10-6よりも低い値が得られる。
As shown in Table 1, a value lower than the thermal expansion coefficient of pure copper of 16.5 × 10 −6 is obtained.

【0016】図1は、SiC複合銅の熱膨張率を式に
より計算した値と実測値を示し、これらは良く一致して
いることを示す。また、実測値が計算値より僅かに高く
なり、かつこの差がSiC体積率(Vf )が大きいほど
大きくなっているが、これはSiC/Cu接合界面に欠
陥があり、不完全界面となっているためと考えられる。
FIG. 1 shows the calculated values of the thermal expansion coefficient of the SiC composite copper according to the formulas and the measured values, which show that they are in good agreement. In addition, the measured value is slightly higher than the calculated value, and the difference increases as the SiC volume ratio (V f ) increases. This is because the SiC / Cu joint interface has a defect and becomes an incomplete interface. It is thought that it is.

【0017】また、純銅−50%SiCの焼結体、及
び、純銅−50%SiC粉末を純銅へ一体焼結した板に
ついて、それぞれ曲げ強度を測定した。その結果を図2
に示した。銅板を有する焼結体では、曲げ強度が向上す
ることが明らかとなった。また、SiCが欠けなどによ
る欠陥もみられなかった。
The bending strength of a sintered body of pure copper-50% SiC and a plate obtained by integrally sintering pure copper-50% SiC powder into pure copper were measured. Figure 2 shows the result.
It was shown to. It became clear that the bending strength was improved in the sintered body having the copper plate. Also, no defects such as chipping of SiC were observed.

【0018】[0018]

【発明の効果】本発明により提供される銅(合金)−セ
ラミックス焼結材料をセラミックスと接合する基板とし
て使用すると、接合界面で発生する歪みを少なくするこ
とができ、また銅の良好な熱伝導率により放熱特性も良
好に保つことができる。
When the copper (alloy) -ceramic sintered material provided by the present invention is used as a substrate for bonding with ceramics, the distortion generated at the bonding interface can be reduced, and good heat conduction of copper can be achieved. The heat radiation characteristics can also be kept good depending on the rate.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 SiC体積率(Vf )とCu−SiC焼結体
熱膨張率の計算値グラフに実測値を書き加えた図であ
る。
FIG. 1 is a diagram in which measured values are added to a calculated value graph of a SiC volume ratio (V f ) and a thermal expansion coefficient of a Cu—SiC sintered body.

【図2】 本発明材料の曲げ強度を示すグラフに焼結板
の断面を付記した図である。
FIG. 2 is a diagram in which a cross section of a sintered plate is added to a graph showing the bending strength of the material of the present invention.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 熱膨張係数が異なる少なくとも2枚の板
を接合してなる半導体チップ搭載用基板において、前記
少なくとも2枚の板が、銅または銅合金粒子及び20〜
70体積%の、Cuより熱膨張係数が低い金属及びセラ
ミックスからなる群から選択された少なくとも1種の粒
子からなる焼結材の板と、セラミックス板とを含んでな
ることを特徴とする半導体チップ搭載用基板。
1. A semiconductor chip mounting substrate formed by joining at least two plates having different coefficients of thermal expansion, wherein said at least two plates are made of copper or copper alloy particles and 20 to
A semiconductor chip comprising 70% by volume of a sintered material plate made of at least one kind of particles selected from the group consisting of a metal and a ceramic having a lower coefficient of thermal expansion than Cu, and a ceramic plate. Mounting substrate.
【請求項2】 前記金属が、Mo,W及びSiからなる
群から選択された金属である請求項1記載の半導体チッ
プ搭載用基板。
2. The semiconductor chip mounting substrate according to claim 1, wherein said metal is a metal selected from the group consisting of Mo, W and Si.
【請求項3】 前記焼結材に含有されるセラミックスが
SiC,AlN及びAl23 からなる群より選択され
る少なくとも1種以上であることを特徴とする請求項1
又は2記載の半導体チップ搭載用基板。
3. The ceramic material contained in the sintered material is at least one selected from the group consisting of SiC, AlN and Al 2 O 3.
Or the substrate for mounting a semiconductor chip according to 2.
【請求項4】 前記焼結材の板が加圧と加熱を別に行う
焼結法により製造された請求項1から3までの何れか1
項記載の半導体チップ搭載用基板。
4. The method according to claim 1, wherein the plate of the sintered material is manufactured by a sintering method in which pressing and heating are performed separately.
The substrate for mounting a semiconductor chip according to the above item.
【請求項5】 前記焼結材の板が一面が表出された放熱
板であることを特徴とする請求項1から4までの何れか
1項記載の半導体チップ搭載用基板。
5. The substrate for mounting a semiconductor chip according to claim 1, wherein the plate of the sintered material is a heat sink having one surface exposed.
【請求項6】 前記銅合金が1〜20重量%のP,P
b,Zn及びSnの少なくとも1種を含有することを特
徴とする請求項1から5までの何れか1項記載の半導体
チップ搭載用基板。
6. The method according to claim 1, wherein said copper alloy contains 1 to 20% by weight of P, P
The substrate for mounting a semiconductor chip according to claim 1, further comprising at least one of b, Zn, and Sn.
【請求項7】 前記焼結材の板が、銅粉末、P,Pb,
Zn及びSnの少なくとも1種からなる粉末、及びセラ
ミックス粉末を焼結してなる請求項1から6までの何れ
か1項記載の半導体チップ搭載用基板。
7. The sintered material plate is made of copper powder, P, Pb,
7. The substrate for mounting a semiconductor chip according to claim 1, wherein a powder comprising at least one of Zn and Sn and a ceramic powder are sintered.
【請求項8】 前記セラミックス板がAlNまたはAl
23 からなる請求項1から7までの何れか1項記載の
半導体チップ搭載用基板。
8. The method according to claim 1, wherein the ceramic plate is made of AlN or Al.
A semiconductor chip mounting board according to any one of claims 1 consisting of 2 O 3 to 7.
【請求項9】 前記焼結材は、その片面または両面に金
属板が固着されている請求項1から8までの何れか1項
記載の半導体チップ搭載用基板。
9. The semiconductor chip mounting substrate according to claim 1, wherein the sintered material has a metal plate fixed to one or both surfaces thereof.
JP17010197A 1997-06-26 1997-06-26 Substrate for mounting semiconductor chip Pending JPH1117066A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17010197A JPH1117066A (en) 1997-06-26 1997-06-26 Substrate for mounting semiconductor chip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17010197A JPH1117066A (en) 1997-06-26 1997-06-26 Substrate for mounting semiconductor chip

Publications (1)

Publication Number Publication Date
JPH1117066A true JPH1117066A (en) 1999-01-22

Family

ID=15898662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17010197A Pending JPH1117066A (en) 1997-06-26 1997-06-26 Substrate for mounting semiconductor chip

Country Status (1)

Country Link
JP (1) JPH1117066A (en)

Similar Documents

Publication Publication Date Title
JP6564944B2 (en) Ceramic circuit board and method for manufacturing ceramic circuit board
JP5275625B2 (en) Heat sink made of boron-containing diamond and copper composite
US5050040A (en) Composite material, a heat-dissipating member using the material in a circuit system, the circuit system
JP4360061B2 (en) Semiconductor device member and semiconductor device using the same
US6238454B1 (en) Isotropic carbon/copper composites
US6390354B1 (en) Adhesive composition for bonding different kinds of members
EP0365275B1 (en) A composite material heat-dissipating member for a semiconductor element and method of its fabrication
JP2007142126A (en) Composite material, semiconductor-mounted heat dissipating board, and ceramic package using the same
JPH06268117A (en) Heat radiating substrate for semiconductor device and its manufacture
JPH07121467B2 (en) Method for soldering Si semiconductor element to Cu-based alloy lead frame with little residual thermal strain
JPH1117066A (en) Substrate for mounting semiconductor chip
JP2000297301A (en) Silicon carbide based composite material, its powder, and their manufacture
JP4305986B2 (en) Method for producing silicon carbide composite material
EP3753912A1 (en) Method for manufacturing ceramic/al-sic composite material joined body, and method for manufacturing heat sink-equipped substrate for power module
JP3452015B2 (en) Heat sink and method of manufacturing the same
JP2910415B2 (en) Heat dissipation structural member made of tungsten-based sintered alloy for semiconductor device
JP2924456B2 (en) Heat dissipation structural member made of tungsten-based sintered alloy for semiconductor device
JP4461513B2 (en) Aluminum-silicon carbide based composite material and method for producing the same
JP4269853B2 (en) Composite material for substrate for mounting semiconductor element and method for manufacturing the same
WO2024122326A1 (en) Thermoelectric conversion element, thermoelectric conversion module, thermoelectric conversion system, electric power generation method, and method for producing thermoelectric conversion element
JP2842032B2 (en) Heat dissipation structural member made of tungsten-based sintered alloy for semiconductor device
JP2924457B2 (en) Heat dissipation structural member made of tungsten-based sintered alloy for semiconductor device
JP3883985B2 (en) Method for producing copper-based low thermal expansion high thermal conductive member
JP3408598B2 (en) Metal powder composition for metallizing, metallized substrate and method for producing the same
JPH04168792A (en) Manufacture of high heat radiating ceramic circuit board with excellent thermal shock resistance

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040708

A131 Notification of reasons for refusal

Effective date: 20050329

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050726