JPH11168123A - Substrate for disposing conductive particle and method therefor - Google Patents

Substrate for disposing conductive particle and method therefor

Info

Publication number
JPH11168123A
JPH11168123A JP33420297A JP33420297A JPH11168123A JP H11168123 A JPH11168123 A JP H11168123A JP 33420297 A JP33420297 A JP 33420297A JP 33420297 A JP33420297 A JP 33420297A JP H11168123 A JPH11168123 A JP H11168123A
Authority
JP
Japan
Prior art keywords
fine particles
conductive fine
adhesive layer
substrate
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33420297A
Other languages
Japanese (ja)
Inventor
Takuo Suzuki
卓夫 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP33420297A priority Critical patent/JPH11168123A/en
Publication of JPH11168123A publication Critical patent/JPH11168123A/en
Pending legal-status Critical Current

Links

Landscapes

  • Wire Bonding (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable readily and satisfactorily a joint to other substrates via conductive particles by a method, wherein the conductive particles are adhered to a specified position and disposed. SOLUTION: For adhering conductive adhesives of average particle size of 30 to 2,000 μm, this substrate for disposing conductive particles in which an adhesive layer having the longest part which is twice or less the diameter of the conductive particles is formed. The longest portion of the adhesive layer is set 0.1 to 1 times the diameter of the conductive particles.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ボールグリッドア
レイ(BGA)等の基板であって、導電性微粒子を配置
し、他の基板や半導体チップ等の素子との接合を図る導
電性微粒子の配置用基板、及び、導電性微粒子を用い、
配置用基板と他の基板等を接合する際に用いられる導電
性微粒子の配置方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a substrate such as a ball grid array (BGA), in which conductive fine particles are arranged, and the conductive fine particles are arranged for bonding with other substrates or elements such as semiconductor chips. Substrate, and using conductive fine particles,
The present invention relates to a method for arranging conductive fine particles used when bonding an arrangement substrate to another substrate or the like.

【0002】[0002]

【従来の技術】液晶表示素子等の電子機器を製造する際
に、集積回路(LSI)、半導体チップ等の素子と液晶
表示パネル等の電極を有する基板とを接合する必要があ
るが、この場合、従来より導電接合が行われている。導
電接合に使用される材料として、例えば、特開昭62−
61204号公報には、ハンダ合金とプラスチック材料
とを混練してなる導電性接着シートが開示されており、
特開昭62−61396号公報、特開昭62−1611
87号公報、特開昭62−127194号公報には、電
極基板と半導体チップ等の素子とをハンダを利用して導
電接合するための材料が開示されている。
2. Description of the Related Art When manufacturing an electronic device such as a liquid crystal display device, it is necessary to bond an element such as an integrated circuit (LSI) or a semiconductor chip to a substrate having electrodes such as a liquid crystal display panel. Conventionally, conductive bonding has been performed. As a material used for conductive bonding, for example,
Japanese Patent No. 61204 discloses a conductive adhesive sheet obtained by kneading a solder alloy and a plastic material,
JP-A-62-61396, JP-A-62-1611
No. 87 and Japanese Patent Application Laid-Open No. Sho 62-127194 disclose materials for conductively joining an electrode substrate and an element such as a semiconductor chip by using solder.

【0003】また、導電性微粒子を用いて導電接合させ
る方法としては、例えば、特開昭62−41238号公
報には、銅からなる芯体の表面にニッケル合金の被覆層
を設けた導電性充填材が開示されており、このような導
電性充填材は、有機高分子材料や塗料に配合して接着剤
として使用されている。このような方法のほかにも、例
えば、銀の微粉をエポキシ樹脂中に混合して粒子状に成
形した導電性微粒子を使用する方法等が提案されてい
る。
Japanese Patent Application Laid-Open No. Sho 62-41238 discloses a method of conducting conductive bonding using conductive fine particles. For example, Japanese Patent Application Laid-Open No. Sho 62-41238 discloses a conductive filling method in which a nickel alloy coating layer is provided on the surface of a copper core. A material is disclosed, and such a conductive filler is used as an adhesive in an organic polymer material or a paint. In addition to such a method, for example, a method has been proposed in which silver fine powder is mixed into an epoxy resin and conductive fine particles formed into particles are used.

【0004】しかしながら、これらの方法では、電気抵
抗を充分に下げることが困難であった。また、導電接合
に際して、有機高分子材料等を接着剤として使用してい
るため、導電性微粒子により電気的接続が行われ、有機
高分子材料等により機械的接続が行われるので、このよ
うな方法で接合された電子部品は、高温になると有機高
分子材料等が熱膨張して電気的接続が不良となったり、
電気抵抗値が増大する等の問題点があった。
However, it has been difficult for these methods to sufficiently reduce the electric resistance. In addition, at the time of conductive bonding, since an organic polymer material or the like is used as an adhesive, electrical connection is made by conductive fine particles, and mechanical connection is made by an organic polymer material or the like. When the electronic parts are bonded at a high temperature, the organic polymer material etc. thermally expands and the electrical connection becomes poor,
There were problems such as an increase in electric resistance.

【0005】有機高分子材料等の接着剤を使用しない導
電接合方法としては、現在、ボールグリッドアレイ(B
GA)を用いた接合やフリップチップボンディング等が
行われており、導電性微粒子としてハンダ粒子が広く使
用されている。また、この導電性微粒子を用いて接合す
る際の基板上の導電性微粒子の配置方法として、吸気に
より個別の導電性微粒子を引き寄せ配置させる方法が用
いられている。しかしながら、この方法を実施するため
には、大がかりな装置を必要とするという問題点があっ
た。
[0005] As a conductive bonding method not using an adhesive such as an organic polymer material, a ball grid array (B) is currently used.
GA), flip chip bonding, and the like are performed, and solder particles are widely used as conductive fine particles. As a method of arranging the conductive fine particles on the substrate at the time of bonding using the conductive fine particles, a method of attracting and arranging the individual conductive fine particles by suction is used. However, there is a problem that a large-scale apparatus is required to implement this method.

【0006】[0006]

【発明が解決しようとする課題】本発明は、上記に鑑
み、導電性微粒子により導電接合を行う形式のBGA等
の基板であって、導電性微粒子を介した他の基板や半導
体チップ等との接合を容易、かつ、良好に行うことがで
きるように工夫された導電性微粒子の配置用基板、及
び、この導電性微粒子の配置用基板に導電性微粒子を配
置する方法を提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above, the present invention is directed to a substrate such as a BGA in which conductive bonding is performed by conductive fine particles, wherein the substrate is connected to another substrate or semiconductor chip via conductive fine particles. An object of the present invention is to provide a substrate for arranging conductive fine particles that is devised so that bonding can be performed easily and well, and a method for arranging conductive fine particles on the substrate for arranging conductive fine particles. I do.

【0007】[0007]

【課題を解決するための手段】本発明は、平均粒径30
〜2000μmの導電性微粒子を接着するために、最長
部分が前記導電性微粒子の直径の2倍以下の長さの接着
剤層が形成されている導電性微粒子の配置用基板であ
る。以下に本発明を詳述する。
According to the present invention, an average particle size of 30 is provided.
A substrate for disposing conductive fine particles on which an adhesive layer having a length equal to or less than twice the diameter of the conductive fine particles is formed at the longest portion in order to adhere the conductive fine particles of up to 2000 μm. Hereinafter, the present invention will be described in detail.

【0008】本発明の導電性微粒子の配置用基板(以
下、単に「配置用基板」ともいう)は、平均粒径30〜
2000μmの導電性微粒子を接着させ、この導電性微
粒子を介して上記配置用基板と他の基板や半導体チップ
等の素子(以下、「他の基板等」という)との導電接合
を行う形式の基板である。
The substrate for arranging the conductive fine particles of the present invention (hereinafter simply referred to as “arrangement substrate”) has an average particle size of 30 to 30 μm.
A substrate of a type in which conductive fine particles of 2000 μm are adhered and conductive bonding between the placement substrate and another substrate or an element such as a semiconductor chip (hereinafter, referred to as “other substrate”) is performed through the conductive fine particles. It is.

【0009】上記配置用基板としては特に限定されず、
例えば、フリップチップ用の基板、BGA等が挙げられ
る。導電性微粒子の平均粒径は、30〜2000μmで
ある。
The arrangement substrate is not particularly limited.
For example, a flip-chip substrate, a BGA, or the like can be given. The average particle size of the conductive fine particles is 30 to 2000 μm.

【0010】上記導電性微粒子の平均粒径が30μm未
満であると、導電性微粒子が小さすぎるために、静電引
力等の影響により導電性微粒子が接着剤層以外のところ
に配置される可能性があり、平均粒径が2000μmを
超えると、導電性微粒子が充分に大きいため、わざわざ
接着剤層を形成しなくても導電性微粒子を配置すること
ができるため、上記範囲に限定される。
When the average particle diameter of the conductive fine particles is less than 30 μm, the conductive fine particles are too small, so that there is a possibility that the conductive fine particles may be arranged in places other than the adhesive layer due to the influence of electrostatic attraction and the like. When the average particle size exceeds 2,000 μm, the conductive fine particles are sufficiently large, so that the conductive fine particles can be arranged without forming the adhesive layer. Therefore, the average particle diameter is limited to the above range.

【0011】上記導電性微粒子は、通常、アスペクト比
が1.2未満の球状微粒子であるのが好ましい。アスペ
クト比が1.2を超えると、上記導電性微粒子の形状が
球形から大きくはずれるため、上記導電性微粒子を配置
用基板上に配置した際に、上記配置用基板上に配置され
た導電性微粒子の高さが一定せず、他の基板等との導電
接合を良好に行うことが困難になり、接続不良が発生し
易くなる。上記導電性微粒子としては、例えば、ハンダ
ボール等が挙げられる。
The conductive fine particles are usually preferably spherical fine particles having an aspect ratio of less than 1.2. When the aspect ratio exceeds 1.2, the shape of the conductive fine particles deviates greatly from the sphere, so that when the conductive fine particles are disposed on the placement substrate, the conductive fine particles disposed on the placement substrate The height of the substrate is not constant, and it is difficult to satisfactorily perform conductive bonding with another substrate or the like, and connection failure is likely to occur. Examples of the conductive fine particles include a solder ball and the like.

【0012】本発明の配置用基板では、最長部分が上記
導電性微粒子の直径の2倍以下の長さの接着剤層が形成
されており、この接着剤層に上記導電性微粒子を接着さ
せることにより配置を行う。形成する接着剤層の形状は
特に限定されず、例えば、円形、楕円形、矩形等の形状
が挙げられるが、少なくとも接着剤層の最長部分が上記
導電性微粒子の直径の2倍以下の長さの接着剤層が形成
されている必要がある。また、上記形状のうちでは、円
形が好ましい。
In the placement substrate of the present invention, the longest portion has an adhesive layer having a length of not more than twice the diameter of the conductive fine particles, and the conductive fine particles are adhered to the adhesive layer. Is arranged according to. The shape of the adhesive layer to be formed is not particularly limited, and examples thereof include a shape such as a circle, an ellipse, and a rectangle. At least the longest portion of the adhesive layer has a length not more than twice the diameter of the conductive fine particles. Must be formed. In addition, among the above shapes, a circle is preferable.

【0013】接着剤層の最長部分の長さが、上記導電性
微粒子の直径の2倍を超えると、接着剤層に2個以上の
導電性微粒子が配置される可能性が高くなるため、上記
範囲に限定される。好ましくは、導電性微粒子の直径の
最長部分の0.1〜1倍である。なお、接着剤層は、配
置用基板表面の電極上に形成されており、最終的には、
上記接着剤層が熱等により消失して、除去され、上記導
電性微粒子と上記電極とが導電接合されることにより、
他の基板等との接続が図られる。
When the length of the longest portion of the adhesive layer exceeds twice the diameter of the conductive fine particles, there is a high possibility that two or more conductive fine particles are arranged in the adhesive layer. Limited to range. Preferably, it is 0.1 to 1 times the longest part of the diameter of the conductive fine particles. The adhesive layer is formed on the electrode on the surface of the placement substrate, and ultimately,
The adhesive layer disappears due to heat or the like, is removed, and the conductive particles and the electrode are conductively joined,
Connection with another substrate or the like is achieved.

【0014】従って、接着剤層の厚さは、接着剤層の接
着力が維持されることを条件として、なるべく薄い方が
好ましい。また、上記電極には、導電性微粒子が上記接
着剤層が形成された部分で停止し易いように、凹部が形
成されているのが好ましい。
Therefore, the thickness of the adhesive layer is preferably as thin as possible provided that the adhesive force of the adhesive layer is maintained. Further, it is preferable that a concave portion is formed in the electrode so that the conductive fine particles are easily stopped at a portion where the adhesive layer is formed.

【0015】上記接着剤層を形成するために用いる接着
剤としては特に限定されず、例えば、エチレン/酢酸ビ
ニル共重合体、エチレン/アクリル酸エステル共重合
体、ポリメチル(メタ)アクリレート、ポリエチル(メ
タ)アクリレート、ポリブチル(メタ)アクリレート等
の(メタ)アクリレート重合体又は共重合体;ポリスチ
レン、スチレン/アクリル酸エステル共重合体、SB型
スチレン/ブタジエンブロック共重合体、SBS型スチ
レン/ブタジエンブロック共重合体、そのほかのビニル
系重合体又は共重合体、エポキシ樹脂、フェノール樹
脂、メラミン樹脂等の樹脂等が挙げられる。上記接着剤
として、上記重合体、上記共重合体又は上記樹脂とクリ
ームハンダとの混合物を用いてもよい。
The adhesive used to form the adhesive layer is not particularly limited, and examples thereof include an ethylene / vinyl acetate copolymer, an ethylene / acrylate copolymer, polymethyl (meth) acrylate, and polyethyl (meth) acrylate. ) (Meth) acrylate polymers or copolymers such as acrylate and polybutyl (meth) acrylate; polystyrene, styrene / acrylate copolymer, SB type styrene / butadiene block copolymer, SBS type styrene / butadiene block copolymer Coalescence, other vinyl polymers or copolymers, and resins such as epoxy resins, phenolic resins, and melamine resins. As the adhesive, the polymer, the copolymer, or a mixture of the resin and cream solder may be used.

【0016】上記接着剤の中では、タック性が高く、常
温では不揮発性であるが、数百℃程度の高温になると分
解等により揮発、消失し、導電性微粒子と上記電極との
接続を阻害しないものが好ましい。また、接着剤層は、
加熱の際に容易に分解、消失するように、薄い層が好ま
しい。
Among the above-mentioned adhesives, they have high tackiness and are non-volatile at room temperature, but volatilize and disappear due to decomposition or the like at a high temperature of about several hundred degrees centigrade, and hinder the connection between the conductive fine particles and the electrodes. Those that do not are preferred. Also, the adhesive layer
A thin layer is preferred so that it will easily decompose and disappear on heating.

【0017】上記接着剤層は、導電性微粒子以外のもの
が接着し易く、そのため、上記導電性微粒子と上記電極
との接続が阻害され易いので、プロテクトフィルムで配
置用基板の表面を覆っておき、導電性微粒子を接着させ
る直前にプロテクトフィルムを剥離し、導電性微粒子の
接着を行うのが好ましい。
In the adhesive layer, a substance other than the conductive fine particles easily adheres, and therefore, the connection between the conductive fine particles and the electrode is easily hindered. Therefore, the surface of the mounting substrate is covered with a protective film. It is preferable that the protective film is peeled off immediately before the conductive fine particles are bonded, and the conductive fine particles are bonded.

【0018】本発明の導電性微粒子の配置用基板によれ
ば、平均粒径30〜2000μmの導電性微粒子を接着
するために、最長部分が前記導電性微粒子の直径の2倍
以下の長さの接着剤層が形成されているので、上記配置
用基板を用いることにより、上記接着剤層のそれぞれに
上記導電性微粒子を1個づつ容易に接着させることがで
き、これにより、導電性微粒子を介した他の基板等との
接合を容易、かつ、良好に行うことができる。
According to the substrate for disposing conductive fine particles of the present invention, in order to adhere the conductive fine particles having an average particle diameter of 30 to 2000 μm, the longest portion has a length of twice or less the diameter of the conductive fine particles. Since the adhesive layer is formed, the conductive fine particles can be easily adhered to each of the adhesive layers one by one by using the above-mentioned arrangement substrate. It can be easily and satisfactorily joined to another substrate or the like.

【0019】本発明2は、導電性微粒子の配置用基板上
に、最長部分が前記導電性微粒子の直径の2倍以下の長
さの接着剤層を形成した後、前記接着剤層に平均粒径3
0〜2000μmの導電性微粒子を接着する導電性微粒
子の配置方法である。
According to a second aspect of the present invention, an adhesive layer having a longest portion having a length equal to or less than twice the diameter of the conductive fine particles is formed on a substrate for disposing conductive fine particles. Diameter 3
This is a method of arranging conductive fine particles for bonding conductive fine particles of 0 to 2000 μm.

【0020】本発明2の導電性微粒子の配置方法におい
ては、上記導電性微粒子の配置用基板を用い、上記配置
用基板の電極上又は上記電極を含む部分に、接着剤層を
形成する。上記導電性微粒子、上記接着剤層の形状等に
ついては、既に、本発明1の導電性微粒子の配置用基板
の項において詳述した。
In the method for arranging conductive fine particles according to the second aspect of the present invention, an adhesive layer is formed on an electrode of the arranging substrate or on a portion including the electrode by using the substrate for arranging the conductive fine particles. The conductive fine particles, the shape of the adhesive layer, and the like have already been described in detail in the section of the substrate for disposing conductive fine particles according to the first embodiment of the present invention.

【0021】上述したように、配置用基板上に接着剤層
を形成した後、上記接着剤層に導電性微粒子を接着させ
るまでの間、接着剤層への他の物質の付着を阻止するた
め、プロテクトフィルムにより配置用基板を被覆してお
き、導電性微粒子を接着させる直前に上記プロテクトフ
ィルムを剥離するのが好ましい。
As described above, after the adhesive layer is formed on the disposing substrate, until the conductive fine particles are adhered to the adhesive layer, the adhesion of other substances to the adhesive layer is prevented. Preferably, the arrangement substrate is covered with a protection film, and the protection film is preferably peeled off immediately before the conductive fine particles are adhered.

【0022】導電性微粒子を接着剤層に接着させる方法
としては特に限定されず、例えば、多数の導電性微粒子
を配置用基板上に散布した後、軽く振動させることによ
り、接着剤層上にない導電性微粒子を接着剤層まで移動
させ、接着剤層に導電性微粒子を接着させる方法等が挙
げられる。
The method for adhering the conductive fine particles to the adhesive layer is not particularly limited. For example, after a large number of conductive fine particles are scattered on the disposing substrate and gently vibrated, the conductive fine particles are not adhered to the adhesive layer. A method of moving the conductive fine particles to the adhesive layer and bonding the conductive fine particles to the adhesive layer can be used.

【0023】また、電極が形成された部分に、凹部が形
成されている場合には、振動等を加えることにより、こ
れら凹部に導電性微粒子が入り込み、そこで停止するた
め、導電性微粒子の配置が一層容易になる。
In the case where concave portions are formed in the portions where the electrodes are formed, the conductive fine particles enter these concave portions by applying vibration and stop there. It becomes even easier.

【0024】この後、導電性微粒子が接着された配置用
基板を、引き出し電極等が形成された他の基板等と重ね
合わせる。この際、導電性微粒子がそれぞれの電極と接
触するように、位置を対応させて重ね合わせる必要があ
る。
Thereafter, the placement substrate to which the conductive fine particles are adhered is overlapped with another substrate or the like on which a lead electrode or the like is formed. At this time, it is necessary to overlap the conductive particles so that the conductive fine particles come into contact with the respective electrodes.

【0025】その後、配置用基板等を加熱することによ
り、接着剤層の樹脂等を分解、消失させると共に、通
常、ハンダボール等からなる導電性微粒子をリフローさ
せて、配置用基板と他の基板等との接合を図る。
Thereafter, by heating the placement substrate and the like, the resin and the like of the adhesive layer are decomposed and eliminated, and the conductive fine particles, such as solder balls, are usually reflowed so that the placement substrate and other substrates are reflowed. To join them.

【0026】本発明2の導電性微粒子の配置方法によれ
ば、導電性微粒子の配置用基板上に、最長部分が前記導
電性微粒子の直径の2倍以下の長さの接着剤層を形成し
た後、前記接着剤層に平均粒径30〜2000μmの導
電性微粒子を接着するという方法をとるので、上記接着
剤層のそれぞれに上記導電性微粒子を1個づつ容易に接
着させることができ、その後基板同士を接合させる際、
加熱等により上記接着剤層を除去することにより、導電
性微粒子を介した他の基板等との接合を容易、かつ、良
好に行うことができる。
According to the method for arranging conductive fine particles of the second aspect of the present invention, the adhesive layer having the longest portion having a length not more than twice the diameter of the conductive fine particles is formed on the substrate for arranging the conductive fine particles. Then, since a method of bonding conductive fine particles having an average particle diameter of 30 to 2000 μm to the adhesive layer is adopted, the conductive fine particles can be easily bonded one by one to each of the adhesive layers. When joining substrates,
By removing the adhesive layer by heating or the like, bonding with another substrate or the like via the conductive fine particles can be easily and favorably performed.

【0027】[0027]

【実施例】以下に実施例を掲げて本発明を更に詳しく説
明するが、本発明はこれら実施例のみに限定されるもの
ではない。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.

【0028】実施例1 穴径が、ハンダボールの直径の半分で、隣の電極との間
隔がハンダボールの直径の2倍である電極が、縦に10
個、横に10個配置されたBGAチップ上の個別の穴
に、その中心が上記穴の中心にくるように、アクリル系
の接着剤を直径600μmの大きさで塗布した。
Example 1 An electrode having a hole diameter of half the diameter of a solder ball and an interval between adjacent electrodes being twice the diameter of the solder ball is vertically 10 mm long.
An acrylic adhesive was applied in a size of 600 μm in diameter to individual holes on 10 BGA chips arranged side by side so that the center of the holes was at the center of the hole.

【0029】次に、このBGAチップ上に、直径600
μmのハンダボールを散布した後、BGAチップを振動
させたところ、BGAチップのすべての穴の中にハンダ
ボールが配置され、そのほかのところには、ハンダボー
ルは見られなかった。
Next, on this BGA chip, a diameter of 600
After spraying the solder ball of μm, the BGA chip was vibrated. As a result, the solder ball was arranged in all the holes of the BGA chip, and the solder ball was not found elsewhere.

【0030】上記処理が終了したハンダボールを引き出
し電極を備えた基板と重ね合わせ、周囲に300μmの
ギャップ材を挿入した状態で仮止めし、300℃に加熱
しながら接合させた。この後、両基板の導通状態等の試
験を行ったところ、両基板の導通状態は良好であり、電
極間のショートも認められなかった。
The solder ball having been subjected to the above treatment was superimposed on a substrate provided with an extraction electrode, temporarily fixed with a gap material of 300 μm inserted around the solder ball, and joined while heating to 300 ° C. Thereafter, a test of the conduction state and the like of both substrates was performed. As a result, the conduction state of both substrates was good, and no short circuit between the electrodes was observed.

【0031】実施例2 接着剤層の直径が900μmになるように、接着剤を塗
布したほかは、実施例1と同様にBGAチップ上へのハ
ンダボールの配置を行い、BGAチップと引き出し電極
を備えた基板との接合を行った後、同様に導通試験等を
行った。
Example 2 A solder ball was placed on a BGA chip in the same manner as in Example 1 except that the adhesive was applied so that the diameter of the adhesive layer became 900 μm, and the BGA chip and the lead electrode were connected. After bonding with the provided substrate, a conduction test and the like were similarly performed.

【0032】BGAチップ上に導電性微粒子を散布した
際には、BGAチップ上のすべての穴にハンダボールが
配置され、一部1つの接着剤層に2個のハンダボールが
乗った部分があったものの、軽いエアパージにより正常
に配置され、そのほかのところには、ハンダボールは見
られなかった。また、接合後の両基板の接続状態は良好
であり、隣接する電極同士のショートも認められなかっ
た。
When the conductive fine particles are sprayed on the BGA chip, the solder balls are arranged in all the holes on the BGA chip, and there is a portion where two solder balls ride on one adhesive layer. However, it was properly positioned by a light air purge, and no other solder balls were found. The connection state between the two substrates after bonding was good, and no short circuit between adjacent electrodes was observed.

【0033】実施例3 接着剤層の直径が50μmになるように、接着剤を塗布
したほかは、実施例1と同様にBGAチップ上へのハン
ダボールの配置を行い、BGAチップと引き出し電極を
備えた基板との接合を行った後、同様に導通試験等を行
った。
Example 3 A solder ball was placed on a BGA chip in the same manner as in Example 1 except that the adhesive was applied so that the diameter of the adhesive layer became 50 μm. After bonding with the provided substrate, a conduction test and the like were similarly performed.

【0034】BGAチップ上に導電性微粒子を散布した
際には、BGAチップ上の穴にハンダボールが配置さ
れ、一部ハンダボールが欠落する部分があったものの、
再度ハンダボールを散布した後BGAチップを振動させ
たところ、BGAチップ上のすべての穴にハンダボール
が配置され、そのほかのところには、ハンダボールは見
られなかった。また、接合後の両基板の接続状態は良好
であり、隣接する電極同士のショートも認められなかっ
た。
When the conductive fine particles were sprayed on the BGA chip, the solder balls were arranged in the holes on the BGA chip, and although there were some portions where the solder balls were missing,
After the solder balls were sprayed again, the BGA chip was vibrated. As a result, the solder balls were arranged in all the holes on the BGA chip, and no other solder balls were found. The connection state between the two substrates after bonding was good, and no short circuit between adjacent electrodes was observed.

【0035】実施例4 接着剤層の形状を、幅50μm、長さ400μmの矩形
とし、ハンダボールの配置の際、BGAチップをハンダ
ボールを収容するために箱の中に入れ、少しかき回して
から取り出し、更にBGAチップを振動させたほかは、
実施例1と同様に、BGAチップと引き出し電極を備え
た基板との接合を行った後、同様に導通試験等を行っ
た。
Example 4 The shape of the adhesive layer was rectangular with a width of 50 μm and a length of 400 μm. When the solder balls were to be placed, the BGA chip was put in a box to accommodate the solder balls, and was stirred slightly. Take it out and vibrate the BGA chip,
After joining the BGA chip and the substrate provided with the extraction electrodes in the same manner as in Example 1, a continuity test and the like were conducted in the same manner.

【0036】上記処理により、BGAチップ上のすべて
の穴にハンダボールが配置され、そのほかのところに
は、ハンダボールは見られなかった。また、接合後の両
基板の接続状態は良好であり、隣接する電極同士のショ
ートも認められなかった。
By the above-mentioned processing, solder balls were arranged in all the holes on the BGA chip, and no solder balls were found elsewhere. The connection state between the two substrates after bonding was good, and no short circuit between adjacent electrodes was observed.

【0037】実施例5 接着剤層の直径を100μm、ハンダボールの直径を1
00μmとしたほかは、実施例1と同様にBGAチップ
上へのハンダボールの配置を行い、BGAチップと引き
出し電極を備えた基板との接合を行った後、同様に導通
試験等を行った。
Example 5 The diameter of the adhesive layer was 100 μm and the diameter of the solder ball was 1
Except that the thickness was set to 00 μm, solder balls were arranged on the BGA chip in the same manner as in Example 1, and after joining the BGA chip and the substrate provided with the lead electrodes, a conduction test and the like were performed in the same manner.

【0038】BGAチップ上に導電性微粒子を散布した
際には、BGAチップ上のすべての穴にハンダボールが
配置され、そのほかのところには、ハンダボールは見ら
れなかった。また、接合後の両基板の接続状態は良好で
あり、隣接する電極同士のショートも認められなかっ
た。
When the conductive fine particles were sprayed on the BGA chip, the solder balls were arranged in all the holes on the BGA chip, and no other solder balls were found. The connection state between the two substrates after bonding was good, and no short circuit between adjacent electrodes was observed.

【0039】実施例6 ハンダボールの直径を1500μmとしたほかは、実施
例1と同様にBGAチップ上へのハンダボールの配置を
行い、BGAチップと引き出し電極を備えた基板との接
合を行った後、同様に導通試験等を行った。
Example 6 A solder ball was arranged on a BGA chip in the same manner as in Example 1 except that the diameter of the solder ball was 1500 μm, and the BGA chip was bonded to a substrate provided with extraction electrodes. Thereafter, a continuity test and the like were similarly performed.

【0040】BGAチップ上に導電性微粒子を散布した
際には、BGAチップ上のすべての穴にハンダボールが
配置され、そのほかのところには、ハンダボールは見ら
れなかった。また、接合後の両基板の接続状態は良好で
あり、隣接する電極同士のショートも認められなかっ
た。
When the conductive fine particles were sprayed on the BGA chip, the solder balls were arranged in all the holes on the BGA chip, and no other solder balls were found. The connection state between the two substrates after bonding was good, and no short circuit between adjacent electrodes was observed.

【0041】実施例1〜6において、BGAチップ上に
接着剤層を形成した後、そのまま放置しておいたとこ
ろ、埃等の影響でハンダボールを配置した際に接着強度
の低下がみられ、場合によっては、ハンダボールの配置
後、ハンダボールが欠落する現象もみられたが、ポリエ
チレン製のプロテクトフィルムでBGAチップを覆って
おき、ハンダボールを配置する直前に剥離して使用した
ところ、上記現象は発生しなかった。
In Examples 1 to 6, when the adhesive layer was formed on the BGA chip and left as it was, when the solder balls were arranged due to the influence of dust and the like, a decrease in the adhesive strength was observed. In some cases, after the solder balls were placed, there was a phenomenon in which the solder balls were missing.However, when the BGA chip was covered with a polyethylene protection film and peeled immediately before placing the solder balls, the above phenomenon was observed. Did not occur.

【0042】実施例7 アクリル系接着剤の代わりにエポキシ系のホットメルト
接着剤を使用し、接着剤層の大きさを直径1000μm
とし、ハンダボールを100℃に温めた以外は、実施例
6と同様にBGAチップ上へのハンダボールの配置を行
い、BGAチップと引き出し電極を備えた基板との接合
を行った後、同様に導通試験等を行った。
Example 7 An epoxy-based hot melt adhesive was used in place of the acrylic adhesive, and the size of the adhesive layer was 1000 μm in diameter.
Except that the solder balls were heated to 100 ° C., the solder balls were arranged on the BGA chip in the same manner as in Example 6, and after joining the BGA chip and the substrate provided with the extraction electrodes, A continuity test and the like were performed.

【0043】BGAチップ上に導電性微粒子を散布した
際には、BGAチップ上のすべての穴にハンダボールが
配置され、そのほかのところには、ハンダボールは見ら
れなかった。また、接合後の両基板の接続状態は良好で
あり、隣接する電極同士のショートも認められなかっ
た。
When the conductive fine particles were sprayed on the BGA chip, the solder balls were arranged in all the holes on the BGA chip, and no other solder balls were found. The connection state between the two substrates after bonding was good, and no short circuit between adjacent electrodes was observed.

【0044】比較例1 接着剤層の直径を1300μmとしたほかは、実施例1
と同様にBGAチップ上へのハンダボールの配置を行
い、BGAチップと引き出し電極を備えた基板との接合
を行った後、同様に導通試験等を行った。
Comparative Example 1 Example 1 was repeated except that the diameter of the adhesive layer was 1300 μm.
The solder balls were arranged on the BGA chip in the same manner as described above, and the BGA chip was joined to the substrate provided with the lead-out electrodes.

【0045】BGAチップ上にすべてのハンダボールが
配置されたが、1つの接着剤層の上に2個のハンダボー
ルが接着されている部分が存在し、エアパージしても、
1つの接着剤層の上に2個のハンダボールが接着されて
いる部分は完全に無くならなかった。接合後の両基板の
接続状態は良好であったが、隣接する電極同士にはショ
ートするものが認められた。
Although all the solder balls are arranged on the BGA chip, there is a portion where two solder balls are adhered on one adhesive layer.
The portion where the two solder balls were bonded on one adhesive layer did not completely disappear. Although the connection state between the two substrates after the bonding was good, a short circuit was observed between the adjacent electrodes.

【0046】比較例2 接着剤層を形成しなかったほかは、実施例1と同様にB
GAチップ上へのハンダボールの配置を行い、BGAチ
ップと引き出し電極を備えた基板との接合を行った後、
同様に導通試験等を行った。
Comparative Example 2 The procedure of Example 1 was repeated except that no adhesive layer was formed.
After placing the solder balls on the GA chip and joining the BGA chip and the board with the lead electrodes,
Similarly, a continuity test and the like were performed.

【0047】BGAチップ上の殆どの穴には、ハンダボ
ールは配置されなかった。隣接する電極同士にショート
は認められなかったが、接合後の両基板には、接続され
ていない点が多数認められた。
No solder balls were placed in most of the holes on the BGA chip. No short circuit was observed between the adjacent electrodes, but a number of unconnected points were observed on both substrates after bonding.

【0048】比較例3 接着剤層を形成せず、吸引装置を用いてハンダボールを
1つづつBGAチップ上の穴に配置していったほかは、
実施例1と同様の配置用基板を用い、実施例1と同様
に、BGAチップと引き出し電極を備えた基板との接合
を行った後、同様に導通試験等を行った。
COMPARATIVE EXAMPLE 3 Except that the adhesive layer was not formed and the solder balls were placed one by one in the holes on the BGA chip using a suction device.
Using the same arrangement substrate as in Example 1, a BGA chip and a substrate provided with a lead-out electrode were joined in the same manner as in Example 1, and then a continuity test and the like were similarly performed.

【0049】BGAチップ上のすべての穴にハンダボー
ルが配置され、そのほかのところには、ハンダボールは
見られなかったものの、大掛かりな吸引装置を使用しな
くてはならず、作業が煩雑であった。なお、接合後の両
基板の接続状態は良好であり、隣接する電極同士のショ
ートも認められなかった。
Although solder balls were arranged in all the holes on the BGA chip and no other solder balls were seen, a large-scale suction device had to be used and the operation was complicated. Was. The connection between the two substrates after bonding was good, and no short circuit between adjacent electrodes was observed.

【0050】比較例4 接着剤層の直径を20μm、ハンダボールの直径を20
μmとしたほかは、実施例1と同様にBGAチップ上へ
のハンダボールの配置を行い、BGAチップと引き出し
電極を備えた基板との接合を行った後、同様に導通試験
等を行った。
Comparative Example 4 The diameter of the adhesive layer was 20 μm, and the diameter of the solder ball was 20 μm.
A solder ball was placed on a BGA chip in the same manner as in Example 1 except that the thickness was set to μm, and after joining the BGA chip and a substrate provided with a lead electrode, a conduction test and the like were performed in the same manner.

【0051】BGAチップ上に導電性微粒子を散布した
際には、BGAチップ上のすべての穴にハンダボールが
配置されたが、静電引力に起因すると考えられる1つ接
着剤層の付近に2個のハンダボールが付着した部分が存
在し、また、穴以外の部分にもハンダボールが見られ
た。また、接合後の両基板の接続状態は良好であった
が、一部に隣接する電極同士のショートが認められた。
When the conductive fine particles were sprayed on the BGA chip, the solder balls were arranged in all the holes on the BGA chip. However, two solder balls were placed near the adhesive layer, which is considered to be caused by electrostatic attraction. There were portions to which the solder balls adhered, and solder balls were also found in portions other than the holes. In addition, the connection state between the two substrates after bonding was good, but short-circuiting between adjacent electrodes was partially observed.

【0052】比較例5 接着剤層の直径を2000μm、ハンダボールの直径を
3000μmとしたほかは、実施例1と同様にBGAチ
ップ上へのハンダボールの配置を行い、BGAチップと
引き出し電極を備えた基板との接合を行った後、同様に
導通試験等を行った。
Comparative Example 5 A solder ball was arranged on a BGA chip in the same manner as in Example 1, except that the diameter of the adhesive layer was set to 2000 μm and the diameter of the solder ball was set to 3000 μm. After joining with the substrate, a conduction test and the like were similarly performed.

【0053】BGAチップ上に導電性微粒子を散布した
際には、BGAチップ上のすべての穴にハンダボールが
配置され、そのほかの部分にはハンダボールは見られな
かった。また、両基板の接続状態は良好であり、隣接す
る電極同士のショートは認められなかった。但し、この
場合には、接着剤層が無くてもハンダボールが大きいた
め、上記手作業で充分すべての穴にハンダボールを配置
することができ、同様の結果を得ることができた。
When the conductive fine particles were sprayed on the BGA chip, the solder balls were arranged in all the holes on the BGA chip, and no solder balls were found in other portions. The connection between the two substrates was good, and no short circuit between adjacent electrodes was observed. However, in this case, since the solder balls were large even without the adhesive layer, the solder balls could be sufficiently arranged in all the holes by the above-mentioned manual operation, and similar results could be obtained.

【0054】[0054]

【発明の効果】本発明の導電性微粒子の配置用基板は、
上述の構成からなるので、接着剤層のそれぞれに導電性
微粒子を1個づつ容易に接着させることができ、これに
より、導電性微粒子を介した他の基板等との接合を容
易、かつ、良好に行うことができる。また、本発明の導
電性微粒子の配置方法は、上述の構成からなるので、接
着剤層のそれぞれに導電性微粒子を1個づつ容易に接着
させることができ、その後基板同士を接合させる際、加
熱等により上記接着剤層を除去することにより、導電性
微粒子を介した他の基板等との接合を容易、かつ、良好
に行うことができる。
The substrate for disposing conductive fine particles of the present invention is
With the above-described configuration, the conductive fine particles can be easily adhered one by one to each of the adhesive layers, whereby the bonding with another substrate or the like via the conductive fine particles can be easily and preferably performed. Can be done. In addition, since the method for arranging conductive fine particles of the present invention has the above-described configuration, the conductive fine particles can be easily bonded one by one to each of the adhesive layers. By removing the adhesive layer by the method described above, the bonding with another substrate or the like via the conductive fine particles can be easily and satisfactorily performed.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 平均粒径30〜2000μmの導電性微
粒子を接着するために、最長部分が前記導電性微粒子の
直径の2倍以下の長さの接着剤層が形成されていること
を特徴とする導電性微粒子の配置用基板。
An adhesive layer having a longest portion having a length not more than twice the diameter of the conductive fine particles is formed for bonding conductive fine particles having an average particle size of 30 to 2000 μm. Substrate for disposing conductive fine particles.
【請求項2】 接着剤層の最長部分は、導電性微粒子の
直径の0.1〜1倍であることを特徴とする請求項1記
載の導電性微粒子の配置用基板。
2. The substrate according to claim 1, wherein the longest portion of the adhesive layer has a diameter of 0.1 to 1 times the diameter of the conductive fine particles.
【請求項3】 接着剤層を保護するためのプロテクトフ
ィルムにより被覆されていることを特徴とする請求項1
又は2記載の導電性微粒子の配置用基板。
3. The method according to claim 1, wherein the adhesive layer is covered with a protection film for protecting the adhesive layer.
Or a substrate for disposing conductive fine particles according to 2.
【請求項4】 導電性微粒子の配置用基板上に、最長部
分が前記導電性微粒子の直径の2倍以下の長さの接着剤
層を形成した後、前記接着剤層に平均粒径30〜200
0μmの導電性微粒子を接着することを特徴とする導電
性微粒子の配置方法。
4. After forming an adhesive layer having a length of not more than twice the diameter of the conductive fine particles on the substrate for disposing conductive fine particles, the adhesive layer has an average particle size of 30 to 200
A method for arranging conductive fine particles, which comprises bonding the conductive fine particles of 0 μm.
【請求項5】 接着剤層の最長部分は、導電性微粒子の
直径の0.1〜1倍であることを特徴とする請求項4記
載の導電性微粒子の配置方法。
5. The method for arranging conductive fine particles according to claim 4, wherein the longest part of the adhesive layer has a diameter of 0.1 to 1 times the diameter of the conductive fine particles.
【請求項6】 接着剤層を保護するためのプロテクトフ
ィルムにより被覆されてなる配置用基板より該プロテク
トフィルムを剥離した後、導電性微粒子を接着剤層に接
着することを特徴とする請求項4又は5記載の導電性微
粒子の配置方法。
6. The method according to claim 4, wherein the conductive film is adhered to the adhesive layer after the protective film is peeled off from the mounting substrate covered with the protective film for protecting the adhesive layer. Or the method for arranging conductive fine particles according to 5.
JP33420297A 1997-12-04 1997-12-04 Substrate for disposing conductive particle and method therefor Pending JPH11168123A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33420297A JPH11168123A (en) 1997-12-04 1997-12-04 Substrate for disposing conductive particle and method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33420297A JPH11168123A (en) 1997-12-04 1997-12-04 Substrate for disposing conductive particle and method therefor

Publications (1)

Publication Number Publication Date
JPH11168123A true JPH11168123A (en) 1999-06-22

Family

ID=18274692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33420297A Pending JPH11168123A (en) 1997-12-04 1997-12-04 Substrate for disposing conductive particle and method therefor

Country Status (1)

Country Link
JP (1) JPH11168123A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007281269A (en) * 2006-04-10 2007-10-25 Nec Corp Mounting structure of electronic part, and its manufacturing method
US7591921B2 (en) 2002-11-29 2009-09-22 Sekisui Chemical Co., Ltd. Heat-decaying materials, transfer sheet using the same, and patterning method
JP2010153849A (en) * 2008-12-25 2010-07-08 Ultratera Corp Method for implanting ball and system for implanting ball using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7591921B2 (en) 2002-11-29 2009-09-22 Sekisui Chemical Co., Ltd. Heat-decaying materials, transfer sheet using the same, and patterning method
JP2007281269A (en) * 2006-04-10 2007-10-25 Nec Corp Mounting structure of electronic part, and its manufacturing method
JP2010153849A (en) * 2008-12-25 2010-07-08 Ultratera Corp Method for implanting ball and system for implanting ball using the same

Similar Documents

Publication Publication Date Title
JP3339035B2 (en) Method and apparatus for soldering a ball grid array module to a substrate
US7015070B2 (en) Electronic device and a method of manufacturing the same
WO2006123554A1 (en) Flip-chip mounting body and flip-chip mounting method
JP2000101001A (en) Heat conductive material
JPH06502515A (en) Adhesion of solid state devices to terminal boards
JPH03131089A (en) Connecting method for circuit board
JP3565090B2 (en) Method for manufacturing semiconductor device
JP3501360B2 (en) Polymer reinforced column grid array
JPH07321244A (en) Electronic part, and manufacture of electronic part
JPH11168123A (en) Substrate for disposing conductive particle and method therefor
JP2011171370A (en) Method for manufacturing semiconductor device, particle and semiconductor device
JPH0362411A (en) Manufacture of aeolotropic conductive film
WO2003003798A1 (en) Joining method using anisotropic conductive adhesive
JP2006295186A (en) Integrated circuit packaging process through non-tape die attaching method
JPH06168982A (en) Flip chip packaging structure
JPH10199927A (en) Circuit board having anisotropic conductive film, circuit chip and manufacture thereof
JP3385943B2 (en) How to mount electronic components with gold bumps
JP2002075580A (en) Manufacturing method for anisotropic conductive film
JPH11204567A (en) Anisotropic conductive bonding agent and forming method thereof to substrate and semiconductor-chip mounting method and semiconductor device
JP2000174066A (en) Method of mounting semiconductor device
JP4099329B2 (en) Component mixed mounting method
JPS6244851B2 (en)
JP3672702B2 (en) Component mounting method
JPH11317414A (en) Method for mounting conductive particle on substrate and device thereof
JPH05251512A (en) Method for forming metal bump on area tape

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050223

A02 Decision of refusal

Effective date: 20050622

Free format text: JAPANESE INTERMEDIATE CODE: A02