JPH1116766A - Manufacture of laminated ceramic electronic component - Google Patents

Manufacture of laminated ceramic electronic component

Info

Publication number
JPH1116766A
JPH1116766A JP17142097A JP17142097A JPH1116766A JP H1116766 A JPH1116766 A JP H1116766A JP 17142097 A JP17142097 A JP 17142097A JP 17142097 A JP17142097 A JP 17142097A JP H1116766 A JPH1116766 A JP H1116766A
Authority
JP
Japan
Prior art keywords
nickel powder
electronic component
ceramic electronic
paste
laminated ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17142097A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Yamazaki
三浩 山▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP17142097A priority Critical patent/JPH1116766A/en
Publication of JPH1116766A publication Critical patent/JPH1116766A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Conductive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent inner structural failures such as delamination, cracking and the like from occurring in a laminated ceramic electronic component by a method, wherein nickel powder as the main component of inner electrode paste is specified in average grain diameter and specific surface ratio. SOLUTION: Nickel powder 0.5 to 0.6 μm in average grain diameter and 2.5 m<2> /g or less in specific surface ratio is used as the main component of nickel electrode paste used for the inner electrode of a laminated ceramic electronic component. Ethyl cellulose, mineral sprit, and terpineol are added to the nickel powder, kneaded, and dispersed into paste, and the paste is made to pass through a sieve which is 15 μm or less in apertures, whereby the agglomerates of nickel powder are removed. By this setup, an inner structural failures such as delamination and cracking can be restrained from occurring in a laminated ceramic electronic component, when it is baked.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、積層セラミック電
子部品の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a multilayer ceramic electronic component.

【0002】[0002]

【従来の技術】従来の積層セラミック電子部品の製造方
法を、積層セラミックコンデンサを例に説明する。
2. Description of the Related Art A conventional method for manufacturing a multilayer ceramic electronic component will be described by taking a multilayer ceramic capacitor as an example.

【0003】まず誘電体セラミック原料粉末、有機結合
剤、有機溶剤を混練したスラリーを用い、セラミックグ
リーンシート(以下、グリーンシートと称する)を作製
する。一方、内部電極用ニッケル電極ペースト(以下、
電極ペーストと称する)をニッケル粉末、エチルセルロ
ース、ミネラルスピリット及びターピネオール等をロー
ル混練機で混練・分散して作製する。次に、前記グリー
ンシート面に、前記電極ペーストをスクリーン印刷で塗
布し、電極ペースト中の溶剤成分を揮発・乾燥させた内
部電極の形成されたグリーンシートを得る。次いで、こ
の電極が形成されたグリーンシートを所定枚数積層、加
熱圧着して積層体グリーンブロックとした後、所定形状
に裁断、分離し積層体グリーンチップとする。その後分
離した積層体グリーンチップを、所定の焼成温度にて焼
結・磁器化させ、内部電極の露出している両端面に銀な
どの導電材料を塗布して外部電極を形成し、積層セラミ
ックコンデンサを得ていた。
First, a ceramic green sheet (hereinafter, referred to as a green sheet) is prepared by using a slurry obtained by kneading a dielectric ceramic raw material powder, an organic binder, and an organic solvent. On the other hand, nickel electrode paste for internal electrodes (hereinafter, referred to as
An electrode paste) is prepared by kneading and dispersing nickel powder, ethyl cellulose, mineral spirit, terpineol, and the like using a roll kneader. Next, the electrode paste is applied to the green sheet surface by screen printing to obtain a green sheet on which internal electrodes are formed by evaporating and drying a solvent component in the electrode paste. Next, after laminating a predetermined number of the green sheets on which the electrodes are formed, and by applying heat and pressure to form a laminated green block, the green sheets are cut and separated into a predetermined shape to form a laminated green chip. Then, the separated laminated green chip is sintered and porcelain at a predetermined firing temperature, and a conductive material such as silver is applied to both exposed end surfaces of the internal electrodes to form external electrodes, thereby forming a multilayer ceramic capacitor. Was getting.

【0004】[0004]

【発明が解決しようとする課題】前記従来の方法では、
ニッケル粉末の焼成収縮のバラツキ、およびニッケル粉
末の凝集物の影響で積層セラミックコンデンサの大容量
化に伴うグリーンシートの薄層化及び高積層化対応の
際、デラミネーション等の内部構造欠陥や焼成後の積層
セラミックコンデンサ焼結体内部にクラックの発生が増
加する傾向にあり、また内部構造欠陥等が発生してなく
ても特性選別工程での絶縁抵抗不良率が増え、歩留を低
下させるという問題点を有していた。
In the above conventional method,
Due to the variation of firing shrinkage of nickel powder and the effect of agglomerates of nickel powder, internal structure defects such as delamination and fire Cracks tend to increase inside the multilayer ceramic capacitor sintered body, and even if there are no internal structural defects, the insulation resistance failure rate in the characteristic selection process increases, reducing the yield. Had a point.

【0005】[0005]

【課題を解決するための手段】前記問題点を解決するた
めに、本発明は積層セラミックコンデンサ等の電子部品
に用いる内部電極用ペーストの主成分のニッケル粉末と
して、平均粒径が0.5〜0.6μmで、かつ比表面積
が2.5m2/gの粉末を用いるものである。
In order to solve the above-mentioned problems, the present invention provides a nickel powder as a main component of a paste for an internal electrode used for an electronic component such as a multilayer ceramic capacitor having an average particle size of 0.5 to 0.5. A powder having a diameter of 0.6 μm and a specific surface area of 2.5 m 2 / g is used.

【0006】[0006]

【発明の実施の形態】本発明の請求項1に記載の発明
は、積層セラミック電子部品の内部電極に用いるニッケ
ル電極ペースト主成分のニッケル粉末として、平均粒径
が0.5〜0.6μmで、かつ比表面積が2.5m2
g以下の粉末を用いるものである。前記範囲のニッケル
粉末はベースセラミックと焼成収縮挙動の整合性が取り
やすくこのため積層セラミックコンデンサ誘電体層の薄
膜化や高積層化対応においても、内部電極の主成分であ
るニッケル粉末の酸化膨脹及び収縮挙動を抑制すること
ができ、積層体グリーンチップの焼成時に内部構造欠陥
や焼成クラックの発生を低減させ、緻密で歪の少ない焼
結体を得ることが可能となる。
BEST MODE FOR CARRYING OUT THE INVENTION The invention according to claim 1 of the present invention relates to a nickel powder mainly composed of a nickel electrode paste used for an internal electrode of a multilayer ceramic electronic component and having an average particle size of 0.5 to 0.6 μm. And the specific surface area is 2.5 m 2 /
g or less of powder. Nickel powder in the above range can easily match the firing shrinkage behavior with the base ceramic.Therefore, even in the case where the thickness of the dielectric layer of the multilayer ceramic capacitor is reduced or the layer thickness is increased, the oxidative expansion and expansion of the nickel powder, which is the main component of the internal electrode, are increased. It is possible to suppress the shrinkage behavior, reduce the occurrence of internal structural defects and firing cracks during firing of the laminated green chip, and obtain a dense and low-sintered sintered body.

【0007】本発明の請求項2に記載の発明は、請求項
1に記載のニッケル粉末に、エチルセルロース、ミネラ
ルスピリット及びターピネオールを加えて混練・分散
し、ペースト化した後に開口径が15μm以下のフルイ
を通過させ、ニッケル粉末の凝集物を除去するものであ
る。バインダー及び可塑剤との混練後の電極ペースト中
のニッケル粉末粒子の凝集物を除去することにより、グ
リーンシート面に印刷した内部電極表面の平滑性が得ら
れ、内部電極を塗布したグリーンシートを積層、圧着時
の密着性が向上するとともに、印刷した内部電極中のニ
ッケル粉末の凝集物がグリーンシートの局部を加圧圧着
時に薄くしたり、或いは亀裂を生じさせることがなくな
り、焼結した積層セラミックコンデンサの絶縁抵抗不良
が低減でき、高信頼性の積層セラミックコンデンサを得
る事が可能となる。
According to a second aspect of the present invention, there is provided a sieve having an opening diameter of 15 μm or less after kneading and dispersing the nickel powder of the first aspect by adding ethylcellulose, mineral spirit and terpineol, and forming a paste. To remove aggregates of the nickel powder. By removing agglomerates of nickel powder particles in the electrode paste after kneading with the binder and plasticizer, the smoothness of the internal electrode surface printed on the green sheet surface is obtained, and the green sheet coated with the internal electrode is laminated In addition, the adhesiveness at the time of pressing is improved, and the aggregate of nickel powder in the printed internal electrode does not cause the local part of the green sheet to become thin or crack at the time of pressing and pressing, and the sintered laminated ceramic Insulation resistance failure of the capacitor can be reduced, and a highly reliable multilayer ceramic capacitor can be obtained.

【0008】以下、本発明の一実施形態を積層セラミッ
クコンデンサを例に説明する。まず、チタン酸バリウム
を主成分とするセラミック粉末にバインダーのポリビニ
ルブチラール、可塑剤のフタル酸ジブチル、及び溶媒の
メチルエチルケトンを所定量配合添加し、ボールミルで
混合したスラリーを用いロールコート法により有効層用
の厚み7μmと無効層用の50μmのグリーンシートを
作製する。
Hereinafter, an embodiment of the present invention will be described by taking a multilayer ceramic capacitor as an example. First, a predetermined amount of polyvinyl butyral as a binder, dibutyl phthalate as a plasticizer, and methyl ethyl ketone as a solvent were added to a ceramic powder containing barium titanate as a main component, and a slurry mixed with a ball mill was used for a roll coating method to form an effective layer. A green sheet having a thickness of 7 μm and an invalid layer of 50 μm is prepared.

【0009】一方、内部電極ペーストとして、(表1)
に示した平均粒径、及び比表面積を有するニッケル粉末
に、各々エチルセルロース、ミネラルスピリット及びタ
ーピネオールを所定量添加し、ロール混練機で混練・分
散した後、このペーストを(表1)に示した濾過条件の
フルイを通過させニッケル電極ペーストを作製した。
On the other hand, as an internal electrode paste, (Table 1)
After adding predetermined amounts of ethylcellulose, mineral spirit and terpineol to the nickel powder having the average particle size and specific surface area shown in (1), and kneading and dispersing them in a roll kneader, the paste was filtered as shown in (Table 1). The mixture was passed through a sieve under the conditions to prepare a nickel electrode paste.

【0010】[0010]

【表1】 [Table 1]

【0011】次に前記厚み7μmのグリーンシート面
に、前記電極ペーストを用いスクリーン印刷法により、
所定形状の内部電極を印刷した後、90℃の温度で1分
間乾燥して電極ペースト中の溶剤を揮発させたグリーン
シートを必要枚数作製した。次いで、前記グリーンシー
トを、積層型グリーンチップ形状に裁断分離したとき内
部電極が交互に異なる端面に露出するようずらして15
1枚積層、更にその上下部に前記50μmグリーンシー
トを3枚ずつ重ねた後、圧力500kg/cm2で加圧
圧着を行い積層体グリーンブロックを作製した。このよ
うにして作製した積層体グリーンブロックを所定形状に
裁断した後、バインダー除去を行い、次に焼成炉に移し
1280℃の温度で焼結を行った。その後、前記焼結体
の内部電極の露出している端面に銀電極を塗布、焼付け
て外部電極を形成し、更にその外部電極面に半田付性を
向上させるためにメッキ処理を施して、積層セラミック
コンデンサを作製した。得られた積層セラミックコンデ
ンサの内部構造欠陥発生数と絶縁抵抗不良発生数及び高
温加速寿命試験(定格電圧の4倍の電圧を85℃の温度
槽中で2000時間印加)評価を行い、その結果を(表
1)に示した。
Next, the above-mentioned electrode paste is screen-printed on the surface of the green sheet having a thickness of 7 μm using the electrode paste.
After printing the internal electrode of a predetermined shape, the substrate was dried at a temperature of 90 ° C. for 1 minute to prepare a required number of green sheets in which the solvent in the electrode paste was volatilized. Next, when the green sheet is cut and separated into a stacked green chip shape, the internal electrodes are alternately shifted so as to be exposed to different end faces.
One sheet was laminated, and three sheets of the above-mentioned 50 μm green sheet were further laminated on the upper and lower portions thereof, and then pressure-bonded under a pressure of 500 kg / cm 2 to produce a laminated green block. After the green block produced in this manner was cut into a predetermined shape, the binder was removed, then transferred to a firing furnace and sintered at 1280 ° C. Thereafter, a silver electrode is applied to the exposed end surface of the internal electrode of the sintered body, and then baked to form an external electrode. Further, the external electrode surface is subjected to a plating process to improve solderability, and laminated. A ceramic capacitor was manufactured. The number of occurrences of internal structural defects, the number of occurrences of insulation resistance failure, and the high-temperature accelerated life test (applied voltage of 4 times the rated voltage in a temperature bath at 85 ° C. for 2000 hours) of the obtained multilayer ceramic capacitor were evaluated. The results are shown in (Table 1).

【0012】(表1)に示したように、No1のニッケ
ル粉末の平均粒径が0.4μmで、比表面積が2.4m
2/gの場合は、ベースセラミックのグリーンシートと
の焼成収縮率差により内部欠陥のデラミネーション、及
びクラックが多く発生する。No9の平均粒径が大きく
比表面積が小さい場合、内部構造欠陥は発生しないもの
の、静電容量のバラツキが極めて大きくなる。しかし、
その理由が明確ではない。これに対して本発明の平均粒
径が0.5〜0.6μmで比表面積が2.5m 2/gよ
り小さいNo6〜No8の場合、内部構造欠陥が発生せ
ず、しかもIR不良の発生率も小さく、更に高温負荷寿
命試験結果も満足できるものである。しかしながら平均
粒径が0.5μmでも比表面積が大きいNo2は内部構
造欠陥が発生する。一方平均粒径が0.5μmで比表面
積が2.5m2/gより小さいNo3〜No5の場合で
も、電極ペースト混練後にニッケル粉末の凝集粒子をフ
ルイで濾過しなかったり、開口径が15μm以上のフル
イで濾過すると、ニッケル粉末の凝集粒子の影響で積層
するグリーンシートが、局部的に薄くなり絶縁抵抗不良
の発生率、及び高温負荷寿命試験での不良発生率が増加
することが分かる。以上のように、ベースグリーンシー
トと焼成収縮率のマッチングが取りやすい平均粒径0.
5〜0.6μm範囲のニッケル粉末を用い、混練後の電
極ペーストを開口径15μm以下のフルイでニッケル粉
末の凝集粒子を濾過除去することで、内部構造欠陥、及
び絶縁抵抗不良の発生率が少なく、更に高温負荷寿命試
験において特性劣化の発生のない、緻密で優れた積層セ
ラミックコンデンサを得ることができる。また本発明の
一実施形態として積層セラミックコンデンサの製造方法
について説明したが、例に挙げた材料、及びグリーンシ
ートの厚み、積層数、焼成条件等の組み合わせを変えて
も、その効果にはなんら影響を与えるものではない。
As shown in (Table 1), the nickel of No. 1
Powder has an average particle size of 0.4 μm and a specific surface area of 2.4 m
Two/ G, the base ceramic green sheet
Delamination of internal defects due to difference in firing shrinkage
Many cracks occur. No9 has a large average particle size
When the specific surface area is small, no internal structural defects occur
However, the variation in the capacitance becomes extremely large. But,
The reason is not clear. In contrast, the average grain of the present invention
0.5-0.6μm diameter and 2.5m specific surface area Two/ G
In the case of No. 6 to No. 8, smaller internal structural defects occur.
And low incidence of IR failure, and high temperature load life
Life test results are also satisfactory. However average
No. 2 having a large specific surface area even if the particle size is 0.5 μm
Fabrication defects occur. On the other hand, the average particle size is 0.5 μm and the specific surface
Product is 2.5mTwo/ G less than / g
After the electrode paste is kneaded, the aggregated particles of nickel powder
Not filtered with Louis or full with an opening diameter of 15μm or more
Filtration in (a), lamination due to the effect of aggregated particles of nickel powder
Green sheet is locally thinned and insulation resistance is poor.
Incidence rate and failure rate rate in high temperature load life test increase
You can see that As mentioned above, the base green sea
The average particle size is easily adjusted to match the firing shrinkage rate.
Using a nickel powder in the range of 5 to 0.6 μm,
Use a sieve with an opening diameter of 15 μm or less for nickel powder
By filtering and removing the agglomerated particles at the end, internal structural defects and
And the occurrence rate of insulation resistance failure is low.
, A dense and excellent laminated
A lamic capacitor can be obtained. The present invention
Method of manufacturing multilayer ceramic capacitor as one embodiment
Was explained, but the materials listed in the
By changing the combination of the thickness of the sheet, the number of layers, the firing conditions, etc.
Has no effect on its effectiveness.

【0013】[0013]

【発明の効果】以上、本発明に示したように、誘電体層
グリーンシートの薄膜化や高積層の場合においても、内
部電極の主成分であるニッケル粉末の平均粒径と比表面
積を制御することにより、ニッケル粉末の酸化、還元に
よる焼成収縮挙動が抑制され、グリーンシートと焼成収
縮率をマッチングさせることができ、焼成時に内部構造
欠陥のデラミネーションやクラックの発生を低減させ、
緻密で歪の少ない焼結体を得ることが可能となる。ま
た、混練後の電極ペーストを濾過することによりニッケ
ル粉末の凝集粒子が除去され、印刷した内部電極表面の
平滑性が得られ、グリーンシートの積層加圧時の接着不
良や、凝集粒子によりグリーンシートが局部的に薄くな
ることがなく、絶縁抵抗不良も低減させることができ、
信頼性の高い積層セラミックコンデンサを得ることが可
能となる。
As described above, the average particle size and specific surface area of the nickel powder, which is the main component of the internal electrode, are controlled even when the dielectric layer green sheet is thinned or highly laminated as shown in the present invention. Thereby, the firing shrinkage behavior due to oxidation and reduction of the nickel powder is suppressed, and the firing shrinkage rate can be matched with the green sheet, and the occurrence of delamination and cracks of internal structural defects during firing is reduced,
It is possible to obtain a dense and low-strain sintered body. In addition, by filtering the kneaded electrode paste, the aggregated particles of the nickel powder are removed, the smoothness of the printed internal electrode surface is obtained, and the adhesion of the green sheet at the time of laminating and pressurization and the aggregated particles are caused by the aggregated particles. Is not locally thinned, and insulation resistance failure can be reduced.
A highly reliable multilayer ceramic capacitor can be obtained.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 積層セラミック電子部品の内部電極に用
いるニッケル電極ペースト主成分のニッケル粉末とし
て、平均粒径が0.5〜0.6μmで、かつ比表面積が
2.5m2/g以下である粉末を用いることを特徴とす
る積層セラミック電子部品の製造方法。
A nickel powder as a main component of a nickel electrode paste used for an internal electrode of a multilayer ceramic electronic component has an average particle size of 0.5 to 0.6 μm and a specific surface area of 2.5 m 2 / g or less. A method for producing a multilayer ceramic electronic component, comprising using powder.
【請求項2】 請求項1に記載のニッケル粉末に、エチ
ルセルロース、ミネラルスピリット及びターピネオール
を加えて混練・分散し、ペースト化した後に開口径が1
5μm以下のフルイを通過させ、ニッケル粉末の凝集物
を除去した電極ペーストを用いる積層セラミック電子部
品の製造方法。
2. The nickel powder according to claim 1, to which ethyl cellulose, mineral spirit and terpineol are added, kneaded and dispersed, and after forming a paste, the opening diameter becomes 1.
A method for manufacturing a multilayer ceramic electronic component using an electrode paste from which agglomerates of nickel powder have been removed by passing through a sieve of 5 μm or less.
JP17142097A 1997-06-27 1997-06-27 Manufacture of laminated ceramic electronic component Pending JPH1116766A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17142097A JPH1116766A (en) 1997-06-27 1997-06-27 Manufacture of laminated ceramic electronic component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17142097A JPH1116766A (en) 1997-06-27 1997-06-27 Manufacture of laminated ceramic electronic component

Publications (1)

Publication Number Publication Date
JPH1116766A true JPH1116766A (en) 1999-01-22

Family

ID=15922811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17142097A Pending JPH1116766A (en) 1997-06-27 1997-06-27 Manufacture of laminated ceramic electronic component

Country Status (1)

Country Link
JP (1) JPH1116766A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6849206B2 (en) 2000-06-12 2005-02-01 Murata Manufacturing Co. Ltd Paste for forming thick film, method for manufacturing thereof, and filter apparatus
EP1271579A3 (en) * 2001-05-31 2007-04-25 Greatbatch-Sierra, Inc. Integrated emi filter-DC blocking capacitor
JP2017204474A (en) * 2017-06-27 2017-11-16 住友金属鉱山株式会社 Nickel paste

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6849206B2 (en) 2000-06-12 2005-02-01 Murata Manufacturing Co. Ltd Paste for forming thick film, method for manufacturing thereof, and filter apparatus
EP1271579A3 (en) * 2001-05-31 2007-04-25 Greatbatch-Sierra, Inc. Integrated emi filter-DC blocking capacitor
JP2017204474A (en) * 2017-06-27 2017-11-16 住友金属鉱山株式会社 Nickel paste

Similar Documents

Publication Publication Date Title
JP3743406B2 (en) Conductive paste, multilayer ceramic electronic component manufacturing method, and multilayer ceramic electronic component
JP3785966B2 (en) Manufacturing method of multilayer ceramic electronic component and multilayer ceramic electronic component
JP3350949B2 (en) Conductive paste
JP2013123024A (en) Conductive paste for external electrode, multilayer ceramic electronic component using the same, and method of manufacturing the same
JP2011211033A (en) Method of manufacturing laminated ceramic electronic component
JP5870625B2 (en) Electrode sintered body, laminated electronic component, internal electrode paste, method for producing electrode sintered body, method for producing laminated electronic component
JP2002075771A (en) Laminated electronic component and conductive paste
JPH05101970A (en) Laminated porcelain capacitor and its manufacture
JP4135443B2 (en) Manufacturing method of multilayer ceramic electronic component
JPH10172855A (en) Laminated layer chip parts and conductive paste used for the parts
JP2004319435A (en) Conductive particle, conductive paste, electronic part, laminated ceramic capacitor and manufacturing method of the same
JPH1116766A (en) Manufacture of laminated ceramic electronic component
JP6809280B2 (en) Method of manufacturing conductive paste
JP2004179349A (en) Laminated electronic component and its manufacturing method
JP2003115416A (en) Conductive paste, method of manufacturing laminated ceramic electronic component, and laminated ceramic electronic component
JPH11317321A (en) Laminated ceramic capacitor and manufacture of the same
JP2003317542A (en) Conductive paste and multilayer ceramic electronic component
JPH07197103A (en) Method for coating surface of metallic powder with metallic compound
JP4192523B2 (en) Manufacturing method of multilayer ceramic electronic component
JPH09180959A (en) Manufacture of layered ceramic electronic component
JPH09186044A (en) Inner electrode material paste for stacked electronic component, and stacked electronic part, and its manufacture
JP2987995B2 (en) Internal electrode paste and multilayer ceramic capacitor using the same
JP5887919B2 (en) Electrode sintered body and laminated electronic component
JPH07201222A (en) Conductive paste, ceramic lamination body, and manufacture of ceramic lamination body
JP4441951B2 (en) Multilayer ceramic electronic components