JPH11166894A - Method for analyzing carbon material - Google Patents

Method for analyzing carbon material

Info

Publication number
JPH11166894A
JPH11166894A JP35211297A JP35211297A JPH11166894A JP H11166894 A JPH11166894 A JP H11166894A JP 35211297 A JP35211297 A JP 35211297A JP 35211297 A JP35211297 A JP 35211297A JP H11166894 A JPH11166894 A JP H11166894A
Authority
JP
Japan
Prior art keywords
band
carbon material
waveform
derived
peak
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35211297A
Other languages
Japanese (ja)
Inventor
Kensho Shimodaira
憲昭 下平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP35211297A priority Critical patent/JPH11166894A/en
Publication of JPH11166894A publication Critical patent/JPH11166894A/en
Pending legal-status Critical Current

Links

Landscapes

  • Spectrometry And Color Measurement (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for analyzing a carbon material, by which high- accuracy structural analysis for a carbon material in which an amorphous phase and a crystalline phase coexist and material discrimination are made possible. SOLUTION: In techniques for analyzing a carbon material using Raman spectroscopic analysis, its Raman spectrum is regarded as consisting of a total of four peaks derived from the G-band and the D-band of a crystalline phase contained in the carbon material and the G-band and the D-band of an amorphous phase, and curve fitting is effected using four Gauss ion functions.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は炭素材料の解析方法
に係わり、特にアモルファス相と結晶相とが混在する炭
素材料について精度の高い構造解析や材料の差別化が行
える炭素材料の解析方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for analyzing a carbon material, and more particularly, to a method for analyzing a carbon material in which an amorphous phase and a crystalline phase are mixed, with which a highly accurate structural analysis and a material differentiation can be performed.

【0002】[0002]

【従来の技術】従来、炭素材料の解析手法としてラマン
分光法を用いることは知られている。ー般に炭素材料を
ラマン分光法で解析する場合、そのスペクトルはG−b
and、D−bandの2本のピークから構成されると
解釈されている。例えば、結晶相のみから構成される多
結晶グラファイトのラマンスペクトルは、1350cm
-1近傍のD−bandと1590cm-1近傍のG−ba
ndに由来する、互いに重なりのない独立した2本のピ
ークとして観察される。そのG−band、D−ban
dのピーク強度比Id /Ig やG−band、D−ba
ndそれぞれの波形のピーク位置、波形幅等を用いて構
造解析する手法が古くから知られている。
2. Description of the Related Art Hitherto, it has been known to use Raman spectroscopy as a technique for analyzing carbon materials. Generally, when a carbon material is analyzed by Raman spectroscopy, the spectrum is Gb
It is interpreted to be composed of two peaks, and and D-band. For example, the Raman spectrum of polycrystalline graphite composed only of the crystalline phase is 1350 cm
-1 near the D-band and the 1590 cm -1 vicinity of G-ba
nd is observed as two independent peaks that do not overlap with each other. G-band, D-ban
peak intensity ratio I d / I g , G-band, D-ba
A technique for performing a structural analysis using the peak position, the waveform width, and the like of each nd waveform has been known for a long time.

【0003】他の例として、アモルファス相のみから構
成される、ダイアモンドライクカーボンに代表されるア
モルファスカーボンのラマンスペクトルは、G−ban
dとD−bandの幅が広いために2本のピークが重複
したピークとして観察される。その2本のピークをガウ
ス関数を用いて波形近似後にピーク分離し、そのG−b
and、D−bandのピーク強度比Id /Ig やG−
band、D−bandそれぞれの波形のピーク位置、
波形幅等を用いて構造解析が行われている。
[0003] As another example, the Raman spectrum of amorphous carbon represented by diamond-like carbon composed of only an amorphous phase is represented by G-ban.
Since the width of d and D-band is wide, two peaks are observed as overlapping peaks. The two peaks are separated into peaks after waveform approximation using a Gaussian function, and the Gb
and D-band peak intensity ratios I d / I g and G-
band, peak position of each D-band waveform,
Structural analysis is performed using a waveform width or the like.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、G−b
and、D−bandの2本のみのピークから構成され
るとは、単純に解釈出来ないラマンスペクトルを有する
炭素材料が存在する。この場合、精度の高い構造解析や
材料の差別化が困難な恐れがある。本発明はこのような
従来の課題に鑑みてなされたもので、アモルファス相と
結晶相とが混在する炭素材料について精度の高い構造解
析や材料の差別化が行える炭素材料の解析方法を提供す
ることを目的とする。
However, Gb
A carbon material having a Raman spectrum that cannot be simply interpreted as being composed of only two peaks, and and D-band, exists. In this case, it may be difficult to perform highly accurate structural analysis and material differentiation. The present invention has been made in view of such conventional problems, and provides a method for analyzing a carbon material in which an amorphous phase and a crystalline phase are mixed, with which high-precision structural analysis and material differentiation can be performed. With the goal.

【0005】[0005]

【課題を解決するための手段】このため本発明(請求項
1)は、炭素材料をラマン分光法を用いて解析する方法
であって、前記炭素材料のラマンスペクトルが、アモル
ファス相に由来するG−bandのピーク、結晶相に由
来するG−bandのピーク、アモルファス相に由来す
るD−bandのピーク及び結晶相に由来するD−ba
ndのピークから構成されると解し、前記各ピークをガ
ウス関数を用いて波形近似し、予め取得若しくは定義し
た各種炭素材料の前記各相に由来する前記各bandの
波形の形状、波形のピーク位置、波形ピーク値、波形幅
のいずれか少なくとも一つを含むパラメータを基に前記
炭素材料の性能判別を行うことを特徴とする。
SUMMARY OF THE INVENTION Therefore, the present invention (claim 1) is a method for analyzing a carbon material by using Raman spectroscopy, wherein the Raman spectrum of the carbon material is derived from an amorphous phase. -Band peak, G-band peak derived from the crystalline phase, D-band peak derived from the amorphous phase, and D-ba derived from the crystalline phase
nd is understood to be composed of peaks, the respective peaks are approximated by using a Gaussian function, and the shapes of the respective bands derived from the respective phases of various carbon materials previously obtained or defined, the peaks of the waveforms The performance of the carbon material is determined based on a parameter including at least one of a position, a waveform peak value, and a waveform width.

【0006】ラマン分光法を用いて炭素材料を解析す
る。炭素材料はアモルファス相と結晶相とが混在すると
想定して以下の解析を行う。ラマンスペクトルは、アモ
ルファス相に由来するG−bandのピーク、結晶相に
由来するG−bandのピーク、アモルファス相に由来
するD−bandのピーク、結晶相に由来するD−ba
ndの4本のピークから構成されると解釈する。そこ
で、まず炭素材料中のアモルファス相に由来するラマン
スペクトルのG−bandのピークに対し、ガウス関数
を用いて波形近似させる。同様に、炭素材料中の結晶相
に由来するラマンスペクトルのG−bandのピークを
ガウス関数を用いて波形近似させる。また、炭素材料中
のアモルファス相に由来するラマンスペクトルのD−b
andのピークに対しガウス関数を用いて波形近似させ
る。更に、炭素材料中の結晶相に由来するラマンスペク
トルのD−bandのピークをガウス関数を用いて波形
近似させる。
The carbon material is analyzed using Raman spectroscopy. The following analysis is performed on the assumption that the amorphous phase and the crystalline phase are mixed in the carbon material. The Raman spectrum includes a G-band peak derived from an amorphous phase, a G-band peak derived from a crystalline phase, a D-band peak derived from an amorphous phase, and a D-ba derived from a crystalline phase.
nd is interpreted to be composed of four peaks. Therefore, first, the waveform of the G-band peak of the Raman spectrum derived from the amorphous phase in the carbon material is approximated using a Gaussian function. Similarly, the waveform of the G-band peak of the Raman spectrum derived from the crystal phase in the carbon material is approximated using a Gaussian function. Further, Db of Raman spectrum derived from the amorphous phase in the carbon material
The waveform of the and peak is approximated using a Gaussian function. Further, the waveform of the D-band peak of the Raman spectrum derived from the crystal phase in the carbon material is approximated using a Gaussian function.

【0007】その後、予め取得若しくは定義した各種炭
素材料の各相に由来する各bandの波形の形状、波形
の面積、波形のピーク位置、波形ピーク値、波形幅のい
ずれか少なくとも一つを含むパラメータを基に炭素材料
の性能判別を行う。波形の形状等は、予め取得した各種
炭素材料のデータを用いてもよいし、また別途定義した
データを用いてもよい。波形幅は、例えば波形の最大値
より3dB減衰した点の波形の幅とする。このことによ
り、アモルファス相と結晶相とが混在する炭素材料につ
いて精度の高い構造解析や材料の差別化が行える。
Thereafter, parameters including at least one of the waveform shape, waveform area, waveform peak position, waveform peak value, and waveform width of each band derived from each phase of various carbon materials obtained or defined in advance. The performance of the carbon material is determined based on For the shape of the waveform and the like, data of various carbon materials obtained in advance may be used, or data defined separately may be used. The waveform width is, for example, the width of the waveform at a point attenuated by 3 dB from the maximum value of the waveform. This enables highly accurate structural analysis and material differentiation of a carbon material in which an amorphous phase and a crystalline phase are mixed.

【0008】また、本発明(請求項2)は、前記炭素材
料の性能判別は、結晶相に由来するG−bandの前記
ガウス関数のピーク値に対するアモルファス相に由来す
るG−bandの前記ガウス関数のピーク値を算出し、
その比を前記炭素材料のアモルファス度とすることを特
徴とする。結晶相に由来するG−bandに対し、波形
近似したガウス関数のピーク値に対する、アモルファス
相に由来するG−bandに対し、波形近似したガウス
関数のピーク値の比は、炭素材料のアモルファス度の指
標となることが実験により確かめられた。このため、こ
の比は、アモルファス相と結晶相とが混在する炭素材料
の性能判別に重要なパラメータといえる。
Further, according to the present invention (claim 2), the performance of the carbon material is determined by comparing the Gaussian function of the G-band derived from the amorphous phase with respect to the peak value of the Gaussian function of the G-band derived from the crystalline phase. Calculate the peak value of
The ratio is defined as the degree of amorphousness of the carbon material. For the G-band derived from the crystalline phase, the ratio of the peak value of the Gaussian function whose waveform is approximated to the peak value of the Gaussian function whose waveform is approximated is the ratio of the peak value of the Gaussian function whose waveform is approximated to the amorphousness of the carbon material. It was confirmed by experiments that it could be an index. Therefore, this ratio is an important parameter for determining the performance of a carbon material in which an amorphous phase and a crystalline phase are mixed.

【0009】[0009]

【発明の実施の形態】以下、本発明の実施形態について
説明する。炭素材料をラマン分光法を用いて解析する。
炭素材料は、アモルファス相と結晶相とが混在したもの
を対象とする。このときのラマンスペクトルは、アモル
ファス相に由来するG−bandのピーク、結晶相に由
来するG−bandのピーク、アモルファス相に由来す
るD−bandのピーク及び結晶相に由来するD−ba
ndのピークの合計4本のピークから構成されていると
解釈する。各bandのピーク位置は、予め想定してお
く。例えば、1600cm-1近傍の2つのピークのうち
波形の比較的シャープな方が結晶相のG−band,波
形のブロードな方がアモルファス相のG−bandに由
来するものとし、1350cm-1近傍の2つのピークの
うち波形の比較的シャープな方が結晶相のD−ban
d,波形のブロードな方がアモルファス相のD−ban
dに由来するものとする。
Embodiments of the present invention will be described below. The carbon material is analyzed using Raman spectroscopy.
The target of the carbon material is a mixture of an amorphous phase and a crystalline phase. The Raman spectrum at this time includes a G-band peak derived from an amorphous phase, a G-band peak derived from a crystalline phase, a D-band peak derived from an amorphous phase, and a D-ba derived from a crystalline phase.
It is interpreted that the peak is composed of a total of four peaks of the nd peak. The peak position of each band is assumed in advance. For example, 1600 cm -1 relatively sharp towards the waveforms of the two peaks in the vicinity of and shall G-band of the crystal phase, is more broad waveform derived from G-band of the amorphous phase, 1350 cm -1 vicinity of The relatively sharp waveform of the two peaks is the D-ban of the crystal phase.
d, broader waveform is amorphous phase D-ban
d.

【0010】これらの各bandに対して、ガウス関数
を用いてそれぞれカーブフィッティングさせる。このと
き、4本のガウス関数を合成した波形とラマンスペクト
ル間の誤差が極力小さくなるように各ガウス関数を調整
する。得られた各ガウス関数は分離して解析する。これ
らの各ガウス関数は炭素材料の特徴を顕著に表すものに
なっている。この特徴は、各bandの波形の形状、波
形の面積、波形のピーク位置、波形ピーク値、波形幅等
により判断出来る。結晶相のG−bandは波形のピー
ク位置が1600〜1620cm-1、波形幅が30〜5
0cm-1となり、アモルファス相のG−bandは波形
のピーク位置が1530〜1590cm-1、波形幅が8
0〜120cm-1となる。また、結晶相のD−band
は波形のピーク位置が1340〜1360cm-1、波形
幅が50〜100cm-1となり、アモルファス相のD−
bandは波形のピーク位置が1230〜1370cm
-1、波形幅が170〜290cm-1となる。また、これ
らの中で、結晶相に由来するG−bandのピーク値
(以下、Ig(graphite)と略す))に対する
アモルファス相に由来するG−bandのピーク値(以
下、Ig (a−c)と略す))は、特にその炭素材料の
アモルファス度の指標と考えられ、炭素材料の性能判別
に重要なパラメータと考えられる。
Each of these bands is curve-fitted using a Gaussian function. At this time, each Gaussian function is adjusted so that the error between the waveform obtained by combining the four Gaussian functions and the Raman spectrum is minimized. Each obtained Gaussian function is analyzed separately. Each of these Gaussian functions remarkably represents the characteristics of the carbon material. This feature can be determined by the shape of the waveform of each band, the area of the waveform, the peak position of the waveform, the waveform peak value, the waveform width, and the like. The G-band of the crystal phase has a waveform peak position of 1600 to 1620 cm -1 and a waveform width of 30 to 5
0 cm −1 , and the G-band of the amorphous phase has a waveform peak position of 1530 to 1590 cm −1 and a waveform width of 8
It becomes 0 to 120 cm -1 . Also, the D-band of the crystal phase
Indicates that the peak position of the waveform is 1340-1360 cm -1 , the waveform width is 50-100 cm -1 , and the amorphous phase D-
In the band, the peak position of the waveform is 1300 to 1370 cm.
-1 and a waveform width of 170 to 290 cm -1 . Further, among these, the peak value of the G-band derived from the crystalline phase (hereinafter, I g (graphite) and abbreviated) peak value of G-band derived from amorphous phase to) (hereinafter, I g (a- c)) is considered to be an index of the degree of amorphousness of the carbon material, and is an important parameter for determining the performance of the carbon material.

【0011】[0011]

【実施例】以下、本発明の実施例、比較例を説明する。
図1は本発明の基本的な解析例として、市販の活性炭
(クラレ製BP−20)のラマンスペクトルとそのカー
ブフィッティング解析結果を示している。波形1は実測
されたスペクトル、波形2はフィッティング曲線、波形
3はベースライン直線である。波形4〜波形7は4本の
ガウス関数として分離されたピークである。波形8は実
測スペクトルとフィッティグ曲線との差である。波形8
からもわかるように、全ての周波数において精度良くフ
ィッティティングされ、最小二乗法における誤差は18
3.0であった。この解析結果から、この炭素材料はア
モルファス相と結晶相とが混在する炭素材料であり、波
形4〜波形7のピーク位置とピーク幅から、波形4はア
モルファス相由来のD−band、波形5は結晶相由来
のD−band、波形6はアモルファス相由来のG−b
and、波形7は結晶相由来のG−bandと解釈され
る。この様にアモルファス相と結晶相とが混在する炭素
材料は、その他にクラレ製YP−17、関西熱化学製H
500、501、502、503、550、551、5
52、三菱化学製C−3、C−4、C−5、E−1、鐘
紡製PASなど多数が挙げられいずれも誤差が少なく解
析された。
Examples Examples of the present invention and comparative examples will be described below.
FIG. 1 shows, as a basic analysis example of the present invention, a Raman spectrum of a commercially available activated carbon (BP-20 manufactured by Kuraray) and a curve fitting analysis result thereof. Waveform 1 is an actually measured spectrum, waveform 2 is a fitting curve, and waveform 3 is a baseline straight line. Waveforms 4 to 7 are peaks separated as four Gaussian functions. Waveform 8 is the difference between the measured spectrum and the fitting curve. Waveform 8
As can be seen from FIG. 11, fitting is performed accurately at all frequencies, and the error in the least square method is 18
3.0. From this analysis result, this carbon material is a carbon material in which an amorphous phase and a crystalline phase are mixed. From the peak positions and peak widths of waveforms 4 to 7, waveform 4 is D-band derived from the amorphous phase, and waveform 5 is D-band derived from the crystalline phase, waveform 6 is Gb derived from the amorphous phase
and, waveform 7 are interpreted as G-band derived from the crystalline phase. The carbon material in which the amorphous phase and the crystalline phase are mixed as described above is also available from Kuraray YP-17 and Kansai Thermochemical H
500, 501, 502, 503, 550, 551, 5
52, Mitsubishi Chemical C-3, C-4, C-5, E-1, Kanebo PAS, and many others, all of which were analyzed with little error.

【0012】次に、比較例を用いて本発明の手法の有効
性について説明する。図2は、図1の実測スペクトル
を、従来の手法と同様に2本のG−band、D−ba
ndから構成されるとしてG−bandをガウス関数、
D−bandをローレンツ関数としてフィッティングを
行い、解析した結果である。最小二乗法における誤差は
3288.4と大きく、精度良く解析されなかった。G
−band、D−bandを他のモデル関数、例えば共
にガウス関数を用いて解析を行った場合の誤差は978
1.36、共にローレンツ関数を用いた場合は451
2.3となり、フィッティング精度は改善されなかっ
た。
Next, the effectiveness of the method of the present invention will be described using comparative examples. FIG. 2 shows the measured spectrum of FIG. 1 as two G-bands and D-ba
and G-band as a Gaussian function,
It is a result of performing fitting and analysis using D-band as a Lorentz function. The error in the least squares method was as large as 3288.4, and was not analyzed accurately. G
When the -band and D-band are analyzed using another model function, for example, a Gaussian function, the error is 978.
1.36, 451 when both use the Lorentz function
2.3, and the fitting accuracy was not improved.

【0013】次に、活性炭の性能判別の一例を説明す
る。市販の各種活性炭について、アモルファス相由来の
D−band、結晶相由来のD−band、アモルファ
ス相由来のG−band、結晶相由来のG−bandの
各々について、そのピーク値をId (a−c)、Id
(graphite)、Ig (a−c)、Ig (gra
phite)とする。そして、結晶相におけるD−ba
nd、G−bandのピーク値比Id (graphit
e)/Ig (graphite)、アモルファス相にお
けるD−band、G−bandのピーク値比Id (a
−c)/Ig (a−c)、および結晶相由来のG−ba
ndピーク値に対するアモルファス相由来のG−ban
dピーク値比Ig (a−c)/Ig (graphit
e)を求めた。
Next, an example of determining the performance of activated carbon will be described. Regarding various types of commercially available activated carbon, the peak value of each of D-band derived from an amorphous phase, D-band derived from a crystalline phase, G-band derived from an amorphous phase, and G-band derived from a crystalline phase is represented by I d (a- c), I d
(Graphite), I g (a -c), I g (gra
phi). And D-ba in the crystal phase
nd, G-band peak value ratio I d (graphit
e) / I g (graphite), D-band and G-band peak value ratio I d (a
-C) / I g (ac), and G-ba derived from the crystalline phase
G-ban derived from amorphous phase for nd peak value
d Peak value ratio I g (ac) / I g (graphit
e) was determined.

【0014】各活性炭を電気二重層キャパシタの分極性
電極として用いたときの、電極面積あたりの容量密度C
(μF/m2 )と容量変化率△PAS(%)を調べた。
図3にIg (a−c)/Ig (graphite)に対
する電極面積あたりの容量密度C(μF/m2 )の関係
を示し、また、図4にIg (a−c)/Ig (grap
hite)に対する容量変化率△PAS(%)の関係を
示す。図3、図4に示すとおり、特にIg (a−c)/
g (graphite)とC,△PASとの相関が良
いことが判明した。Ig (a−c)/Ig (graph
ite)はその活性炭のアモルファス度の指標と考えら
れ、活性炭の性能判別に重要なパラメータとなることが
わかった。なお、透過型電子顕微鏡による構造解析や、
電子エネルギー損失分光法による解析結果との整合性も
確認した。すなわち、Ig (a−c)/Ig (grap
hite)が大きくアモルファス度が高いほど、グラフ
ァイト構造の(001)面の乱れが大きくなり、かつ電
子エネルギー損失スペクトルのπ* ピークが不明瞭にな
ってゆく。
When each activated carbon is used as a polarizable electrode of an electric double layer capacitor, the capacitance density per electrode area C
(ΜF / m 2 ) and capacitance change rate ΔPAS (%) were examined.
Figure 3 shows the relationship between I g (a-c) / I g capacity per electrode area for (graphite) Density C (μF / m 2), also in FIG. 4 I g (a-c) / I g (Graph
3 shows the relationship between the capacity change rate ΔPAS (%) and the capacity change rate (%). As shown in FIGS. 3 and 4, in particular, I g (ac) /
It was found that the correlation between I g (graphite) and C, ΔPAS was good. I g (ac) / I g (graph
item) is considered to be an index of the amorphousness of the activated carbon, and was found to be an important parameter for determining the performance of the activated carbon. In addition, structural analysis using a transmission electron microscope,
Consistency with the analysis results by electron energy loss spectroscopy was also confirmed. That is, I g (ac) / I g (graph
(h) and the degree of amorphousness, the disorder of the (001) plane of the graphite structure increases, and the π * peak of the electron energy loss spectrum becomes less clear.

【0015】[0015]

【発明の効果】以上説明したように本発明によれば、炭
素材料のラマンスペクトルを、アモルファス相又は結晶
相のG−band又はD−bandに則したガウス関数
を用いて波形近似し、この波形を基に炭素材料の性能判
別を行うこととしたので、アモルファス相と結晶相とが
混在する炭素材料について精度の高い構造解析や材料の
差別化が行える。特に、結晶相に由来するG−band
のガウス関数のピーク値に対するアモルファス相に由来
するG−bandのガウス関数のピーク値の比は、炭素
材料のアモルファス度の指標とすることが出来、炭素材
料の性能判別の重要なパラメータである。
As described above, according to the present invention, the Raman spectrum of a carbon material is approximated by using a Gaussian function conforming to the G-band or D-band of an amorphous phase or a crystalline phase, and this waveform is approximated. Since the performance of the carbon material is determined based on the above, it is possible to perform highly accurate structural analysis and material differentiation of the carbon material in which the amorphous phase and the crystalline phase are mixed. In particular, G-band derived from the crystal phase
The ratio of the peak value of the G-band Gaussian function derived from the amorphous phase to the peak value of the Gaussian function can be used as an index of the degree of amorphousness of the carbon material, and is an important parameter for determining the performance of the carbon material.

【0016】[0016]

【図面の簡単な説明】[Brief description of the drawings]

【図1】 ラマンスペクトルとカーブフィッティング解
析結果を示す図
FIG. 1 is a diagram showing Raman spectra and curve fitting analysis results.

【図2】 従来の手法と同様に2本のG−band、D
−bandのピークについて、G−bandをガウス関
数、D−bandをローレンツ関数としてフィッティン
グした結果を示す図
FIG. 2 shows two G-bands and D in the same manner as in the conventional method.
The figure which shows the result of fitting about G-band as a Gaussian function and D-band as a Lorentz function about the peak of -band.

【図3】 Ig (a−c)/Ig (graphite)
に対する電極面積あたりの容量密度C(μF/m2 )の
関係を示す図
FIG. 3. I g (ac) / I g (graphite)
Showing the relationship between the capacitance density C (μF / m 2 ) per electrode area and

【図4】 Ig (a−c)/Ig (graphite)
に対する容量変化率△PAS(%)の関係を示す図
FIG. 4 I g (ac) / I g (graphite)
Showing the relationship between the rate of change of capacity △ PAS (%) with respect to temperature

【符号の説明】[Explanation of symbols]

1 実測されたスペクトル 2 フィッティング曲線 3 ベースライン直線 4 アモルファス相由来のD−band 5 結晶相由来のD−band 6 アモルファス相由来のG−band 7 結晶相由来のG−band 8 実測スペクトルとフィッティグ曲線との差 1 Measured spectrum 2 Fitting curve 3 Baseline straight line 4 D-band derived from amorphous phase 5 D-band derived from crystalline phase 6 G-band derived from amorphous phase 7 G-band derived from crystalline phase 8 Actual measured spectrum and fitting curve Difference with

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 炭素材料をラマン分光法を用いて解析す
る方法であって、前記炭素材料のラマンスペクトルが、
アモルファス相に由来するG−bandのピーク、結晶
相に由来するG−bandのピーク、アモルファス相に
由来するD−bandのピーク及び結晶相に由来するD
−bandのピークから構成されると解し、前記各ピー
クをガウス関数を用いて波形近似し、予め取得若しくは
定義した各種炭素材料の前記各相に由来する前記各ba
ndの波形の形状、波形のピーク位置、波形ピーク値、
波形幅のいずれか少なくとも一つを含むパラメータを基
に前記炭素材料の性能判別を行うことを特徴とする炭素
材料の解析方法。
1. A method for analyzing a carbon material using Raman spectroscopy, wherein the Raman spectrum of the carbon material is:
G-band peak derived from the amorphous phase, G-band peak derived from the crystalline phase, D-band peak derived from the amorphous phase, and D derived from the crystalline phase
-Band is understood to be composed of peaks, and the respective peaks are approximated in waveform using a Gaussian function, and the respective ba derived from the respective phases of various carbon materials previously obtained or defined.
nd waveform shape, waveform peak position, waveform peak value,
A method for analyzing a carbon material, comprising determining the performance of the carbon material based on a parameter including at least one of the waveform widths.
【請求項2】 前記炭素材料の性能判別は、結晶相に由
来するG−bandの前記ガウス関数のピーク値に対す
るアモルファス相に由来するG−bandの前記ガウス
関数のピーク値を算出し、その比を前記炭素材料のアモ
ルファス度とすることを特徴とする請求項1記載の炭素
材料の解析方法。
2. The performance discrimination of the carbon material is performed by calculating a peak value of the Gaussian function of G-band derived from the amorphous phase with respect to a peak value of the Gaussian function of G-band derived from the crystalline phase, and calculating a ratio thereof. 2. The method for analyzing a carbon material according to claim 1, wherein is set to the degree of amorphousness of the carbon material.
JP35211297A 1997-12-05 1997-12-05 Method for analyzing carbon material Pending JPH11166894A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35211297A JPH11166894A (en) 1997-12-05 1997-12-05 Method for analyzing carbon material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35211297A JPH11166894A (en) 1997-12-05 1997-12-05 Method for analyzing carbon material

Publications (1)

Publication Number Publication Date
JPH11166894A true JPH11166894A (en) 1999-06-22

Family

ID=18421865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35211297A Pending JPH11166894A (en) 1997-12-05 1997-12-05 Method for analyzing carbon material

Country Status (1)

Country Link
JP (1) JPH11166894A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008116268A (en) * 2006-11-02 2008-05-22 Honda Motor Co Ltd Device and method for estimating hardness of dlc film
JP2009113252A (en) * 2007-11-02 2009-05-28 Tokyo Metropolitan Industrial Technology Research Institute Minute molding die material consisting of vitreous carbon material, method for manufacturing the same and minute molding die made with the same
JP2011204901A (en) * 2010-03-25 2011-10-13 Asahi Kasei Corp Negative electrode material for nonaqueous lithium type energy storage element, and nonaqueous lithium type energy storage element using the same
JP2014038032A (en) * 2012-08-16 2014-02-27 National Institute Of Advanced Industrial & Technology Microspectrographic simulation method
JP2015519579A (en) * 2012-06-15 2015-07-09 デ ビアーズ センテナリー アーゲー Infrared analysis of diamond
KR20170047709A (en) * 2015-10-23 2017-05-08 주식회사 엘지화학 Evaluation method for electrical conductivity of conductive polymer composition comprising cnt
WO2020137849A1 (en) 2018-12-28 2020-07-02 株式会社クラレ Porous carbon material and production method therefor and use thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008116268A (en) * 2006-11-02 2008-05-22 Honda Motor Co Ltd Device and method for estimating hardness of dlc film
JP2009113252A (en) * 2007-11-02 2009-05-28 Tokyo Metropolitan Industrial Technology Research Institute Minute molding die material consisting of vitreous carbon material, method for manufacturing the same and minute molding die made with the same
JP2011204901A (en) * 2010-03-25 2011-10-13 Asahi Kasei Corp Negative electrode material for nonaqueous lithium type energy storage element, and nonaqueous lithium type energy storage element using the same
JP2015519579A (en) * 2012-06-15 2015-07-09 デ ビアーズ センテナリー アーゲー Infrared analysis of diamond
JP2014038032A (en) * 2012-08-16 2014-02-27 National Institute Of Advanced Industrial & Technology Microspectrographic simulation method
KR20170047709A (en) * 2015-10-23 2017-05-08 주식회사 엘지화학 Evaluation method for electrical conductivity of conductive polymer composition comprising cnt
WO2020137849A1 (en) 2018-12-28 2020-07-02 株式会社クラレ Porous carbon material and production method therefor and use thereof

Similar Documents

Publication Publication Date Title
Hellgren et al. Nitrogen bonding structure in carbon nitride thin films studied by soft x-ray spectroscopy
Wiberg et al. Electronic states of organic molecules. 3. Photoelectron spectra of cycloalkenes and methylenecycloalkanes
JPH11166894A (en) Method for analyzing carbon material
Luo et al. Symmetry assignments of occupied and unoccupied molecular orbitals through spectra of polarized resonance inelastic x-ray scattering
Laramee et al. Angle-resolved mass spectrometry
Wang et al. Rapid Raman spectroscopic determination of the stoichiometry of microscopic quantities of BEDT–TTF-based organic conductors and superconductors
Piancastelli et al. Angular distribution parameter as a function of photon energy for some mono-and diazabenzenes and its use for orbital assignment
Lewis et al. Determination of 40Ca+ in the presence of 40Ar+: an illustration of the utility of time-gated detection in pulsed glow discharge mass spectrometry
Rendek et al. The reactivity of linear alkyl carbonates toward metallic lithium: X-ray photoelectron spectroscopy studies in ultrahigh vacuum
Caputi et al. Oxygen-nickel bond length in Ni (111)-p (2× 2) O determined by electron-energy-loss fine-structure spectroscopy
Hahn et al. Imaging and vibrational spectroscopy of single pyridine molecules on Ag (110) using a low-temperature scanning tunneling microscope
Zhang et al. Comparison of wavelet transform and Fourier self-deconvolution (FSD) and wavelet FSD for curve fitting
O’Malley et al. Elucidation of the principal hyperfine tensor components for the methyl group interaction in semiquinone anion radicals utilizing powder ENDOR spectroscopy
Luo et al. Rotationally resolved state-to-state photoelectron study of niobium carbide radical
Fiermans et al. Inelastic effects and structure in the auger electron emission spectra of V2O5 (010) and V (100) surfaces: Study of chemical shifts
Kitchin et al. The molecular conformation and dipole moment of thiane from the microwave spectrum
Troxler et al. Electronic Spectra. Experimental vs. Semiclassical Electronic Spectra of Spectra of Naphthalene· Arn van der Waals Clusters
Goulon et al. EXAFS investigation of nickel and cobalt precursors of homogeneous ziegler-type hydrogenation catalysts
Durig et al. Spectra and structure of small ring compounds. L. microwave spectrum of cyclobutylgermane
Halaka et al. Identification of neighboring atoms in extended x-ray absorption fine structure
Freiser et al. Photochemistry of weakly bound Li+ complexes in the gas phase. A novel probe of charge distribution and acid—base properties of excited electronic states
Knorr et al. Fourier transform time-of-flight mass spectrometry
Sing et al. Noise Characterization of a" Surfatron" MIP and the Implications for Fourier-Transform-Based Detection in GC-MIP-AES
Clark et al. Commercial and Experimental Carbon Blacks An X-Ray Comparison.
Van Berkel et al. Geoporphyrin structure determination using chemical ionization-mass spectrometry/mass spectrometry