JP2009113252A - Minute molding die material consisting of vitreous carbon material, method for manufacturing the same and minute molding die made with the same - Google Patents

Minute molding die material consisting of vitreous carbon material, method for manufacturing the same and minute molding die made with the same Download PDF

Info

Publication number
JP2009113252A
JP2009113252A JP2007286805A JP2007286805A JP2009113252A JP 2009113252 A JP2009113252 A JP 2009113252A JP 2007286805 A JP2007286805 A JP 2007286805A JP 2007286805 A JP2007286805 A JP 2007286805A JP 2009113252 A JP2009113252 A JP 2009113252A
Authority
JP
Japan
Prior art keywords
fine mold
fine
molding die
mold material
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007286805A
Other languages
Japanese (ja)
Other versions
JP5301140B2 (en
Inventor
Yoshikazu Teranishi
義一 寺西
Kazumasa Nakamura
和正 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chuo University
Tokyo Metropolitan Industrial Technology Research Instititute (TIRI)
Original Assignee
Chuo University
Tokyo Metropolitan Industrial Technology Research Instititute (TIRI)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chuo University, Tokyo Metropolitan Industrial Technology Research Instititute (TIRI) filed Critical Chuo University
Priority to JP2007286805A priority Critical patent/JP5301140B2/en
Publication of JP2009113252A publication Critical patent/JP2009113252A/en
Application granted granted Critical
Publication of JP5301140B2 publication Critical patent/JP5301140B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a minute molding die material consisting of a vitreous carbon material, from which a minute molding die for micro/nano-level precision processing is formed without applying a fluorine-based coating material to the minute molding die or without coating the minute molding die with DLC (diamond-like carbon) or the like and which has excellent mold releasability. <P>SOLUTION: The vitreous carbon material is heat-treated at 2,100-3,000°C to obtain the minute molding die material having a self-lubricating/releasing property. The minute molding die is formed from the obtained minute molding die material. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、凹凸部の寸法を数nm〜数百μm程度とする微細な成形が行われた微細成形型の材料とその製造方法ならびにそれを用いた微細成形型に関するものである。   The present invention relates to a material for a fine mold in which fine molding has been performed so that the size of the concavo-convex portion is about several nanometers to several hundreds of micrometers, a manufacturing method thereof, and a fine mold using the same.

携帯電話部品用や電子機器の部品用などに、凹凸部の寸法が数nm〜数百μm程度の微細加工を可能とする微細成形型が必要とされつつあるが、実際には微細成形型の作成方法と転写製品作成時の離型問題などの点から実用レベルに達しているものは少ない。特に、離型処理技術の問題が大変に重要な課題になっている。しかしながらこれは、微細成形型で作製した成型物(転写物)を抜き取る(離型する)ことは、そのスケールが小さくなるほど、特にナノレベルの微細成形型などは、その転写物自身が微細成形型に残ってしまうことが多く、離型が大変困難であることによる。   For mobile phone parts and electronic device parts, there is a need for a fine mold that allows fine processing with a concavo-convex dimension of several nanometers to several hundreds of micrometers. Few products have reached the practical level in terms of production methods and mold release problems when creating transfer products. In particular, the problem of mold release processing technology has become a very important issue. However, this means that the molded product (transfer product) produced with a fine mold is extracted (released). The smaller the scale, the more particularly the nano-level micro mold, etc. This is because it is often difficult to release.

従来、線幅、深さが数十μm〜数nmレベルの微細成形型の転写物質としては、熱硬化樹脂などのシリコンゴムや、紫外線硬化樹脂などが知られているが、これらの場合に、微細成形型と転写物が強固に密着して、微細成形型からきれいに転写物を抜き取る(転写)ことができないという事態がしばしば生じている。   Conventionally, as a transfer material of a fine mold having a line width and a depth of several tens of μm to several nm, silicon rubber such as thermosetting resin, ultraviolet curable resin, and the like are known. In these cases, There is often a situation in which the fine mold and the transfer product are in close contact with each other and the transfer product cannot be removed (transferred) cleanly from the fine mold.

このような問題を解決するために、通常は、離型用前処理としてフッ素系のコート材を金型に塗布する方法が採用されている。しかし、この方法では、コート材の再塗布が周期的に必要であり、またその塗布には熟練と多くの手間が必要となる。   In order to solve such problems, a method of applying a fluorine-based coating material to a mold is usually employed as a pretreatment for mold release. However, in this method, recoating of the coating material is required periodically, and the application requires skill and a lot of labor.

その他の解決方法として、近年DLC(ダイヤモンドライクカーボン)などの潤滑材を金属金型の表面に膜形成(コーティング)する方法も注目されているが、凹凸部の寸法が数nm〜数百μm程度ある微細成形型の表面に均一な厚みでコートすることは非常に難しく、膜厚による微細成形型の誤差の発生も無視できない等の課題があった。たとえば通常のDLCコートでは膜厚が1〜3μm程度であり、これを用いてナノレベルの凹凸の微細成形型にコートすることは事実上不可能である。   As another solution, in recent years, a method of coating (coating) a lubricant such as DLC (diamond-like carbon) on the surface of a metal mold has been attracting attention, but the size of the uneven portion is about several nm to several hundred μm. It was very difficult to coat the surface of a certain fine mold with a uniform thickness, and there was a problem that an error of the fine mold due to the film thickness could not be ignored. For example, a normal DLC coating has a film thickness of about 1 to 3 μm, and it is practically impossible to coat a fine mold with irregularities on the nano level using this.

このため、従来のように、フッ素系のコート材を微細成形型に塗布することや、金型精度の誤差の発生原因となるDLCのコート等の手段を適用することなく、特にサブミクロンナノ領域での凹凸を転写可能とするための新しい技術手段の実現が望まれていた。   For this reason, it is particularly necessary to apply a fluorine-based coating material to a fine mold, and to apply a DLC coating or the like that causes an error in mold accuracy, as in the conventional case. Realization of a new technical means for enabling the transfer of the irregularities on the surface has been desired.

一方、このような状況において、より小型の金型にガラス状炭素材を用いることが試みられている。たとえば、金型の一部または全部にガラス状炭素を用いて金型の離型性、耐久性を向上させることが提案されている(特許文献1−7)。特許文献1では金型にすべてガラス状炭素を使用した方法が、特許文献2−3においては、金型の全部または表面ガラス状炭素を使用して離型性をあげる方法が、特許文献4−6では金型の一部分をガラス状炭素で置き換えて金型の離型性、耐久性を向上する方法が開示されている。また特許文献7では充填成形の金型への応用が示されている。   On the other hand, in such a situation, an attempt has been made to use a glassy carbon material for a smaller mold. For example, it has been proposed to improve mold releasability and durability by using glassy carbon for part or all of a mold (Patent Documents 1-7). In Patent Document 1, a method using all glassy carbon in the mold is used, and in Patent Document 2-3, a method of increasing the mold releasability by using the whole mold or surface glassy carbon is disclosed in Patent Document 4- No. 6 discloses a method for improving mold releasability and durability by replacing a part of the mold with glassy carbon. Patent Document 7 shows application of filling molding to a mold.

しかしながら、ガラス状炭素材の金型への応用については注目されるものの、その技術的検討は、ナノレベルでの精密微細成形型まで深化、拡大されておらず、実用的にも多くの未踏な課題を残している。実際に、ナノレベルの精密微細成形型へ使用することは依然として可能とされていない。
特開2001−335334号公報 特開平10−337734号公報 特開平10−296741号公報 特開平09−188535号公報 特開平08−239227号公報 特開2005−112672号公報 特開2004−034194号公報
However, although attention has been paid to the application of glassy carbon materials to molds, the technical study has not been deepened and expanded to nano-scale precision fine molds, and there are many unexplored practical applications. There are still challenges. In fact, it is still not possible to use it in nano-scale precision fine molds.
JP 2001-335334 A JP-A-10-337734 Japanese Patent Laid-Open No. 10-296741 JP 09-188535 A Japanese Patent Laid-Open No. 08-239227 JP 2005-112672 A JP 2004-034194 A

前記のように、通常ナノレベルの微細成形型とその転写には、金型へのコート材の再塗布が周期的に必要であり、またその塗布には熟練と多くの手間が必要となる。またDLCなどの潤滑材を金属金型に膜型性(コーティング)する方法も注目されているが、マイクロナノレベルの凹凸のある微細成形型に沿って均一な厚みでコートする事は非常に困難であり、膜厚による微細成形型の誤差の発生も無視できない等欠点があった。   As described above, the nano-level fine mold and its transfer usually require re-application of the coating material to the mold, and the application requires skill and a lot of labor. In addition, the method of coating a metal mold with a lubricant such as DLC has attracted attention, but it is very difficult to coat with a uniform thickness along a micro-mold with micro / nano level irregularities. In addition, there is a drawback that an error of the fine mold due to the film thickness cannot be ignored.

そこで、本発明は、以上のとおりの従来技術の問題点を解消して、従来のフッ素系コート材の塗布やDLC等のコート形成を行うことなく、微細成形型の離型性、耐久性等の点において注目されるガラス状炭素材をマイクロレベル、ナノレベルの精密加工用の微細成形型に適用可能とするための新しい技術手段を提供することを課題としている。   Therefore, the present invention eliminates the problems of the prior art as described above, and does not perform conventional coating of a fluorine-based coating material or formation of a coating such as DLC, and the mold release property, durability, etc. It is an object of the present invention to provide a new technical means for making it possible to apply a glassy carbon material, which has attracted attention in this respect, to a micro-molding die for micro- and nano-level precision processing.

本発明は、前記課題を解決するものとして以下のことを特徴としている。   The present invention has the following features to solve the above-mentioned problems.

第1:ガラス状炭素材からなる微細成形型材料であって、表面におけるラマン測定(波長514.5nm)での次式で表わされるR値;   First: a fine mold material made of a glassy carbon material, and an R value represented by the following formula in Raman measurement (wavelength 514.5 nm) on the surface;

が1.5以下である微細成形型材料。 Is a fine mold material having a value of 1.5 or less.

第2:R値が1.3以下である上記の微細成形型材料。   Second: The above fine mold material having an R value of 1.3 or less.

第3:ガラス状炭素材からなる微細成形型材料であって、ダイヤモンドピン(曲率半径0.2mm、先端角90°)を用いて、大気中で、すべり速度一定(20mm/min)、24.5mNの荷重下で、一定方向に一回だけ0.8mm移動させたときの表面摩擦係数が0.1以下である微細成形型材料。   Third: A fine mold material made of a glassy carbon material, using a diamond pin (with a radius of curvature of 0.2 mm and a tip angle of 90 °) in the atmosphere, at a constant sliding speed (20 mm / min), 24. A fine mold material having a surface friction coefficient of 0.1 or less when moved by 0.8 mm only once in a fixed direction under a load of 5 mN.

第4:表面摩擦係数が0.07以下である上記の微細成形型材料。   Fourth: The above fine mold material having a surface friction coefficient of 0.07 or less.

第5:ガラス状炭素材からなる微細成形型材料であって、表面の接触角が85°以上である微細成形型材料。   Fifth: A fine mold material made of a glassy carbon material and having a surface contact angle of 85 ° or more.

第6:接触角が90°以上である上記の微細成形型材料。   Sixth: The above fine mold material having a contact angle of 90 ° or more.

第7:前記第1から第6のうちのいずれかの微細成形型材料の形成方法であって、ガラス状炭素材を2100℃〜3000℃の温度範囲内で熱処理する微細成形型材料の形成方法。   Seventh: A method for forming a fine mold material according to any one of the first to sixth methods, wherein the glassy carbon material is heat-treated within a temperature range of 2100 ° C. to 3000 ° C. .

第8:2250℃〜3000℃の温度範囲内で熱処理する上記の微細成形型材料の形成方法。   Eighth: The method for forming a fine mold material described above, wherein the heat treatment is performed within a temperature range of 2250 ° C to 3000 ° C.

第9:前記第1から第6のうちのいずれかに記載の微細成形型材料を基板とし、該基板表面に加工用溝部が形成されている微細成形型であって、加工用溝部の加工寸法が、線幅および深さの各々について50μm〜1nmの範囲内であることを特徴とする微細成形型。   Ninth: A fine mold in which the fine mold material according to any one of the first to sixth is used as a substrate, and a processing groove is formed on the surface of the substrate, and a processing dimension of the processing groove Is in the range of 50 μm to 1 nm for each of the line width and depth.

第10:加工用溝部の加工寸法が、1μm〜2nmの範囲内である上記の微細成形型。   Tenth: The fine mold described above, wherein the processing dimension of the processing groove is in the range of 1 μm to 2 nm.

本発明によれば、微細成形型材料として、ガラス状炭素を2100℃以上に熱処理して自己潤滑離型性を発現させる。これを用いて微細成形型を作製すると、その転写物は微細成形型と密着することを防止することができ、転写物の離型が可能になる。本発明では微細成形型に対して膜形成を行わないので、膜形成による線幅の誤差を考慮せずに線幅数十nm、までの(潤滑性を持った)微細成形型を作製できる。微細成形型表面が変形する事が無く離型性を持たせた自己潤滑離型性を持つことによる微細成形型の高機能化が可能となるので、産業上極めて有益である。   According to the present invention, as a fine mold material, glassy carbon is heat-treated at 2100 ° C. or higher to exhibit self-lubricating releasability. When a fine mold is produced using this, the transferred product can be prevented from coming into close contact with the fine mold, and the transferred product can be released. In the present invention, since film formation is not performed on the fine mold, a fine mold (with lubricity) having a line width of several tens of nanometers can be manufactured without considering the error in line width due to film formation. Since the surface of the fine mold is not deformed and has a self-lubricating mold release property having a mold release property, it is possible to enhance the function of the fine mold die, which is extremely useful industrially.

本発明の微細成形型材料は、前記のとおり、以下の特徴をもつものとして特定される。   As described above, the fine mold material of the present invention is specified as having the following characteristics.

<A>表面におけるラマン測定(波長514.5nm)でのR値が1.5以下、より好ましくは1.3以下である。   <A> The R value in the Raman measurement (wavelength 514.5 nm) on the surface is 1.5 or less, more preferably 1.3 or less.

<B>表面摩擦係数が0.1以下、より好ましくは0.07以下である。   <B> The surface friction coefficient is 0.1 or less, more preferably 0.07 or less.

<C>表面の接触角が85°以上、より好ましくは90°以上である。   <C> The contact angle of the surface is 85 ° or more, more preferably 90 ° or more.

ここで、R値や表面摩擦係数は前記の定義に従うものである。このような特徴を有する微細成形型材料を用いることで、マイクロナノレベルの精密加工用微細成形型において自己潤滑離型性が微細成形型に保有されることになる。   Here, the R value and the surface friction coefficient follow the above definitions. By using the fine mold material having such characteristics, the self-lubricating mold releasability is retained in the fine mold for the micro / nano level precision machining fine mold.

ここでの「自己潤滑離型性」の用語は、従来のように、フッ素系コート材等の潤滑剤、離型剤や、DLC膜のような潤滑膜、離型膜等の外部的付加手段を一切用いることなしに、微細成形型の表面がそれ自身として円滑な離型性能を有していることを意味している。そしてこの性能は、マイクロレベル、ナノレベルの精密寸法、より具体的には、50μm以下、さらには1μm以下の加工寸法において実現されていることを意味している。   Here, the term “self-lubricating releasability” means, as in the past, external addition means such as a lubricant such as a fluorine-based coating material, a releasing agent, a lubricating film such as a DLC film, and a releasing film. This means that the surface of the fine mold itself has a smooth release performance without using any of the above. This performance means that it is realized in micro- and nano-level precision dimensions, more specifically, in a processing dimension of 50 μm or less, and further 1 μm or less.

実際には、たとえば、線幅および深さの各々について1μm〜2nmの範囲での加工寸法が実現されるこのような本発明の微細成形型材料、そしてこれを用いた微細成形型は、その形成方法としては、ガラス状炭素剤を好ましくは2100℃〜3000℃で加熱処理すること、さらに好ましくは2250℃以上で加熱処理することを特徴としている。   Actually, for example, such a fine mold material of the present invention in which a processing dimension in the range of 1 μm to 2 nm is realized for each of the line width and depth, and the fine mold using the same is formed. As a method, the glassy carbon agent is preferably heat-treated at 2100 ° C to 3000 ° C, more preferably heat-treated at 2250 ° C or higher.

なお、ガラス状炭素材については、層状の微小構造を有する黒鉛とは相違して、微小六角網面集合体が配向しておらず、結合による結晶子の成長が阻害され、黒鉛化が進まないものとして知られている。難黒鉛化性炭素(non-graphitizable carbon)とも呼ばれているものである。   For glassy carbon materials, unlike the graphite with a layered microstructure, the micro hexagonal network aggregates are not oriented, the growth of crystallites due to bonding is inhibited, and graphitization does not proceed. Known as a thing. It is also called non-graphitizable carbon.

熱処理後の微細成形型材料に対しては、その表面に、加工用の溝部が、たとえばFIB(集束イオンビーム)等の手段によって形成され、所要の微細成形型構造とされる。
さらに、本発明は、加工用の溝部の形成後に、上記の加熱処理温度による熱処理を行っても、熱処理後に溝部を形成する場合と同様に、微細成形型構造とすることもできる。
For the fine mold material after the heat treatment, a processing groove is formed on the surface thereof by means such as FIB (focused ion beam) to obtain a required fine mold structure.
Further, in the present invention, even when the heat treatment is performed at the above heat treatment temperature after forming the groove for processing, the fine mold structure can be formed as in the case of forming the groove after the heat treatment.

そこで、以下に実施例を示し、さらに詳しく説明する。   Then, an Example is shown below and it demonstrates in detail.

もちろん以下の例によって発明が限定されることはない。   Of course, the invention is not limited by the following examples.

ガラス状炭素を次のようにして作製した。出発原料としてフルフリルアルコール初期重合体、およびp-トルエンスルホン酸を主成分とする硬化剤を使用した。フルフリルアルコール120gに対し硬化剤を約0.3g (約0.3wt.%)加え、撹拌およびホーン型超音波照射機を用い30〜40Hzの超音波照射を行った。試料温度が50℃となった後、撹拌および超音波照射を75分間行った。この超音波照射は気孔の除去と均一混合のために行うものである。   Glassy carbon was produced as follows. A furfuryl alcohol initial polymer and a curing agent mainly composed of p-toluenesulfonic acid were used as starting materials. About 120 g of furfuryl alcohol was added with about 0.3 g (about 0.3 wt.%) Of the curing agent, and stirring and ultrasonic irradiation at 30 to 40 Hz were performed using a horn type ultrasonic irradiation machine. After the sample temperature reached 50 ° C., stirring and ultrasonic irradiation were performed for 75 minutes. This ultrasonic irradiation is performed for the removal of pores and uniform mixing.

撹拌および超音波照射終了後、ポリエチレン製角型容器に流し込み、大気中24時間室温にて静置した。静置後、乾燥器を使用して空気中50℃で48時間処理した。次いで試料を乾燥器を使用して空気中160℃で6時間処理しフラン樹脂を作製した。   After completion of stirring and ultrasonic irradiation, the mixture was poured into a square container made of polyethylene and allowed to stand in the atmosphere for 24 hours at room temperature. After standing, it was treated in air at 50 ° C. for 48 hours using a dryer. The sample was then treated in air at 160 ° C. for 6 hours using a dryer to produce a furan resin.

得られたフラン樹脂をAr雰囲気中1000℃で30分間炭素化処理を行い、フラン樹脂炭を作製した。得られたフラン樹脂炭をそれぞれAr雰囲気中1200、1500、2000および3000℃で30分間高温処理を行い供試体のフラン樹脂炭を作製した。   The obtained furan resin was carbonized in an Ar atmosphere at 1000 ° C. for 30 minutes to produce furan resin charcoal. The obtained furan resin charcoal was subjected to high temperature treatment at 1200, 1500, 2000 and 3000 ° C. for 30 minutes in an Ar atmosphere, respectively, to prepare a furan resin charcoal as a specimen.

加熱炉内において、ガラス状炭素材を1000℃〜3000℃の範囲内で加熱処理した。この加熱処理後の試料表面の摩擦係数と接触角を測定した。図1と図2はその結果を示したものである。なお、摩擦係数は以下のようにして測定したものである。   In the heating furnace, the glassy carbon material was heat-treated within a range of 1000 ° C to 3000 ° C. The friction coefficient and contact angle of the sample surface after the heat treatment were measured. 1 and 2 show the results. The coefficient of friction is measured as follows.

すなわち、摩擦試験は新東科学(株)製 バウデン・レーベン型試験機HEIDON 18LFWを用いて行なった。GLCの相手摩擦材料には、ダイヤモンドピン(曲率半径0.2mm,先端角90°)を用いた。   That is, the friction test was performed using a Bauden-Leven type tester HEIDON 18LFW manufactured by Shinto Kagaku Co., Ltd. A diamond pin (with a radius of curvature of 0.2 mm and a tip angle of 90 °) was used as the friction material for the GLC.

試験条件は、大気中において、すべり速度一定(20mm/min)、荷重は24.5mNで行い、それぞれの試料を一定方向に一回だけ0.8mm移動させたときの摩擦係数を測定した。基準試料として熱分解黒鉛(PG)のbase面も測定した。   The test conditions were a constant sliding speed (20 mm / min) in the atmosphere, a load of 24.5 mN, and a friction coefficient was measured when each sample was moved 0.8 mm once in a fixed direction. A base surface of pyrolytic graphite (PG) was also measured as a reference sample.

試験前に試料およびダイヤモンドピンは超音波洗浄器を用いてトルエン、アセトンで10minずつ洗浄した後、十分に乾燥させて試験に供した。   Before the test, the sample and the diamond pin were washed with toluene and acetone for 10 minutes each using an ultrasonic cleaner, and then sufficiently dried and subjected to the test.

図1からは、処理温度2000℃近傍以上、さらには2100℃以上において確実に摩擦係数0.1以下に、2250℃以上において0.07以下になっていることがわかる。摩擦係数が0.1以下、さらに好ましくは0.07以下であることにより、マイクロレベル、ナノレベルの精密加工微細成形型として優れた自己潤滑離型性が実現されることが確認されている。また、本発明における接触角とは、微細成形型(基材)の表面と、例えば滴下した水滴との接触の角度であり、その接触角については85°以上、さらに90°以上であることが好ましく、図2より、そのための加熱処理温度が確認される。   From FIG. 1, it can be seen that the coefficient of friction is reliably 0.1 or less at a treatment temperature of about 2000 ° C. or more, and further 2100 ° C. or more, and 0.07 or less at 2250 ° C. or more. It has been confirmed that when the coefficient of friction is 0.1 or less, more preferably 0.07 or less, excellent self-lubricating release properties can be realized as a micro- and nano-level precision processing fine mold. Further, the contact angle in the present invention is an angle of contact between the surface of the fine mold (base material) and, for example, a dropped water droplet, and the contact angle is 85 ° or more, and more preferably 90 ° or more. Preferably, the heat processing temperature for it is confirmed from FIG.

図3は、ガラス状炭素のラマンデータ(波長514.5nm)の温度依存性とそこから求めた
R値=I/I(I:バンド1360cm-1でのラマン強度、I:バンド1580cm-1でのラマン強度)
の温度依存性を示したものである。以下の結果を示している。
FIG. 3 shows the temperature dependence of Raman data (wavelength 514.5 nm) of glassy carbon and the R value obtained therefrom = I D / I G (I D : Raman intensity at 1360 cm −1 band, I G : 1580 cm band) Raman intensity at -1 )
This shows the temperature dependence of. The following results are shown.

(a)ガラス状炭素破断面のラマン分光による温度処理依存性
(b)ラマン分光によるR値=I/Iの温度処理依存性
そこで、2250℃で加熱処理した後の微細成形型材料に対して、FIBによる微細溝加工を施し、図4のSEM写真を示したとおりの、幅400nm、深さ200nmの井桁状の微細成形型を作製した。
(A) temperature treatment dependence of R value = I D / I G according to the temperature treatment dependent (b) Raman spectroscopy by Raman spectroscopy of glassy carbon fracture surface Therefore, the fine mold material after heat treatment at 2250 ° C. On the other hand, fine groove processing by FIB was performed, and a cross-shaped fine mold having a width of 400 nm and a depth of 200 nm as shown in the SEM photograph of FIG. 4 was produced.

転写物としてシリコンゴムを使用して、微細成形型に流し込み、約80℃で加熱硬化させた。その後、冷却させ、シリコンゴムを基板から剥離し、光学顕微鏡、走査電子顕微鏡(SEM)で観察し、転写が成功していることを確認した。図5は、離型できた転写物のSEM写真を例示したものである。   Silicon rubber was used as a transfer product, poured into a fine mold, and cured by heating at about 80 ° C. Then, it was cooled, the silicon rubber was peeled from the substrate, and observed with an optical microscope and a scanning electron microscope (SEM) to confirm that the transfer was successful. FIG. 5 illustrates an SEM photograph of the transferred product that has been released from the mold.

ガラス状炭素の摩擦係数と処理温度との関係。Relation between friction coefficient of glassy carbon and processing temperature. ガラス状炭素の接触角と処理温度との関係。Relationship between contact angle of glassy carbon and processing temperature. ガラス状炭素のラマンデータの温度依存性とR値=I/I(I:バンド1360cm-1でのラマン強度、I:バンド1580cm-1でのラマン強度)の温度依存性。Glassy Temperature dependence and R value of Raman data carbon = I D / I G (I D: Raman intensity of the band 1360cm -1, I G: Raman intensity of the band 1580 cm -1) Temperature dependence of.

(a)ガラス状炭素破断面のラマン分光による温度処理依存性。   (A) Temperature treatment dependence by Raman spectroscopy of the glassy carbon fracture surface.

(b)ラマン分光によるR値=I/Iの温度処理依存性。
実際に作製した微細成形型のSEM写真。 実際に微細成形型から離型出来た転写物のSEM写真。
(B) temperature treatment dependence of R value = I D / I G by Raman spectroscopy.
SEM photograph of the actually produced fine mold. SEM photograph of the transcript that was actually released from the fine mold.

Claims (10)

ガラス状炭素材からなる微細成形型材料であって、表面におけるラマン測定(波長514.5nm)での次式で表わされるR値;
が1.5以下であることを特徴とする微細成形型材料。
An R value represented by the following formula in a Raman measurement (wavelength 514.5 nm) on the surface, which is a fine mold material made of a glassy carbon material;
Is a fine mold material characterized in that it is 1.5 or less.
R値が1.3以下であることを特徴とする請求項1に記載の微細成形型材料。   R value is 1.3 or less, The fine mold material of Claim 1 characterized by the above-mentioned. ガラス状炭素材からなる微細成形型材料であって、ダイヤモンドピン(曲率半径0.2mm、先端角90°)を用いて、大気中で、すべり速度一定(20mm/min)、24.5mNの荷重下で、一定方向に一回だけ0.8mm移動させたときの表面摩擦係数が0.1以下であることを特徴とする微細成形型材料。   A fine mold material made of a glassy carbon material, using a diamond pin (with a radius of curvature of 0.2 mm and a tip angle of 90 °), with a constant sliding speed (20 mm / min) and a load of 24.5 mN in air. A fine molding die material having a surface friction coefficient of 0.1 or less when moved 0.8 mm only once in a certain direction below. 表面摩擦係数が0.07以下であることを特徴とする請求項3に記載の微細成形型材料。   The fine mold material according to claim 3, wherein the surface friction coefficient is 0.07 or less. ガラス状炭素材からなる微細成形型材料であって、表面の接触角が85°以上であることを特徴とする微細成形型材料。   A fine mold material comprising a glassy carbon material, wherein the surface contact angle is 85 ° or more. 接触角が90°以上であることを特徴とする請求項5に記載の微細成形型材料。   The fine mold material according to claim 5, wherein the contact angle is 90 ° or more. 請求項1から6のうちのいずれかに記載の微細成形型材料の形成方法であって、ガラス状炭素材を2100℃〜3000℃の温度範囲内で熱処理することを特徴とする微細成形型材料の形成方法。   The method for forming a fine mold material according to any one of claims 1 to 6, wherein the glassy carbon material is heat-treated within a temperature range of 2100 ° C to 3000 ° C. Forming method. 2250℃〜3000℃の温度範囲内で熱処理することを特徴とする請求項7に記載の微細成形型材料の形成方法。   The method for forming a fine mold material according to claim 7, wherein the heat treatment is performed within a temperature range of 2250 ° C to 3000 ° C. 請求項1から6のうちのいずれかに記載の微細成形型材料を基板とし、該基板表面に加工用溝部が形成されている微細成形型であって、加工用溝部の加工寸法が、線幅および深さの各々について50μm〜1nmの範囲内であることを特徴とする微細成形型。   A fine molding die in which the fine mold material according to any one of claims 1 to 6 is used as a substrate, and a processing groove is formed on a surface of the substrate, and the processing dimension of the processing groove is a line width. And a depth within a range of 50 μm to 1 nm for each of the depths. 加工用溝部の加工寸法が、線幅および深さの各々について1μm〜2nmの範囲内であることを特徴とする請求項9に記載の微細成形型。   10. The fine mold according to claim 9, wherein a processing dimension of the processing groove portion is in a range of 1 μm to 2 nm for each of the line width and the depth.
JP2007286805A 2007-11-02 2007-11-02 Fine mold material made of glassy carbon material, production method thereof, and fine mold using the same Expired - Fee Related JP5301140B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007286805A JP5301140B2 (en) 2007-11-02 2007-11-02 Fine mold material made of glassy carbon material, production method thereof, and fine mold using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007286805A JP5301140B2 (en) 2007-11-02 2007-11-02 Fine mold material made of glassy carbon material, production method thereof, and fine mold using the same

Publications (2)

Publication Number Publication Date
JP2009113252A true JP2009113252A (en) 2009-05-28
JP5301140B2 JP5301140B2 (en) 2013-09-25

Family

ID=40780944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007286805A Expired - Fee Related JP5301140B2 (en) 2007-11-02 2007-11-02 Fine mold material made of glassy carbon material, production method thereof, and fine mold using the same

Country Status (1)

Country Link
JP (1) JP5301140B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09170629A (en) * 1995-10-19 1997-06-30 Honda Motor Co Ltd Carbon fiber reinforced carbon type sintered body clutch
JPH11166894A (en) * 1997-12-05 1999-06-22 Asahi Glass Co Ltd Method for analyzing carbon material
JP2002255566A (en) * 2001-02-26 2002-09-11 Toshiba Mach Co Ltd Die for forming glass and method for manufacturing product of formed glass
JP2004034194A (en) * 2002-07-01 2004-02-05 Cluster Technology Co Ltd Mold having micro-structure, and method for manufacturing molded body using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09170629A (en) * 1995-10-19 1997-06-30 Honda Motor Co Ltd Carbon fiber reinforced carbon type sintered body clutch
JPH11166894A (en) * 1997-12-05 1999-06-22 Asahi Glass Co Ltd Method for analyzing carbon material
JP2002255566A (en) * 2001-02-26 2002-09-11 Toshiba Mach Co Ltd Die for forming glass and method for manufacturing product of formed glass
JP2004034194A (en) * 2002-07-01 2004-02-05 Cluster Technology Co Ltd Mold having micro-structure, and method for manufacturing molded body using the same

Also Published As

Publication number Publication date
JP5301140B2 (en) 2013-09-25

Similar Documents

Publication Publication Date Title
Fischer et al. Funnel‐shaped microstructures for strong reversible adhesion
Guo et al. Fabrication of robust superhydrophobic surfaces via aerosol-assisted CVD and thermo-triggered healing of superhydrophobicity by recovery of roughness structures
KR101169426B1 (en) Hierarchical Nanopatterns by Nanoimprint Lithography
Jiang et al. Ultrashort picosecond laser processing of micro-molds for fabricating plastic parts with superhydrophobic surfaces
KR100928184B1 (en) High durable replica mold for nanoimprint lithography and method for manufacturing the same
US10144155B2 (en) Production method for glassy carbon mold
EP1925019A2 (en) Nano-molding process
Li et al. High-temperature friction behavior of amorphous carbon coating in glass molding process
Arisoy et al. Low-cost, durable master molds for thermal-NIL, UV-NIL, and injection molding
Song et al. Maskless and low-destructive nanofabrication on quartz by friction-induced selective etching
JP2009149097A (en) Stamper for imprint working, and method for producing the same
Kim et al. Effects of temperature on the microscale adhesion behavior of thermoplastic polymer film
JP5301140B2 (en) Fine mold material made of glassy carbon material, production method thereof, and fine mold using the same
JP2007320142A (en) Mold for nanoimprinting
KR101192470B1 (en) Method of manufacturing glassy carbon mold for glass molding press and method of forming a fine pattern on a glass substrate using the same
Zhang et al. Study on nano-graphitic carbon coating on Si mold insert for precision glass molding
TW201246365A (en) Method for producing molds
JP2006032423A (en) Stamper for imprint processing and manufacturing method thereof
Auger et al. Molding and replication of ceramic surfaces with nanoscale resolution
Wu et al. Anti-adhesive effects of diverse self-assembled monolayers in nanoimprint lithography
JP2009149474A (en) Molding die and method for manufacturing the die
JP2011119447A (en) Method for measuring release force of transfer material for nano imprint
JP4430959B2 (en) Mold
Guo et al. Study of hot embossing using nickel and Ni–PTFE LIGA mold inserts
Oras et al. The effect of heat treatment on the morphology and mobility of Au nanoparticles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130619

R150 Certificate of patent or registration of utility model

Ref document number: 5301140

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees