JPH11166816A - Method for determining shape and dimension of subject for measurement - Google Patents

Method for determining shape and dimension of subject for measurement

Info

Publication number
JPH11166816A
JPH11166816A JP35225397A JP35225397A JPH11166816A JP H11166816 A JPH11166816 A JP H11166816A JP 35225397 A JP35225397 A JP 35225397A JP 35225397 A JP35225397 A JP 35225397A JP H11166816 A JPH11166816 A JP H11166816A
Authority
JP
Japan
Prior art keywords
measurement
measured
position data
tool
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP35225397A
Other languages
Japanese (ja)
Other versions
JP3488067B2 (en
Inventor
Shunsuke Wakaoka
俊介 若岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuma Corp
Original Assignee
Okuma Corp
Okuma Machinery Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okuma Corp, Okuma Machinery Works Ltd filed Critical Okuma Corp
Priority to JP35225397A priority Critical patent/JP3488067B2/en
Publication of JPH11166816A publication Critical patent/JPH11166816A/en
Application granted granted Critical
Publication of JP3488067B2 publication Critical patent/JP3488067B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Machine Tool Sensing Apparatuses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for rationally determining the shape and the dimensions of a subject for measurement by use of a measuring device having a positioning means using numerical control and a sensor detection means using a laser beam. SOLUTION: A scanning point is provided in the measuring range of a subject T for measurement, and measurements taken at adjacent measuring points are compared. Only the greater of the measurements is sequentially left behind in a memory and used as the measurement to determine the maximum measurement as the measurement in the measuring range. For not one but plural scanning measurements, the subject T for measurement is automatically moved into a range in which a measurement start point is preset for measuring procedures.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は被測定物の表面の形
状寸法を決定する方法に関するもので、詳しくは測定し
ようとする一定の範囲内でスキャニングして得た測定値
を処理して最大値をその範囲を代表する測定値として決
定する被測定物の形状寸法の決定方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for determining the shape and size of the surface of an object to be measured, and more particularly to processing a measured value obtained by scanning within a predetermined range to be measured to obtain a maximum value. Is determined as a measurement value representative of the range.

【0002】[0002]

【従来の技術】非接触のレーザー測長機(例えばBLU
M製)を使用して工具寸法を測定する方法があるが、レ
ーザビームの大きさは小径工具でも測定可能なようにビ
ーム径が0.1mm以下に絞られているのが現状であ
る。このため、測定位置にビームが照射するように正確
に位置決めしないと、本来の位置とは外れた位置を測定
することになるので、測定時注意すべき大事なポイント
であった〔図8〕。特にノーズRのついた刃先を測定す
るときはRの位置を外した位置を測定する必要があった
〔図9〕。
2. Description of the Related Art Non-contact laser length measuring machines (for example, BLU)
There is a method of measuring the tool size using a tool manufactured by M. Co., Ltd., but at present, the beam diameter is reduced to 0.1 mm or less so that the size of the laser beam can be measured even with a small-diameter tool. For this reason, unless the measurement position is accurately positioned so that the beam is irradiated, a position deviating from the original position will be measured. This is an important point to be aware of when measuring (FIG. 8). In particular, when measuring a cutting edge with a nose R, it was necessary to measure a position excluding the position of R (FIG. 9).

【0003】通常、タッチセンサ式の工具径,長さの測
定時は工具の刃先先端に測定位置を移動させて、フラッ
トなタッチセンサの先端に当接させ、測定位置を検出し
ていた〔図10〕。この場合、フラットな接触面がある
ので、刃のおおよそその位置に位置決めしても、工具の
刃先の一番高い位置が測定できる。ところが、この測定
方法は、刃を回転させずに静止した状態での測定のた
め、多刃工具の場合は、1刃しか測定できない。あるい
は、予め各刃の位置と取り付けられている角度を調べて
おき、その角度に主軸を割り出しては、1刃ずつ測定し
ていた。この方法は刃が多い時は測定時間がかかるとと
もに、工具長方向の測定時は回転割り出された位置と刃
の最も高い位置を合わせることは困難であり〔図1
1〕、特に工具径方向の測定時は非常に困難な作業とな
っていた。
Normally, when measuring the diameter and length of a tool using a touch sensor, the measurement position is moved to the tip of the cutting edge of the tool and brought into contact with the tip of a flat touch sensor to detect the measurement position [FIG. 10]. In this case, since there is a flat contact surface, the highest position of the cutting edge of the tool can be measured even if the blade is positioned at approximately that position. However, since this measurement method is a measurement in a state where the blade is stationary without rotating the blade, in the case of a multi-blade tool, only one blade can be measured. Alternatively, the position of each blade and the attached angle are checked in advance, and the main axis is determined at that angle, and measurement is performed for each blade. This method requires a long measurement time when the number of blades is large, and it is difficult to match the rotationally indexed position with the highest position of the blade when measuring in the tool length direction [FIG.
1], especially when measuring in the radial direction of the tool, is a very difficult operation.

【0004】[0004]

【発明が解決しようとする課題】従来技術で述べた非接
触のレーザ測長機を使用して工具寸法を測定する方法で
は、測定する位置への位置合わせが困難な場合があり真
に求めようとする結果が得られず、またタッチセンサー
式の測定方法では多刃工具では1刃ずつ割り出して計測
する必要があるので測定時間を要する。
In the method of measuring a tool dimension using a non-contact laser length measuring machine described in the prior art, it may be difficult to position the tool at a position to be measured. In the touch sensor type measuring method, a multi-blade tool needs to index and measure one blade at a time, which requires a long measuring time.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に本発明の被測定物の形状寸法決定方法は、被測定物を
数値制御手段により移動させ当該被測定物の輪郭をレー
ザビームで検出して位置データから形状寸法を決定する
方法であって、被測定物表面の測定しようとする範囲内
で測定軸及びレーザビームの光軸に直交する方向に一定
の間隔毎に測定軸方向へ前記被測定物を順次移動させ、
前記レーザビームが前記被測定物により遮断した時又は
遮断されていたレーザビームが透過した時に出力するセ
ンサー信号にもとづき前記被測定物上の各点の測定軸方
向の位置データを読み取り、該読み取った前記測定物上
の各点の位置データを比較し、最も被測定物の外側に位
置する被測定物上の点の位置データを求め、該最も外側
の位置データから被測定物の表面の形状寸法を求めるも
のである。本発明によれば被測定物の測定しようとする
範囲内に予め一定のスキャニング領域を設定し、その領
域を代表する測定値を決定するためにスキャニング位置
を順次移動させて自動計測して最も大きい値を効率的に
求めて決定する方法を提供しようとするものである。
In order to achieve the above object, a method of determining the shape and size of an object to be measured according to the present invention comprises moving the object to be measured by numerical control means and detecting the contour of the object by a laser beam. A method of determining the shape and dimensions from the position data, wherein the measurement axis direction in the direction perpendicular to the measurement axis and the optical axis of the laser beam within the range to be measured on the surface of the object to be measured in the measurement axis direction Move the DUT sequentially
The position data in the measurement axis direction of each point on the object to be measured is read based on a sensor signal output when the laser beam is blocked by the object to be measured or when the laser beam that has been blocked is transmitted, and the read is performed. The position data of each point on the measurement object is compared, the position data of a point on the measurement object located outside the measurement object is obtained, and the shape and size of the surface of the measurement object are determined from the outermost position data. Is what you want. According to the present invention, a predetermined scanning area is set in advance in a range to be measured of an object to be measured, and the scanning position is sequentially moved in order to determine a measurement value representative of the area and automatically measured to be the largest. It is intended to provide a method for efficiently determining and determining a value.

【0006】また、前記測定軸方向の位置データを読み
取って記憶させ、前記被測定物の隣接する2測定点の測
定軸方向の位置データを比較してより測定物から外側の
被測定物上の点を記憶させ、前記測定しようとする範囲
について順次隣接する測定点の測定軸方向の位置データ
と先に記憶した測定軸方向の位置データとを比較して記
憶させた最も被測定物から外側の位置データから前記被
測定物の表面の形状寸法を求めるようになしたものであ
る。本発明によれば測定しようとする範囲について順次
隣接する測定のデータと先に記憶したデータとを比較し
て記憶させた最も大きいデータを前記被測定物の表面の
形状寸法として表示して、被測定物の予め定めた範囲内
を代表させる測定値を迅速に測定することが可能とな
る。
In addition, the position data in the measurement axis direction is read and stored, and the position data in the measurement axis direction of two adjacent measurement points of the measurement object are compared with each other to compare the position data on the measurement object outside the measurement object. The points to be measured are compared with the position data in the measurement axis direction of the adjacent measurement points sequentially in the range to be measured, and the position data in the measurement axis direction stored in advance are stored. The shape and dimensions of the surface of the object to be measured are obtained from the position data. According to the present invention, the largest data stored by comparing the previously stored data with the data of the adjacent measurement sequentially in the range to be measured is displayed as the shape and size of the surface of the measured object, It is possible to quickly measure a measured value representing a predetermined range of the measured object.

【0007】また、被測定物が工作機械の主軸に取り付
けられた工具であり、該工具を回転させながら測定を行
い、形状寸法として工具長、工具径を求めるようになし
たものである。本方法によれば機内で工具の形状寸法特
に工具径方向の寸法決定が容易である。
The object to be measured is a tool attached to a main shaft of a machine tool, and the measurement is performed while rotating the tool to obtain a tool length and a tool diameter as shape dimensions. According to this method, it is easy to determine the shape and size of the tool, particularly the size in the tool radial direction, in the machine.

【0008】[0008]

【発明の実施の形態】本発明の実施の形態を図面にもと
づき説明する。図1は加工機である門形マシニングセン
タのクロスレールに取着されたレーザ測定器と、主軸頭
とを示す斜視図である。図1において、図示しないベッ
ドの横脇に立設されたコラムにZ軸方向に移動位置決め
可能にクロスレール1が設置されていて、クロスレール
1は前面にY軸方向の案内面を有し、このY軸案内に沿
って移動位置決め可能に主軸頭2が載架されている。主
軸頭2には主軸ラム3がZ軸方向に移動位置決め可能に
設けられていて、主軸ラム3にアタッチメント4が装着
され、この内部に図示しない主軸が複数個の軸受により
回転可能に軸承されている。アタッチメント4の先端テ
ーパ穴にミーリングチャック5に把持された被測定工具
であるボールエンドミルTが着脱可能に装着されてい
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a perspective view showing a laser measuring instrument attached to a cross rail of a portal machining center, which is a processing machine, and a spindle head. In FIG. 1, a cross rail 1 is installed on a column erected on the side of a bed (not shown) so as to be movable and positioned in a Z-axis direction. The cross rail 1 has a Y-axis direction guide surface on a front surface thereof. A spindle head 2 is mounted so as to be movable and positioned along the Y-axis guide. A spindle ram 3 is provided on the spindle head 2 so as to be movable and positioned in the Z-axis direction. An attachment 4 is mounted on the spindle ram 3, and a spindle (not shown) is rotatably supported by a plurality of bearings inside the attachment. I have. A ball end mill T, which is a tool to be measured, held by a milling chuck 5 is detachably mounted in a tapered end of the attachment 4.

【0009】クロスレール1下面のY軸移動端部近くに
レーザ測定器6が取付台7を介してレーザ光軸がX軸方
向を向くように固着されている。レーザ測定器6はレー
ザ発光部6aから出るレーザ光aが受光部6bの小窓を
通って内部のダイオードに到達するのを監視し、工具が
レーザ光aを直角に横切って通過する際の遮断された影
が小窓の90%となったとき、センサー信号を出力する
もので、ケーブル8は電源電圧の供給及びセンサー信号
を図示しないNC装置に送る電線で、9は保護カバーで
ある。
A laser measuring instrument 6 is fixed to the lower surface of the cross rail 1 near the Y-axis moving end via a mount 7 so that the laser optical axis is directed in the X-axis direction. The laser measuring device 6 monitors the laser light a emitted from the laser light emitting part 6a to reach the diode inside through the small window of the light receiving part 6b, and shuts off when the tool crosses the laser light a at right angles. The sensor 8 outputs a sensor signal when the shadow becomes 90% of the small window. The cable 8 is a wire for supplying the power supply voltage and sending the sensor signal to an NC device (not shown), and 9 is a protective cover.

【0010】レーザ測定器6は例えばBLUM社製のマ
シニングセンタ用Laser『MICRO』等市販のも
のを使用することができる。またマシニングセンタの図
示しないNC装置はレーザ測定器6からのセンサー信号
を受信すると、受信時の現在位置を読み取り、その場で
軸移動を停止するようになっている。
As the laser measuring device 6, a commercially available laser measuring device such as a "MICRO" Laser for machining centers manufactured by BLUM can be used. When an NC device (not shown) of the machining center receives the sensor signal from the laser measuring device 6, it reads the current position at the time of reception and stops the axis movement on the spot.

【0011】図2(a)は測定物がレーザビームの光軸
を遮断していない状態でセンサー信号が出力されていな
い状態で測定物の輪郭は検出されない。図2(b)は測
定物がレーザビーム光軸を遮断している状態でセンサー
信号が出力されている状態であるが測定物の輪郭は検出
されない。図2(c)は測定物の輪郭にレーザビームの
光軸が遮断された時点の状態でセンサー信号が出力を開
始して測定物の輪郭を検出することを示している。
FIG. 2A shows a state in which the object does not block the optical axis of the laser beam and no sensor signal is output, and the contour of the object is not detected. FIG. 2B shows a state in which the sensor signal is output with the object blocking the laser beam optical axis, but the contour of the object is not detected. FIG. 2C shows that the sensor signal starts to be output and the contour of the measured object is detected when the optical axis of the laser beam is interrupted by the contour of the measured object.

【0012】次に上述のように構成されている測定シス
テムを使用した本発明の測定方法を工具の輪郭を計測に
適用した実施例を図3に基づき説明する。図3におい
て、測定物である工具の刃先の輪郭上にスキャニングエ
リア(以下PSPNと略称する)を設定し、その中心付
近から左右に+PSPNと−PSPNの方向を定め1μ
mから5mmの範囲内で予め選定した一定の幅でスキャ
ニングする計測軸の位置を決める。このスキャニングす
る一定の幅をスキャニングピッチ(以下PPICと略称
する)とし、このPPICの幅をもって工具のZ軸方向
の測定サイクルの移動単位として使用することもでき
る。測定値の許容誤差(以下PTOLと略称する)を予
め定めて、測定プログラムの入力時にPSPN,PPI
C,PTOLを数値データで入力して指令する。
Next, an embodiment in which the measuring method of the present invention using the measuring system configured as described above is applied to measurement of the contour of a tool will be described with reference to FIG. In FIG. 3, a scanning area (hereinafter abbreviated as PSPN) is set on the contour of the cutting edge of a tool as a measurement object, and + PSPN and -PSPN directions are determined from the vicinity of the center to the left and right, and 1 μm is defined.
The position of the measurement axis for scanning with a predetermined width in a range from m to 5 mm is determined. This fixed width for scanning may be referred to as a scanning pitch (hereinafter abbreviated as PPIC), and the width of the PPIC may be used as a unit of movement in a measurement cycle of the tool in the Z-axis direction. The tolerance of the measured value (hereinafter abbreviated as PTOL) is determined in advance, and the PSPN, PPI
C and PTOL are input as numerical data and commanded.

【0013】[0013]

【実施例】被測定物を工具とした実施例を図4について
説明する。工具の切刃の上面を測定する場合に、工具軸
と直交する光軸をもつレーザビームを切刃により遮断さ
せることによりセンサー信号が出力し工具の切刃の位置
を検出する〔図4(a)〕。被測定物をスキャニングピ
ッチ(PPIC)分だけ基準位置として設けた位置から
プラスのスキャニングエリア(+PSPN)へ移動させ
測定結果Aを記憶させる〔図4(b)〕。ここで測定と
は、被測定物をPPIC分移動させてから、被測定物が
レーザビームと鉛直をなす方向からレーザビームに接近
して光線を遮断しセンサ信号が出力した時点の被測定物
の位置データと被測定物に設けた基準位置データとの差
を測定結果Aとして求めることをいう。
FIG. 4 shows an embodiment in which an object to be measured is a tool. When measuring the upper surface of the cutting edge of the tool, a laser beam having an optical axis orthogonal to the tool axis is cut off by the cutting edge, and a sensor signal is output to detect the position of the cutting edge of the tool [FIG. )]. The device under test is moved from the position provided as the reference position by the scanning pitch (PPIC) to the plus scanning area (+ PSPN), and the measurement result A is stored (FIG. 4B). Here, the measurement means moving the object to be measured by the PPIC, and then approaching the laser beam from the direction perpendicular to the laser beam, blocking the light beam and outputting the sensor signal. This means that the difference between the position data and the reference position data provided on the device under test is determined as the measurement result A.

【0014】次に+PSPNの方向へ1PPICずつ隣
接した位置に順次被測定物を位置決めして測定しその都
度隣接した位置の測定結果Bを得る。Bの測定結果と先
に記憶したAと比較し大きい値に記憶値を入れ替える
〔図4(c)(d)〕。次に測定Bを得た時にA−Bの
値を求め許容測定誤差(PTOL)以内で且つ+PSP
Nの範囲内の測定であれば更に測定を繰り返して行う。
+PSPNの範囲を越えた時はマイナス方向の−PSP
N内で1PPICずつ隣接した位置に被測定物を位置決
めして測定を行い−PSPNを越えた時は測定を終了す
る。
Next, the object to be measured is sequentially positioned at positions adjacent to each other by 1 PPIC in the + PSPN direction and measured, and a measurement result B at the adjacent position is obtained each time. The measured value of B is compared with A previously stored, and the stored value is replaced with a larger value (FIGS. 4C and 4D). Next, when the measurement B is obtained, the value of AB is obtained and within the allowable measurement error (PTOL) and + PSP
If the measurement is within the range of N, the measurement is further repeated.
-PSP in the minus direction when exceeding the range of + PSPN
The measurement is performed by positioning the device under test at a position adjacent to each other by 1 PPIC within N, and the measurement is terminated when the measured value exceeds -PSPN.

【0015】また、A−BがPTOLを超える場合は、
+PSPN測定時にはこれまでの最大値を記憶した後、
+PSPNの範囲に未測定のスキャニングエリアが残っ
ていても測定を中断し、−PSPNの範囲の測定を行
う。−PSPNの範囲においてもA−BがPTOLを超
える場合は−PSPNの範囲に未測定のスキャニングエ
リアが残っていても測定を中断し、これまでの最大値を
最終測定値とする。
When AB exceeds PTOL,
At the time of + PSPN measurement, after storing the maximum value so far,
Even if an unmeasured scanning area remains in the range of + PSPN, the measurement is interrupted, and the measurement in the range of -PSPN is performed. If AB exceeds PTOL even in the -PSPN range, the measurement is interrupted even if an unmeasured scanning area remains in the -PSPN range, and the maximum value so far is set as the final measured value.

【0016】測定において前記A−Bが許容測定誤差よ
り小さい時は先に記憶させたAをそのまま測定値として
残すこととする。次に、−PSPNの範囲でも同様の測
定値の比較処理が行われ最終的にメモリに記憶された最
大の値を測定値とする〔図4(e)(f)(g)〕。刃
の高さを測定するのに、Z軸の最初の測定位置に戻して
いると時間がかりすぎる。このため二度目の測定は一度
目の測定点から予め定めた距離をずらした位置から測定
を開始することも可能である。例えば予め定め得る範囲
きしては1μmから5mm幅の中から選定可能である
が、この距離を1PPICに選ぶことができる〔図5
(a)〕。
In the measurement, when the above AB is smaller than the allowable measurement error, the previously stored A is left as a measured value. Next, the same measurement value comparison process is performed in the range of -PSPN, and the maximum value finally stored in the memory is used as the measurement value (FIGS. 4E, 4F, and 4G). To measure the height of the blade, it takes too much time to return to the first measurement position on the Z axis. For this reason, the second measurement can be started from a position shifted by a predetermined distance from the first measurement point. For example, the predetermined range can be selected from a width of 1 μm to 5 mm, and this distance can be selected as 1 PPIC [FIG.
(A)].

【0017】このように選定した場合の利点は、測定を
指令するときのPSPNのスキャニングピッチと隣接点
の測定開始点を先の測定点から1PPIC離れた位置か
らレーザビームに自動的に近づけることが可能となるの
で指令値が少なくてすむことである。〔図5(b)〕。
The advantage of this selection is that the scanning pitch of the PSPN when instructing the measurement and the measurement start point of the adjacent point are automatically brought closer to the laser beam from a position 1 PPIC away from the previous measurement point. This makes it possible to reduce the number of command values. [FIG. 5 (b)].

【0018】今被測定物を先の測定点から1PPIC戻
して測定を始めるとする。この位置でセンサー信号の出
力があるときはセンサー信号の出力消失が確認できるま
で1PPICずつ戻し測定を繰り返して行うことにより
隣接する測定点の形状が大きくずれている場合でも迅速
に測定開始点に到達することが可能である〔図5
(c)〕。
Assume now that the object to be measured is returned by 1 PPIC from the previous measurement point and measurement is started. When there is a sensor signal output at this position, the measurement is repeated by 1 PPIC until the disappearance of the sensor signal can be confirmed, and the measurement is repeated, so that even if the shape of the adjacent measurement point is greatly shifted, the measurement start point is quickly reached. [Figure 5
(C)].

【0019】前述の手順によりセンサー信号の出力がな
い位置まで被測定物の位置を戻してから被測定物をレー
ザビームに近づけ光軸を遮断する時点にセンサー信号が
出力されるようにして、レーザビームから離れた方向か
らレーザビームに接近させて被測定物の移動手段に起因
する測定誤差を除くように測定する。
By returning the position of the object to be measured to the position where no sensor signal is output by the above-described procedure, the object is brought closer to the laser beam, and the sensor signal is output at the time when the optical axis is cut off. The laser beam is approached from a direction away from the beam, and the measurement is performed so as to eliminate the measurement error caused by the means for moving the object to be measured.

【0020】次に本発明の測定値の決定方法である隣接
する測定値を比較して大きい測定値を記憶させる具体的
動作を図6のフローチャートで説明する。X軸方向を被
測定物の測定面を一定の間隔をおいて測定するスキャニ
ング軸とし、Z軸のマイナス方向を被測定物の測定面の
基準位置からの距離を測定する測定軸とする。
Next, the concrete operation of comparing the adjacent measured values and storing the larger measured value, which is the method of determining the measured value of the present invention, will be described with reference to the flowchart of FIG. The X-axis direction is a scanning axis for measuring the measurement surface of the object at a fixed interval, and the minus direction of the Z-axis is a measurement axis for measuring the distance from the reference position of the measurement surface of the object.

【0021】フローチャート上で使用する略号は次の通
りとする。 PSPN;スキャニング領域片幅、PPIC;隣接スキ
ャニング距離、PTOL許容;測定誤差(|A−B|≦
PTOLのとき測定サイクルを続行)、A;先の測定
値、B;後の測定値、do;スキャニング距離指令値で
基準位置を示す(X軸)、fo;測定の基準値(Z
軸)。
The abbreviations used in the flowchart are as follows. PSPN; scanning area one side width, PPIC; adjacent scanning distance, PTOL allowable; measurement error (| AB | ≦)
A measurement cycle is continued at the time of PTOL), A: previous measurement value, B: subsequent measurement value, do: scanning position command value indicates a reference position (X axis), fo: measurement reference value (Z
axis).

【0022】測定に先立ち、予めX軸の指令値、Z軸の
基準値のデータを設定する(ステップS1)。続いてス
キャニング領域を決定しデータを設定する(ステップS
2)。スキャニングする位置に被測定物を移動させて位
置決めして(ステップS3−1)測定し処理データAを
得て記憶させる(ステップS3)。処理データAは基準
位置doと隣接する測定点の測定値と差を表している。
Prior to measurement, data of an X-axis command value and a Z-axis reference value are set in advance (step S1). Subsequently, a scanning area is determined and data is set (step S).
2). The object to be measured is moved to the position to be scanned and positioned (step S3-1), measured, and processing data A is obtained and stored (step S3). The processing data A represents a difference between a measured value of a measurement point adjacent to the reference position do.

【0023】スキャニングする位置が+PSPNの領域
内で測定を続け、+PSPNの領域を越えたときは+P
SPNの領域の測定に移行する(ステップS4)。隣接
する測定点の処理データが未だ入力されていないときは
(ステップS5)、ステップS3の測定点に隣接する測
定点で処理データBを得て先に記憶した処理データAと
処理データBを比較してA>Bのときは先に記憶した処
理データAを残す(ステップS6)。続いて記憶した処
理データA,BについてA−B≦PTOLを充足すると
き、即ちA−Bが許容測定誤差内であれば次の隣接する
測定点の測定に移り測定を続ける。(ステップS7,S
8,S9,S10,S11)。
The measurement is continued within the area of + PSPN when the scanning position is over the area of + PSPN.
The process proceeds to the measurement of the SPN area (step S4). If the processing data of the adjacent measurement point has not been input yet (step S5), the processing data B is obtained at the measurement point adjacent to the measurement point of step S3, and the processing data A and the processing data B previously stored are compared. When A> B, the processing data A previously stored is left (step S6). Subsequently, when AB ≦ PTOL is satisfied for the stored processing data A and B, that is, when AB is within the allowable measurement error, the process proceeds to the measurement of the next adjacent measurement point and the measurement is continued. (Steps S7, S
8, S9, S10, S11).

【0024】A−Bの値が許容測定誤差PTOLを越え
且つスキャニング領域を越えたときは被測定物を−PS
PNのスキャニング領域に移動させこの領域における測
定を開始する(ステップS7、ステップS9)。−PS
PNの領域における測定動作は+PSPN領域における
動作と基本的に同様な手順で行われる(ステップS12
〜S19)。−PSPN域での測定が完了しA−B≦P
TOLであれば(ステップS17)Aを最終測定値とし
て測定サイクルを完了する(ステップS20)。
When the value of AB exceeds the allowable measurement error PTOL and exceeds the scanning area, the measured object is set to -PS.
Move to the PN scanning area and start measurement in this area (Step S7, Step S9). -PS
The measurement operation in the PN region is performed in basically the same procedure as the operation in the + PSPN region (step S12).
To S19). -Measurement in the PSPN range is completed and AB ≤ P
If it is TOL (step S17), the measurement cycle is completed with A as the last measured value (step S20).

【0025】本発明の測定値決定方法は、複数個の位置
を計測するときに隣接する位置の後で測定された処理デ
ータと、これまでの測定において処理データを比較した
ときに記憶された最も大きい処理データとを比較して大
きい方の処理データのPSPN全域における最大の処理
データを自動計測して得ることができる方法である。従
って隣接するスキャニング距離を目的に応じ適当に選ぶ
ことによりスキャニング領域を代表させる処理データを
効率的に決定することが可能となる。
According to the method of determining measured values of the present invention, when measuring a plurality of positions, the processing data measured after an adjacent position is compared with the processing data measured in the previous measurement. This is a method in which the largest processing data in the entire PSPN of the larger processing data is automatically measured and obtained by comparing with the larger processing data. Therefore, processing data representing a scanning area can be efficiently determined by appropriately selecting adjacent scanning distances according to the purpose.

【0026】本発明の被測定物の測定サイクルのプロセ
スを図7のフローチャートで説明する。被測定物を前述
の図6に記載した動作順序でスキャニングする測定位置
に移動し位置決めした後の測定サイクルは次の通りであ
る。X軸のスキャニングピッチ(PPIC)と被測定物
の測定軸であるZ軸の戻し量を同一距離とした場合の実
施例について述べる。ここでZ軸の戻し量とは被測定物
でレーザビームが遮断されていてセンサー信号が出力さ
れていないときに、被測定物がレーザビームを遮断する
ことなくレーザビームが受光可能な方向(Z軸プラス方
向)に移動させる場合の単位移動量をいう。
The process of the measuring cycle of the device under test according to the present invention will be described with reference to the flowchart of FIG. The measurement cycle after the object to be measured is moved to the measurement position where scanning is performed in the operation sequence described in FIG. 6 and positioned is as follows. An embodiment in which the scanning pitch (XPIC) of the X axis and the return amount of the Z axis, which is the measurement axis of the device under test, are set to the same distance will be described. Here, the return amount of the Z-axis refers to the direction in which the laser beam can be received without the laser beam being interrupted by the object when the laser beam is interrupted by the object and no sensor signal is output. It means the unit movement amount when moving in the (positive direction of the axis).

【0027】この実施例では1PPICを単位移動量と
することを意味している。先ずZ軸の戻し量Cを入力し
記憶させる(ステッフS101)。Z軸の基準値Z1に
初期位置を定める(ステップS102)。X軸上で測定
すべきスキャニング位置に位置決めする(ステップS1
03)。測定を開始してセンサー信号の出力がないとき
は(ステップS104)レーザビームは被測定物で遮断
されていないので被測定物を移動させてZ軸の測定サイ
クル(ステップS107)に移行するが、このとき被測
定物の移動手段の固有のバックラッシュ量を考慮してそ
の量を付加して移動させ測定を行い完了する。センサー
信号が出力されたままであれば(ステップS104)被
測定物を+Z軸方向に1PPICずつ移動させセンサー
信号の出力が検知ができなくなるまで戻す方向に移動さ
せ(ステップS105)測定サイクルを完了する(ステ
ップS107)。この測定サイクルによれば測定時の単
位移動量PPCを目的に応じ予め設定して自動測定が可
能であり測定に要する時間の短縮化が可能である。
In this embodiment, 1 PPIC is used as a unit movement amount. First, the Z-axis return amount C is input and stored (Step S101). An initial position is determined for the Z-axis reference value Z1 (step S102). Positioning at the scanning position to be measured on the X axis (Step S1
03). When the measurement is started and there is no output of the sensor signal (step S104), the laser beam is not interrupted by the object to be measured, so that the object to be measured is moved and the process moves to the Z-axis measurement cycle (step S107). At this time, in consideration of the amount of backlash inherent in the moving means of the object to be measured, the object is moved by adding the amount, and the measurement is completed. If the sensor signal remains output (step S104), the device under test is moved in the + Z-axis direction by 1 PPIC and moved back until the sensor signal output cannot be detected (step S105), and the measurement cycle is completed (step S105). Step S107). According to this measurement cycle, the unit movement amount PPC at the time of measurement can be set in advance according to the purpose and automatic measurement can be performed, and the time required for measurement can be reduced.

【0028】[0028]

【発明の効果】本発明の被測定物の形状寸法方法は、以
下に記載する効果を有する。被測定物表面の予め定めた
測定域の一点を測定してその測定値としないで測定域内
を一定のスキャニングピッチで測定した測定値の中から
効率的に最大値を取り出して測定値として決定している
ので形状データとして客観性のある測定数値を得ること
ができる。また被測定物を移動させて測定する動作手順
が簡略化されているので所要時間も少なく測定値を決定
することができる。
The method for measuring the shape and dimension of an object to be measured according to the present invention has the following effects. Measure one point of a predetermined measurement area on the surface of the object to be measured and determine the measurement value by efficiently taking out the maximum value from the measurement values measured at a constant scanning pitch within the measurement area without using that measurement value. Therefore, an objective measurement value can be obtained as shape data. In addition, since the operation procedure for moving and measuring the object to be measured is simplified, the measurement time can be determined in a short time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の測定の決定方法を実施する場合に使用
する測定装置を示す斜視図である。
FIG. 1 is a perspective view showing a measuring device used when the method for determining a measurement according to the present invention is performed.

【図2】(a)はセンサー信号の出力がないときのレー
ザビームと被測定物の位置関係を示し、(b)はセンサ
ー信号のあるときのレーザビームと被測定物の位置関係
を示し、(c)は被測定物がレーザビームに接してセン
サー信号が出力した時点の位置関係を示す図である。
FIG. 2A shows a positional relationship between a laser beam and a device under test when there is no sensor signal output, FIG. 2B shows a positional relationship between the laser beam and a device under test when there is a sensor signal, (C) is a diagram showing a positional relationship at the time when the object to be measured comes into contact with the laser beam and a sensor signal is output.

【図3】本発明の測定におけるスキャニング領域と隣接
する測定点の位置関係を示す説明図である。
FIG. 3 is an explanatory diagram showing a positional relationship between a scanning area and an adjacent measurement point in the measurement of the present invention.

【図4】被測定物を移動させてレーザビームが基準位置
から−PSPNから+PSPNの両測定域を1PPIC
のピッチで測定する説明図である。
FIG. 4 shows an example in which the object to be measured is moved so that the laser beam moves from the reference position to both the measurement areas from −PSPN to + PSPN by 1 PPIC.
It is explanatory drawing which measures at the pitch of FIG.

【図5】(a)は1PPICをX軸(スキャニングピッ
チ)とZ軸(測定サイクル前の被測定の移動)の移動単
位とする図、(b)は工具形状が変わった場合のPPI
Cの位置を示す図で、(c)はZ軸方向に2PPIC分
移動させた場合を示す図である。
5A is a diagram in which 1 PPIC is used as a movement unit of an X axis (scanning pitch) and a Z axis (movement of a measured object before a measurement cycle), and FIG. 5B is a diagram showing a PPI when a tool shape is changed.
It is a figure which shows the position of C, and (c) is a figure which shows the case where it moved by 2PPIC in the Z-axis direction.

【図6】本発明の測定値の決定方法である隣接する測定
値を比較して大きい測定値を記憶させる手順を示すフロ
ーチャートである。
FIG. 6 is a flowchart illustrating a procedure for comparing adjacent measured values and storing a large measured value according to the method for determining a measured value of the present invention.

【図7】本発明のZ軸(被測定物)の測定サイクルを示
すフローチャートである。
FIG. 7 is a flowchart showing a measurement cycle of the Z-axis (measured object) according to the present invention.

【図8】従来技術におけるレーザビームによるドリルの
測定状態を示す説明図である。
FIG. 8 is an explanatory diagram showing a state of measurement of a drill by a laser beam in the related art.

【図9】従来技術におけるレーザビームによる多刃工具
の測定状態を示す説明図である。
FIG. 9 is an explanatory diagram showing a measurement state of a multi-blade tool by a laser beam in a conventional technique.

【図10】従来技術におけるタッチセンサによる刃先の
測定状態を示す説明図である。
FIG. 10 is an explanatory diagram showing a state of measurement of a blade edge by a touch sensor according to a conventional technique.

【図11】従来技術におけるタッチセンサによる刃先の
測定状態を示す説明図である。
FIG. 11 is an explanatory diagram showing a state of measurement of a blade edge by a touch sensor in the related art.

【符号の説明】[Explanation of symbols]

T 被測定物(工具) a レーザビーム 1 クロスレール 2 主軸頭 3 主軸ラム 4 アタッチメント 5 ミーリングチャック 6 レーザ測定器 6a レーザ発光部 6b レーザ受光部 7 取付台 8 ケーブル 9 保護カバー T Object to be measured (tool) a Laser beam 1 Cross rail 2 Spindle head 3 Spindle ram 4 Attachment 5 Milling chuck 6 Laser measuring device 6a Laser light emitting part 6b Laser light receiving part 7 Mounting stand 8 Cable 9 Protective cover

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 被測定物を数値制御手段により移動させ
当該被測定物の輪郭をレーザビームで検出して位置デー
タから形状寸法を決定する方法であって、被測定物表面
の測定しようとする範囲内で測定軸及びレーザビームの
光軸に直交する方向に一定の間隔毎に測定軸方向へ前記
被測定物を順次移動させ、前記レーザビームが前記被測
定物により遮断した時又は遮断されていたレーザビーム
が透過した時に出力するセンサー信号にもとづき前記被
測定物上の各点の測定軸方向の位置データを読み取り、
該読み取った前記測定物上の各点の位置データを比較
し、最も被測定物の外側に位置する被測定物上の点の位
置データを求め、該最も外側の位置データから被測定物
の表面の形状寸法を求めることを特徴とする被測定物の
形状寸法決定方法。
1. A method of moving an object to be measured by numerical control means, detecting a contour of the object to be measured with a laser beam, and determining a shape and dimensions from position data, wherein an attempt is made to measure the surface of the object to be measured. The object to be measured is sequentially moved in the measurement axis direction at regular intervals in a direction perpendicular to the measurement axis and the optical axis of the laser beam within the range, and when the laser beam is interrupted or interrupted by the object to be measured. Read the position data in the measurement axis direction of each point on the object to be measured based on the sensor signal output when the laser beam is transmitted,
The read position data of each point on the measurement object is compared to obtain position data of a point on the measurement object located outside the measurement object, and the surface data of the measurement object is obtained from the outermost position data. A method for determining the shape and size of an object to be measured, wherein the shape and size of the object are measured.
【請求項2】 前記測定軸方向の位置データを読み取っ
て記憶させ、前記被測定物の隣接する2測定点の測定軸
方向の位置データを比較してより測定物から外側の被測
定物上の点を記憶させ、前記測定しようとする範囲につ
いて順次隣接する測定点の測定軸方向の位置データと先
に記憶した測定軸方向の位置データとを比較して記憶さ
せた最も被測定物から外側の位置データから前記被測定
物の表面の形状寸法を求めることを特徴とする請求項1
記載の被測定物の形状寸法決定方法。
2. The method according to claim 1, wherein the position data in the measurement axis direction is read and stored, and the position data in the measurement axis direction of two adjacent measurement points of the measurement object are compared to each other on the measurement object outside the measurement object. The points to be measured are compared with the position data in the measurement axis direction of the adjacent measurement points sequentially in the range to be measured, and the position data in the measurement axis direction stored in advance are stored. 2. The method according to claim 1, wherein a shape and a size of a surface of the object to be measured are obtained from position data.
The method for determining the shape and dimension of an object to be measured as described in the above.
【請求項3】 被測定物が工作機械の主軸に取り付けら
れた工具であり、該工具を回転させながら測定を行い、
形状寸法として工具長、工具径を求める請求項1又は2
記載の被測定物の形状寸法決定方法。
3. An object to be measured is a tool attached to a main shaft of a machine tool, and measurement is performed while rotating the tool.
3. A tool length and a tool diameter are obtained as shape dimensions.
The method for determining the shape and dimension of an object to be measured as described in the above.
JP35225397A 1997-12-04 1997-12-04 How to determine dimensions of DUT Expired - Lifetime JP3488067B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35225397A JP3488067B2 (en) 1997-12-04 1997-12-04 How to determine dimensions of DUT

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35225397A JP3488067B2 (en) 1997-12-04 1997-12-04 How to determine dimensions of DUT

Publications (2)

Publication Number Publication Date
JPH11166816A true JPH11166816A (en) 1999-06-22
JP3488067B2 JP3488067B2 (en) 2004-01-19

Family

ID=18422801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35225397A Expired - Lifetime JP3488067B2 (en) 1997-12-04 1997-12-04 How to determine dimensions of DUT

Country Status (1)

Country Link
JP (1) JP3488067B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6938672B2 (en) 2003-04-24 2005-09-06 Chun Pyo Hong Rheoforming apparatus
US6942009B2 (en) 2003-04-24 2005-09-13 Chun Pyo Hong Apparatus for manufacturing billet for thixocasting
JP2007003346A (en) * 2005-06-23 2007-01-11 Incs Inc Technique for obtaining profile of cross-section in rotator
JP2008233085A (en) * 2007-03-16 2008-10-02 Trumpf Werkzeugmaschinen Gmbh & Co Kg Method and device for inspecting existence of normal conditions in processing of thin plate
JP2010052053A (en) * 2008-08-26 2010-03-11 Niigata Machine Techno Co Ltd Method and device for measuring cutting edge of tool
JP2010133944A (en) * 2008-10-29 2010-06-17 Gleason Asia Co Ltd Apparatus for inspecting cutter blade
CN105486251A (en) * 2014-10-02 2016-04-13 株式会社三丰 Shape measuring apparatus and point sensor positioning unit
JP2022046161A (en) * 2020-09-10 2022-03-23 株式会社牧野フライス製作所 Machine tool having life determination function for rotary tool

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6938672B2 (en) 2003-04-24 2005-09-06 Chun Pyo Hong Rheoforming apparatus
US6942009B2 (en) 2003-04-24 2005-09-13 Chun Pyo Hong Apparatus for manufacturing billet for thixocasting
JP2007003346A (en) * 2005-06-23 2007-01-11 Incs Inc Technique for obtaining profile of cross-section in rotator
JP2008233085A (en) * 2007-03-16 2008-10-02 Trumpf Werkzeugmaschinen Gmbh & Co Kg Method and device for inspecting existence of normal conditions in processing of thin plate
JP2010052053A (en) * 2008-08-26 2010-03-11 Niigata Machine Techno Co Ltd Method and device for measuring cutting edge of tool
JP2010133944A (en) * 2008-10-29 2010-06-17 Gleason Asia Co Ltd Apparatus for inspecting cutter blade
CN105486251A (en) * 2014-10-02 2016-04-13 株式会社三丰 Shape measuring apparatus and point sensor positioning unit
JP2022046161A (en) * 2020-09-10 2022-03-23 株式会社牧野フライス製作所 Machine tool having life determination function for rotary tool

Also Published As

Publication number Publication date
JP3488067B2 (en) 2004-01-19

Similar Documents

Publication Publication Date Title
JP3792812B2 (en) Ball end mill sphericity measurement method
JP4950108B2 (en) Machine tool position correction method and apparatus
EP0626896A1 (en) Laser work station guidance system calibration
JP3267340B2 (en) Tool measuring device
WO2013067364A1 (en) System and method for machining and inspecting a workpiece
GB2536167A (en) Surface shape measuring device and machine tool provided with same, and surface shape measuring method
JPH11166816A (en) Method for determining shape and dimension of subject for measurement
JP3433710B2 (en) V-groove shape measuring method and apparatus
JP4571256B2 (en) Shape accuracy measuring device by sequential two-point method and laser displacement meter interval measuring method for shape accuracy measurement by sequential two-point method
JP5393864B1 (en) Work shape measuring method and work shape measuring apparatus
JP3657252B2 (en) Shape measurement system using workpiece shape measuring device
JP3421562B2 (en) Cutting tool runout detection method
KR950014515B1 (en) Device for controlling non-contact digitizing
JPH11344329A (en) Three dimensional shape measuring device
CN112658473A (en) Laser processing apparatus
JP3180579B2 (en) Method and apparatus for correcting cutting position of dicing machine
JP4136475B2 (en) Non-contact measuring method and measuring apparatus
JP3077263B2 (en) Cutting tool edge position detection device
JP4159809B2 (en) Non-contact measuring method and measuring apparatus
JP2001269843A (en) Measuring method for center position of rotating tool
JP2753814B2 (en) Dicing equipment
JPH11344330A (en) Three dimensional shape measuring device
JPH05245743A (en) Cutting edge position detector or working tool
JPH07286845A (en) Method and instrument for measuring three-dimensional shape
JP2004069511A (en) Method and apparatus for automatically measuring tool

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 10

EXPY Cancellation because of completion of term