JPH11166171A - Composite solid particle and production thereof - Google Patents

Composite solid particle and production thereof

Info

Publication number
JPH11166171A
JPH11166171A JP9345790A JP34579097A JPH11166171A JP H11166171 A JPH11166171 A JP H11166171A JP 9345790 A JP9345790 A JP 9345790A JP 34579097 A JP34579097 A JP 34579097A JP H11166171 A JPH11166171 A JP H11166171A
Authority
JP
Japan
Prior art keywords
particles
fixed
fine
fine particle
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9345790A
Other languages
Japanese (ja)
Other versions
JP3390863B2 (en
Inventor
Shiyoubon Riyou
捷凡 廖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nara Machinery Co Ltd
Original Assignee
Nara Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nara Machinery Co Ltd filed Critical Nara Machinery Co Ltd
Priority to JP34579097A priority Critical patent/JP3390863B2/en
Priority to US09/201,119 priority patent/US6090440A/en
Priority to EP98309795A priority patent/EP0922488A3/en
Publication of JPH11166171A publication Critical patent/JPH11166171A/en
Priority to US09/562,074 priority patent/US6403219B1/en
Application granted granted Critical
Publication of JP3390863B2 publication Critical patent/JP3390863B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/006Coating of the granules without description of the process or the device by which the granules are obtained
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • Y10T428/2993Silicic or refractory material containing [e.g., tungsten oxide, glass, cement, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • Y10T428/2998Coated including synthetic resin or polymer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
    • Y10T428/31616Next to polyester [e.g., alkyd]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Cosmetics (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Glanulating (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Medicinal Preparation (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Manufacturing Of Micro-Capsules (AREA)

Abstract

PROBLEM TO BE SOLVED: To carry out the compositing or surface modicication of solid particles and enable the content of fine particles to be freely adjusted by fixing fine particles (child particles) to the surfaces of core particles (mother particles) and causing the crystals of the fixed fine particles to grow. SOLUTION: Cellulose or its deriv., starch or its deriv., a synthetic polymer (e.g. nylon), a metal powder (e.g. a nickel or iron powder), or an inorg. powder (e.g. an alumina powder) is used as the mother particles; and an inorg. or org. compd. having crystallizing properties, as child particles. The child particles are fixed to the surfaces of the mother particles by a mechanical method, such as an impact method in a high-speed air flow. When calcium monohydrogenphosphate (CaHPO4 ), having a very low water solubility, is used as the child particles, the crystal growth of fixed child particles is conducted by a solid-liquid reaction method in the supersatd. state. For instance, a calcium hydroxide suspension is reacted with pyrophosphoric acid in an aq. soln. adjusted to a pH of 4.5-5.8, pref. 5.7, thus forming CaHPO4 and causing the crystals of CaHPO4 to grow while using CaHPO4 fixed on the mother particles as crystallization nuclei.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、表面改質された複
合固体粒子とその製造方法の技術分野に属するものであ
る。
TECHNICAL FIELD The present invention belongs to the technical field of surface-modified composite solid particles and a method for producing the same.

【0002】[0002]

【従来技術】従来、核となる粒子(以下「母粒子」とい
う)の表面に微粒子(以下「子粒子」という)を固着さ
せることで、固結防止、変色変質防止、分散性の向上、
触媒効果の向上、磁気特性の向上等を目的とする複合固
体粒子の製造方法が例えば特公平3−2009号公報に
おいて知られている。そしてここに記載されている有機
溶媒や水を必要としない乾式の粒子複合化法であるとこ
ろの高速気流中衝撃法を採用することにより、均一で安
定した特性を有する機能性複合・混成粉体材料(コンポ
ジットまたはハイブリッドパウダー)を効率よく生産す
ることができるようになった。
2. Description of the Related Art Conventionally, fine particles (hereinafter, referred to as "child particles") are fixed to the surface of core particles (hereinafter, referred to as "base particles") to prevent caking, prevent discoloration and alteration, improve dispersibility,
A method for producing composite solid particles for the purpose of improving the catalytic effect, improving the magnetic properties, and the like is known, for example, from Japanese Patent Publication No. 3-2009. By adopting the high-speed air-flow impact method, which is a dry particle compounding method that does not require an organic solvent or water as described here, a functional composite / hybrid powder having uniform and stable characteristics Materials (composite or hybrid powder) can be produced efficiently.

【0003】[0003]

【発明が解決しようとする課題】しかしながら前記方法
により生産される複合固体粒子は、母粒子の表面に均一
状に子粒子が固着されるだけであるため、機能性の向上
に影響を与える子粒子の母粒子に対する重量割合は母粒
子の表面積と子粒子の断面積(投影面積)とによって凡
そが決まる。そして一般的には、母粒子に対する子粒子
の最大重量割合は、子粒子が母粒子の表面を凡そ一層だ
け覆う割合である考えられ、そうすると子粒子の母粒子
に対する最大重量割合は、 最大重量割合=(4rρ1/Rρ0)×100% 式中、r:子粒子半径 ρ1:子粒子密度 R:母粒子半径 ρ0:母粒子密度 で算出される。この結果、母粒子と子粒子の半径および
密度が決まると子粒子の最大重量割合が決定され、これ
を越える重量割合にすることができないこととなって、
さらなる機能向上についてはあまり期待できないという
問題があり、ここに本発明の解決すべき課題がある。
However, in the composite solid particles produced by the above method, the child particles only have the child particles fixed uniformly on the surface of the base particles, so that the child particles have an effect on the improvement of the functionality. Is approximately determined by the surface area of the mother particles and the cross-sectional area (projected area) of the child particles. In general, the maximum weight ratio of the child particles to the mother particles is considered to be a ratio of the child particles covering almost one layer of the surface of the mother particles. Then, the maximum weight ratio of the child particles to the mother particles becomes the maximum weight ratio. = (4rρ1 / Rρ0) × 100% where r: child particle radius ρ1: child particle density R: base particle radius ρ0: base particle density As a result, when the radius and the density of the mother particle and the child particle are determined, the maximum weight ratio of the child particle is determined, and the weight ratio cannot exceed this.
There is a problem that further improvement in function cannot be expected, and there is a problem to be solved by the present invention.

【0004】[0004]

【課題を解決するための手段】本発明は、上記の如き実
情に鑑みこれらの課題を解決することを目的として創作
されたものであって、第一の発明は、核となる粒子の表
面に微粒子を固定化することで複合固体粒子を製造する
にあたり、前記核となる粒子の表面に微粒子を固着させ
た後、該微粒子固着粒子に、微粒子成分の結晶を成長さ
せてなる複合固体粒子の製造方法である。また、第二の
発明は、核となる粒子の表面に微粒子を固定化すること
で固体粒子の表面を改質して複合固体粒子とするにあた
り、前記核となる粒子の表面に微粒子を固着させた微粒
子固着粒子に、微粒子成分の結晶を成長させて得る複合
固体粒子である。このものにおいて、微粒子成分の結晶
成長は、微粒子成分溶液に微粒子固着粒子を混入し、前
記固着された微粒子を結晶核として結晶成長させてなる
ものである。また、前記微粒子成分溶液は、液相中にて
微粒子成分を反応生成させたものである。このものにお
いて、前記微粒子成分は、燐酸一水素カルシウムであ
る。この場合、微粒子成分の結晶成長は、水素イオン指
数(pH値)が4〜6のあいだ、好ましくは4.5〜
5.8のあいだ、さらに好ましくは5.7に調整された
水溶液で行われる。ここで燐酸一水素カルシウムは、水
酸化カルシウムの懸濁液にピロリン酸を加えて反応させ
て生成させたものである。
DISCLOSURE OF THE INVENTION The present invention has been made in view of the above-mentioned circumstances, and has been made for the purpose of solving these problems. The first invention is directed to the surface of core particles. In producing the composite solid particles by immobilizing the fine particles, the production of the composite solid particles by fixing the fine particles on the surface of the core particles and then growing the crystal of the fine particle component on the fine particle-fixed particles Is the way. Further, the second invention, in modifying the surface of the solid particles by immobilizing the fine particles on the surface of the core particles to form a composite solid particles, the fine particles are fixed to the surface of the core particles The composite solid particles are obtained by growing crystals of the fine particle component on the fixed fine particles. In this method, the crystal growth of the fine particle component is obtained by mixing fine particle-fixed particles in a fine particle component solution and growing the crystal with the fixed fine particles as crystal nuclei. The fine particle component solution is obtained by reacting and generating a fine particle component in a liquid phase. In this, the fine particle component is calcium monohydrogen phosphate. In this case, the crystal growth of the fine particle component is performed when the hydrogen ion index (pH value) is 4 to 6, preferably 4.5 to 6.
During 5.8, more preferably with an aqueous solution adjusted to 5.7. Here, the calcium monohydrogen phosphate is formed by adding pyrophosphoric acid to a suspension of calcium hydroxide and causing the reaction to proceed.

【0005】そして本発明方法を実施することにより結
晶成長させて得たものは、結晶成長の度合で子粒子の含
量を調整することができ、従来の固定化方法では不可能
であった子粒子含有割合を自由に増加させるコントロー
ルができる。そして、成長する結晶が針状や柱状のよう
に長く成長するものである場合、子粒子の表面積を著し
く拡大することができる。また、従来の固定化方法では
得ることができなかった針状や柱状の結晶をその長手方
向の一方端を母粒子に接合した複合個体粒子も得られ
る。
[0005] In the crystal obtained by performing the method of the present invention, the content of the child particles can be adjusted according to the degree of the crystal growth, and the child particles cannot be formed by the conventional fixing method. Control to freely increase the content ratio can be performed. When the growing crystal has a long growth like a needle or a column, the surface area of the child particles can be significantly increased. In addition, composite solid particles in which needle-like or columnar crystals, which could not be obtained by the conventional fixing method, are joined to the base particles at one end in the longitudinal direction can be obtained.

【0006】以上の結果、子粒子成分を結晶成長させて
得た複合個体粒子は、子粒子が有する各種機能(例えば
電子・磁気特性、光学特性、熱的特性、生体特性等)を
大きく改善、向上させると共に、圧縮成形性や含量均一
特性等も向上することができる。また、子粒子の表面積
が増大することにより、各種反応速度を向上させること
ができる。そして複合個体粒子は、電気・電子材料、磁
性材料、光学的機能材料、医薬品、化粧品、生体材料、
建材等に利用することができる。
[0006] As a result, the composite solid particles obtained by crystal growth of the child particle component greatly improve various functions (eg, electronic and magnetic characteristics, optical characteristics, thermal characteristics, biological characteristics, etc.) of the child particles. In addition to the improvement, the compression moldability, the content uniformity property and the like can be improved. In addition, various reaction rates can be improved by increasing the surface area of the child particles. And composite solid particles are electric / electronic materials, magnetic materials, optically functional materials, pharmaceuticals, cosmetics, biomaterials,
It can be used for building materials.

【0007】[0007]

【発明の実施の形態】本発明の複合固体粒子の製造に用
いられる母粒子としては、例えば結晶セルロース、ヒド
ロキシプロピルセルロース、カルボキシメチルセルロー
ス等の各種セルロース類とその誘導体、馬鈴薯デンプ
ン、トウモロコシデンプン、小麦デンプン、部分可溶性
デンプン、デキストリン等のデンプン類とその誘導体、
乳糖等の糖類、ナイロン、ポリエチレン、ポリスチレン
等の合成高分子である。また、鉄、ニッケル、アルミニ
ウム、銅等の金属粉、アルミナ、ジルコニウム、炭化珪
素等の無機物も母粒子として用いることができる。子粒
子としては、結晶成長の特性がある材料であって、各種
結晶性無機化合物、有機化合物等である。結晶性無機化
合物としては、各種金属の水酸化物、ハロゲン化物、炭
酸塩、硫酸塩、硝酸塩、燐酸塩、燐酸水素塩、珪酸塩等
である。結晶性有機化合物としては、イブプロフェン、
ケトプロフェン、フルルビプロフェン、インドメタシ
ン、フェナセチン、オキシフェンブタゾン、エテンザミ
ド、サルチルアミド、サリチル酸、安息臭酸等の結晶性
薬物である。また、母粒子の表面に、水に対する溶解度
がきわめて小さい金属酸化物の結晶を成長させた複合粒
子を得たい場合は、金属の水酸化物、ハロゲン化物、炭
酸塩、硫酸塩、硝酸塩、燐酸塩、燐酸水素塩等として結
晶成長させた後、仮焼することにより得られる。
BEST MODE FOR CARRYING OUT THE INVENTION The base particles used for producing the composite solid particles of the present invention include, for example, various celluloses such as crystalline cellulose, hydroxypropyl cellulose, carboxymethyl cellulose and derivatives thereof, potato starch, corn starch, wheat starch. , Partially soluble starch, starches such as dextrin and derivatives thereof,
It is a saccharide such as lactose and a synthetic polymer such as nylon, polyethylene and polystyrene. In addition, metal powders such as iron, nickel, aluminum and copper, and inorganic substances such as alumina, zirconium and silicon carbide can also be used as the base particles. The child particles are materials having crystal growth characteristics, such as various crystalline inorganic compounds and organic compounds. Examples of the crystalline inorganic compound include hydroxides, halides, carbonates, sulfates, nitrates, phosphates, hydrogen phosphates, and silicates of various metals. As crystalline organic compounds, ibuprofen,
It is a crystalline drug such as ketoprofen, flurbiprofen, indomethacin, phenacetin, oxyphenbutazone, etenzazamide, saltylamide, salicylic acid, benzoic acid and the like. When it is desired to obtain a composite particle in which a crystal of a metal oxide having extremely low solubility in water is grown on the surface of the base particle, a metal hydroxide, a halide, a carbonate, a sulfate, a nitrate, a phosphate, or the like may be used. , And then calcined after crystal growth as hydrogen phosphate or the like.

【0008】そして、子粒子を母粒子に固着させる手法
としては、通常知られた手法を採用することができ、具
体的には前記特公平3−2009号公報や特開平6−2
10152号公報に記載された高速気流中衝撃法を代表
的な例とする各種機械的固定化法があげられるが、母粒
子に子粒子を固着できるものであればこれらに限定され
るものでない。母粒子の大きさは、0.5μm(マイク
ロメートル)から2mmの範囲のものが適している。子
粒子の母粒子への固着手法として、前記高速気流中衝撃
法を用いた場合、母粒子の大きさが0.5μm未満にな
ると気流中に浮遊し、与える衝撃力が粒子に伝わりにく
い。また、2mmを越えると、衝撃によって粒子が破壊
され易く、所定の品質のものが得にくく、効率的でな
い。母粒子の形状は、球形、楕円形が望ましいが、その
他の不特定な形状でもよい。子粒子の大きさは、各種機
械的手法(固定化法)においては、母粒子の大きさの1
/5以下であることが好ましく、1/10以下であるこ
とがさらに好ましく、具体的にその粒径は0.01〜1
0μm程度である。なお、前記高速気流中衝撃法を用い
た場合、結晶性粒子は、後述の粉体表面改質処理装置の
衝撃室内で選択的に粉砕されるので、子粒子(固定化さ
れる物質)の大きさについては特に問わない。また、結
晶成長の手法としては、真空蒸着等の物理的に成長させ
る方法、気相や液相中で、さらには固相中で成長させる
成長法等があり、これらの何れも用いることができる。
そして例えば液相成長法は、子粒子材料(溶質)を溶媒
中に過飽和状態に溶解した溶液から結晶を成長させる手
法である。過飽和状態の溶液は、溶液を冷却する方法、
溶媒を蒸発させる方法、溶液を加圧する方法、そして固
液、溶液、気液反応等によって得ることができる。
[0008] As a method for fixing the child particles to the base particles, a generally known method can be adopted, and specifically, the above-mentioned Japanese Patent Publication No. 3-2009 and Japanese Patent Laid-Open No. 6-2 / 1994.
Various mechanical fixing methods are exemplified by the high-speed airflow impact method described in Japanese Patent No. 10152, but are not limited thereto as long as the child particles can be fixed to the base particles. The size of the mother particles is suitably in the range of 0.5 μm (micrometer) to 2 mm. When the high-speed airflow impact method is used as a method of fixing the child particles to the base particles, if the size of the base particles is less than 0.5 μm, the base particles float in the airflow, and the applied impact force is not easily transmitted to the particles. On the other hand, if it exceeds 2 mm, the particles are likely to be broken by impact, and it is difficult to obtain particles of a predetermined quality, which is not efficient. The shape of the base particles is preferably spherical or elliptical, but may be any other unspecified shape. In the case of various mechanical methods (immobilization method), the size of the child particles is one of the size of the mother particles.
/ 5 or less, more preferably 1/10 or less, and specifically, the particle size is 0.01 to 1
It is about 0 μm. In the case of using the high-speed air-flow impact method, the crystalline particles are selectively pulverized in an impact chamber of a powder surface modification treatment apparatus described later, so that the size of the child particles (the substance to be fixed) is reduced. It does not matter in particular. Further, as a method of crystal growth, there are a physical growth method such as vacuum evaporation, a growth method of growing in a gas phase or a liquid phase, and further a growth method in a solid phase, and any of these methods can be used. .
For example, the liquid phase growth method is a method of growing crystals from a solution in which a child particle material (solute) is dissolved in a solvent in a supersaturated state. Supersaturated solutions can be obtained by cooling the solution,
It can be obtained by a method of evaporating the solvent, a method of pressurizing the solution, a solid-liquid, solution, gas-liquid reaction, or the like.

【0009】子粒子が燐酸一水素カルシウム(CaHP
O4)である場合、この物質は水に対する溶解度がきわ
めて小さい(0.02g/100g、at24.5℃)
ため、結晶成長は、反応法(固液反応法)によって得ら
れた過飽和状態で行われ、例えば水酸化カルシウム懸濁
液とピロリン酸とを反応させて燐酸一水素カルシウムを
生成しながら、母粒子に固定化された燐酸一水素カルシ
ウムを結晶核として成長させることが好適である。この
場合の反応液は、水素イオン指数(pH値)が4〜6、
好ましくは4.5〜5.8の範囲で、さらに好ましくは
5.7に調整されたものである。
The particles are composed of calcium monohydrogen phosphate (CaHP).
O4), this material has very low solubility in water (0.02 g / 100 g, at 24.5 ° C.)
Therefore, the crystal growth is performed in a supersaturated state obtained by a reaction method (solid-liquid reaction method). For example, while reacting calcium hydroxide suspension with pyrophosphoric acid to generate calcium monohydrogen phosphate, It is preferable to grow calcium monohydrogen phosphate immobilized as a crystal nucleus. The reaction solution in this case has a hydrogen ion index (pH value) of 4 to 6,
It is preferably in the range of 4.5 to 5.8, and more preferably adjusted to 5.7.

【0010】<実験例>次ぎに、実験例について説明す
る。ナイロン12を母粒子とし、燐酸一水素カルシウム
を子粒子とした場合について実験した。 微粒子固着粒子の生成 母粒子である平均粒径50μmのナイロン12の球形粒
子(SP−500L型東レ株式会社製)と、子粒子であ
る一辺の長さの平均が約50μmの板状の燐酸一水素カ
ルシウム(特級、和光純薬工業株式会社製)との重量比
で10:1の混合粉体を、紛体表面改質処理装置(NH
S−O型、株式会社奈良機械製作所製)を用いて、下記
の条件で処理(特公平3−2009号公報に記載される
方法に準じる処理)することにより、上記の粉体表面改
質処理装置の衝撃室内で選択的に粉砕された燐酸一水素
カルシウムをナイロン12球形粒子の表面に微粒子の状
態で埋め込み固定し、これにより燐酸一水素カルシウム
が表面に固着された微粒子固着粒子を得た。この微粒子
固着粒子についての走査形電子顕微鏡写真を図1に図面
代用写真として示す。 仕 込 量:10グラム 回 転 数:12000rpm 処理時間:5分 燐酸一水素カルシウム生成液の調製 微粒子状の水酸化カルシウム(特級、関東化学株式会社
製)0.7409グラムを精製水100グラムを入れた
容器に投入して水酸化カルシウム懸濁液を調製し、この
懸濁液に、攪拌しながら濃度0.05mol/lのピロ
リン酸(一級、昭和化学株式会社製)水溶液の100グ
ラムを10分間かけてゆっくりと加える。次ぎに続けて
磁気攪拌器(RC−10型、東京理学機械株式会社製)
を用いて2時間攪拌を行った後、該反応液を濾過(反応
初期の段階で生成した大粒結晶および不純物を濾別する
ため)し、濾液として燐酸一水素カルシウムの生成液を
得る。この生成液は懸濁していた。この生成液を、pH
値が5.70になるよう精製水と、前記ピロリン酸水溶
液を用いて調整する。 結晶成長粒子の生成 前記で調製した燐酸一水素カルシウムの生成液50グ
ラムを、前記で処理した微粒子固着粒子100ミリグ
ラムを入れたガラス容器に入れ、手で振りながらよく混
合させた後、容器を密栓して25℃にて静置する。7日
後、ナイロン球形粒子の表面に埋め込まれた燐酸一水素
カルシウムを結晶核として針状に結晶が成長した複合固
体粒子を得た。溶液を濾過し、得られた濾過物を水洗、
乾燥することで子粒子成分が結晶成長した複合固体粒子
を得た。この粒子についての走査形電子顕微鏡写真を図
2に図面代用写真として示す。ここで得られた結晶成長
粒子は、多少の衝撃を与えても母粒子から結晶が剥離す
ることはなく、確かりと固着した状態で結晶が成長して
いるのが確認された。
<Experimental Example> Next, an experimental example will be described. An experiment was conducted in the case where nylon 12 was used as the base particles and calcium monohydrogen phosphate was used as the child particles. Formation of Fine Particle-Adhered Particles Spherical particles of nylon 12 having a mean particle diameter of 50 μm (manufactured by Toray Industries, Inc.) having a mean particle diameter of 50 μm, and a plate-like phosphoric acid having an average length of one side of about 50 μm as a child particle. A mixed powder of 10: 1 in weight ratio with calcium hydrogen (special grade, manufactured by Wako Pure Chemical Industries, Ltd.) was applied to a powder surface reforming apparatus (NH
The above-mentioned powder surface modification treatment is carried out using an SO type (manufactured by Nara Machinery Co., Ltd.) under the following conditions (a treatment according to the method described in Japanese Patent Publication No. 3-2009). Calcium hydrogen phosphate selectively pulverized in the impact chamber of the device was embedded and fixed in the form of fine particles on the surface of the nylon 12 spherical particles, thereby obtaining fine particle-fixed particles having calcium hydrogen phosphate fixed to the surface. FIG. 1 shows a scanning electron micrograph of the fine particle-fixed particles as a drawing substitute photograph. Charge: 10 g Rotation speed: 12000 rpm Processing time: 5 minutes Preparation of calcium hydrogen phosphate production solution 0.7409 g of fine-particle calcium hydroxide (special grade, manufactured by Kanto Chemical Co., Ltd.) is charged with 100 g of purified water. Into a container to prepare a suspension of calcium hydroxide, and 100 g of an aqueous solution of pyrophosphoric acid (primary grade, manufactured by Showa Chemical Co., Ltd.) having a concentration of 0.05 mol / l was added to the suspension for 10 minutes while stirring. Add slowly. Next, a magnetic stirrer (RC-10, manufactured by Tokyo Rigaku Machine Co., Ltd.)
After stirring for 2 hours using, the reaction solution is filtered (to filter large crystals and impurities formed in the initial stage of the reaction) to obtain a solution of calcium hydrogen phosphate as a filtrate. This product was suspended. This product solution is adjusted to pH
The value is adjusted using purified water and the aqueous solution of pyrophosphoric acid so that the value becomes 5.70. Production of crystal growth particles 50 g of the above-prepared solution of calcium hydrogen hydrogen phosphate prepared above was placed in a glass container containing 100 mg of the fine particle fixed particles treated as described above, and the mixture was shaken by hand and mixed well. And let it stand at 25 ° C. Seven days later, composite solid particles in which crystals grew acicularly using calcium monohydrogen phosphate embedded in the surface of the nylon spherical particles as crystal nuclei were obtained. The solution was filtered, and the obtained filtrate was washed with water,
By drying, composite solid particles in which the child particle components grew were obtained. FIG. 2 shows a scanning electron micrograph of these particles as a drawing substitute photograph. It was confirmed that the crystal growth particles obtained here did not peel off the crystal from the base particle even if a slight impact was applied, and that the crystal was grown in a fixed state.

【0011】<比較例1>前記実験例で用いたナイロン
12球形粒子と燐酸一水素カルシウムとの重量比10:
1の混合粉体を、粉体表面改質処理装置を用いた固定化
処理を行わない以外は全て前記実験例と同じ処理をして
結晶成長を試みた。その結果得られたものについての走
査形電子顕微鏡写真を図3に図面代用写真として示す。
このものは一見したところ母粒子に結晶が成長している
ように観測されたが、結晶が簡単に剥離することが確認
された。
<Comparative Example 1> The weight ratio of the nylon 12 spherical particles used in the above experimental example to calcium monohydrogen phosphate was 10:
All of the mixed powder No. 1 was subjected to the same treatment as that of the above-mentioned experimental example except that the immobilization treatment using the powder surface modification treatment device was not performed, and a crystal growth was attempted. FIG. 3 shows a scanning electron micrograph of the resulting product as a drawing substitute photograph.
At first glance, it was observed that crystals grew on the base particles, but it was confirmed that the crystals were easily separated.

【0012】<比較例2>前記で調製した生成液につ
いて、pH値を6.3に調整した以外は実験例の手法に
そのまま従って処理したが、この場合には、結晶成長は
観測されなかった。得られた粒子についての走査形電子
顕微鏡写真を図4に図面代用写真として示す。
<Comparative Example 2> The product solution prepared as described above was treated in the same manner as in the experimental example except that the pH value was adjusted to 6.3. In this case, no crystal growth was observed. . FIG. 4 shows a scanning electron micrograph of the obtained particles as a drawing substitute photograph.

【図面の簡単な説明】[Brief description of the drawings]

【図1】燐酸一水素カルシウムを母粒子であるナイロン
12球形粒子の表面に固着させたものの走査形電子顕微
鏡により写した図面代用写真
FIG. 1 is a photograph substituted for a drawing of a sample obtained by fixing calcium monohydrogen phosphate on the surface of nylon 12 spherical particles serving as base particles, which is taken by a scanning electron microscope.

【図2】実験例で結晶成長させて得た粒子についての走
査形電子顕微鏡により写した図面代用写真
FIG. 2 is a drawing substitute photograph of a particle obtained by growing a crystal in an experimental example, which is taken by a scanning electron microscope.

【図3】比較例1で得た粒子についての走査形電子顕微
鏡により写した図面代用写真
FIG. 3 is a drawing substitute photograph of the particles obtained in Comparative Example 1 taken by a scanning electron microscope.

【図4】比較例2で得た粒子についての走査形電子顕微
鏡により写した図面代用写真
FIG. 4 is a drawing substitute photograph of the particles obtained in Comparative Example 2 taken with a scanning electron microscope.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C09C 3/06 C09C 3/06 C30B 29/62 C30B 29/62 Z ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification symbol FI C09C 3/06 C09C 3/06 C30B 29/62 C30B 29/62 Z

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 核となる粒子の表面に微粒子を固定化す
ることで複合固体粒子を製造するにあたり、前記核とな
る粒子の表面に微粒子を固着させた後、該微粒子固着粒
子に、微粒子成分の結晶を成長させてなる複合固体粒子
の製造方法。
In producing composite solid particles by immobilizing fine particles on the surface of a core particle, the fine particles are fixed on the surface of the core particle, and then the fine particle component is added to the fine particle fixed particles. A method for producing composite solid particles obtained by growing crystals.
【請求項2】 核となる粒子の表面に微粒子を固定化す
ることで固体粒子の表面を改質して複合固体粒子とする
にあたり、前記核となる粒子の表面に微粒子を固着させ
た微粒子固着粒子に、微粒子成分の結晶を成長させて得
る複合固体粒子。
2. The method of fixing fine particles on the surface of a core particle to modify the surface of the solid particle into a composite solid particle, wherein the fine particle is fixed on the surface of the core particle. Composite solid particles obtained by growing crystals of a fine particle component on the particles.
【請求項3】 請求項1または2において、微粒子成分
の結晶成長は、微粒子成分溶液に微粒子固着粒子を混入
し、前記固着された微粒子を結晶核として結晶成長させ
てなる表面改質された固体粒子および固体粒子の表面改
質方法。
3. The surface-modified solid according to claim 1, wherein the fine particle component is grown by mixing fine particle fixed particles in a fine particle component solution and growing the crystal with the fixed fine particles as crystal nuclei. Surface modification method for particles and solid particles.
【請求項4】 請求項3において、微粒子成分溶液は、
液相中にて微粒子成分を反応生成させたものである複合
固体粒子とその製造方法。
4. The method according to claim 3, wherein the fine particle component solution is
Composite solid particles produced by reacting fine particle components in a liquid phase and a method for producing the same.
【請求項5】 請求項4において、微粒子成分は、燐酸
一水素カルシウムである表面改質された複合固体粒子と
その製造方法。
5. The composite solid particle according to claim 4, wherein the fine particle component is calcium monohydrogen phosphate, and a method for producing the same.
【請求項6】 請求項5において、微粒子成分の結晶成
長は、水素イオン指数が4.5〜5.8のあいだに調整
され、より好ましくは5.7に調整された水溶液で行わ
れる表面改質された複合固体粒子とその製造方法。
6. The method according to claim 5, wherein the crystal growth of the fine particle component is carried out with an aqueous solution whose hydrogen ion exponent is adjusted to 4.5 to 5.8, more preferably 5.7. Composite solid particles and method for producing the same.
【請求項7】 請求項5または6において、燐酸一水素
カルシウムは、水酸化カルシウムの懸濁液にピロリン酸
を加えて反応させて生成させたものである表面改質され
た複合固体粒子とその製造方法。
7. The surface-modified composite solid particles according to claim 5 or 6, wherein the calcium monohydrogen phosphate is formed by adding pyrophosphoric acid to a suspension of calcium hydroxide and reacting the suspension. Production method.
JP34579097A 1997-12-01 1997-12-01 Composite solid particles and method for producing the same Expired - Lifetime JP3390863B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP34579097A JP3390863B2 (en) 1997-12-01 1997-12-01 Composite solid particles and method for producing the same
US09/201,119 US6090440A (en) 1997-12-01 1998-11-30 Composite solid particle and method for producing same
EP98309795A EP0922488A3 (en) 1997-12-01 1998-11-30 Composite solid particle and a method for producing same
US09/562,074 US6403219B1 (en) 1997-12-01 2000-05-01 Composite solid particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34579097A JP3390863B2 (en) 1997-12-01 1997-12-01 Composite solid particles and method for producing the same

Publications (2)

Publication Number Publication Date
JPH11166171A true JPH11166171A (en) 1999-06-22
JP3390863B2 JP3390863B2 (en) 2003-03-31

Family

ID=18379005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34579097A Expired - Lifetime JP3390863B2 (en) 1997-12-01 1997-12-01 Composite solid particles and method for producing the same

Country Status (3)

Country Link
US (2) US6090440A (en)
EP (1) EP0922488A3 (en)
JP (1) JP3390863B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010031104A (en) * 2008-07-28 2010-02-12 Sumitomo Chemical Co Ltd Liquid crystalline polyester particle and its molded article
JP2010208903A (en) * 2009-03-11 2010-09-24 Shinshu Univ Calcium phosphate crystal composite and manufacturing method of the same
JP2010235686A (en) * 2009-03-30 2010-10-21 National Cardiovascular Center Non-spherical fine particle and method for producing non-spherical fine particle

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2801810B1 (en) * 1999-12-07 2002-05-03 Rhodia Food S A S CAPSULE COMPRISING AT LEAST ONE MINERAL BARK CONSISTING OF A UNIQUE CHEMICAL COMPOUND AND A CORE COMPRISING AT LEAST ONE POLYHYDROXYL COMPOUND
US6902619B2 (en) * 2001-06-28 2005-06-07 Ntu Ventures Pte. Ltd. Liquid phase epitaxy
EP3524279A1 (en) * 2011-03-18 2019-08-14 Schaefer Kalk GmbH & Co. KG Microstructured particles
CN103146232B (en) * 2013-03-18 2014-12-24 潍坊埃尔派粉体技术设备有限公司 Intensive powder surface modification device and production technology thereof
JP6961701B2 (en) 2016-09-08 2021-11-05 シェーファー・カーク・ゲーエムベーハー・ウント・コンパニー・カーゲーSchaefer Kalk Gmbh & Co. Kg Composite powder containing calcium carbonate and having fine structure particles
PL3509733T3 (en) 2016-09-08 2020-11-16 Schaefer Kalk Gmbh & Co. Kg Composite powder with microstructured particles
WO2018046276A1 (en) 2016-09-08 2018-03-15 Karl Leibinger Medizintechnik Gmbh & Co. Kg Implant that contains inhibiting calcium carbonate
CA3033785A1 (en) 2016-09-08 2018-03-15 Schaefer Kalk Gmbh & Co. Kg Inhibiting calcium carbonate additive
AU2017324192B2 (en) 2016-09-08 2021-11-25 Karl Leibinger Medizintechnik Gmbh & Co. Kg Method for producing an implant comprising calcium carbonate-containing composite powder having microstructured particles having inhibiting calcium carbonate
JP7409590B2 (en) 2016-09-08 2024-01-09 カール ライビンガー メディツィンテクニック ゲーエムベーハー ウント コー. カーゲー Implants containing composite powders containing calcium salts with microstructured particles
WO2018046269A1 (en) 2016-09-08 2018-03-15 Karl Leibinger Medizintechnik Gmbh & Co. Kg Method for producing an implant using a calcium carbonate-containing composite powder comprising microstructured particles
CA3035935A1 (en) 2016-09-08 2018-03-15 Schaefer Kalk Gmbh & Co. Kg Composite powder containing calcium carbonate and having microstructured particles having inhibitory calcium carbonate

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1097341A (en) * 1965-04-21 1968-01-03 Allied Chem Pelletized powdery material and process of making same
DE3687219T2 (en) * 1985-10-07 1993-04-08 Nara Machinery Co Ltd METHOD FOR IMPROVING THE SURFACE QUALITY OF SOLID PARTICLES AND DEVICE THEREFOR.
US5271969A (en) * 1985-10-29 1993-12-21 Atsushi Ogura Method of manufacturing metal oxide ceramic composite powder
JP2941081B2 (en) * 1991-03-26 1999-08-25 株式会社奈良機械製作所 Method for suppressing increase in amorphous ratio of crystalline organic compound and recrystallization
GB9110719D0 (en) * 1991-05-17 1991-07-10 Allied Colloids Ltd Polymeric compositions and methods of making and using them
US5876793A (en) * 1996-02-21 1999-03-02 Ultramet Fine powders and method for manufacturing

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010031104A (en) * 2008-07-28 2010-02-12 Sumitomo Chemical Co Ltd Liquid crystalline polyester particle and its molded article
JP2010208903A (en) * 2009-03-11 2010-09-24 Shinshu Univ Calcium phosphate crystal composite and manufacturing method of the same
JP2010235686A (en) * 2009-03-30 2010-10-21 National Cardiovascular Center Non-spherical fine particle and method for producing non-spherical fine particle

Also Published As

Publication number Publication date
US6403219B1 (en) 2002-06-11
JP3390863B2 (en) 2003-03-31
EP0922488A3 (en) 2000-03-08
EP0922488A2 (en) 1999-06-16
US6090440A (en) 2000-07-18

Similar Documents

Publication Publication Date Title
JPH11166171A (en) Composite solid particle and production thereof
Suchanek et al. Hydrothermal synthesis of advanced ceramic powders
US9707734B2 (en) Microstructured composite particles
US6592989B1 (en) Method for synthesis of hydroxyapatite, and hydroxyapatite complex and method for preparing the same
JPS61201623A (en) Production of spherical flocculated particle of zirconia ultrafine crystal
Nakahira et al. Synthesis and evaluation of various layered octacalcium phosphates by wet-chemical processing
US20050229747A1 (en) Silver Crystals Through Tollen&#39;s Reaction
JP2009067605A (en) Method for producing aragonite type calcium carbonate with hexagonal plate form
JP4574524B2 (en) Crossed disk-shaped, hamburger-shaped or disk-shaped vaterite-type calcium carbonate and method for producing the same
JPH0959018A (en) Production of alumina particle
Uskoković et al. Uniform particles of pure and silica-coated cholesterol
JP2001522344A (en) Manufacturing method of calcium borate
Yang et al. Microwave-assisted synthesis and characterization of hierarchically structured calcium fluoride
CN115304084A (en) Method for preparing nano lithium fluoride by utilizing solid-phase reaction
CN102442699A (en) Method for preparing nano zirconium oxide
JP2007260593A (en) Method for preparing inorganic particle sol and inorganic particle sol
Chen et al. Improving the productivity and purity of vaterite produced via a refined bubbling method
JPS58213633A (en) Production of aluminum oxide
CN101182312A (en) Pyrazinamide derivatives as well as preparation method and uses thereof
JPH1045405A (en) Production of plate like apatite hydroxide in which (a) face is grown
JP2007001796A (en) Method for producing strontium carbonate particulate
Kongteweelert et al. Facile, Alternative Synthesis of Spherical-Like Ca (H2PO4) 2• H2O Nanoparticle by Aqueous-Methanol Media
CN110615417B (en) Porous structure calcium phosphate organic-inorganic composite material and preparation method thereof
Cölfen Mesocrystals: Examples of Non‐Classical Crystallization
JP2013203563A (en) Method for producing hydroxyapatite fine particle, and hydroxyapatite fine particle, and also dispersion thereof

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100124

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110124

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110124

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120124

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130124

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130124

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term