JPH11164528A - Apparatus and method for magnetization - Google Patents

Apparatus and method for magnetization

Info

Publication number
JPH11164528A
JPH11164528A JP34405397A JP34405397A JPH11164528A JP H11164528 A JPH11164528 A JP H11164528A JP 34405397 A JP34405397 A JP 34405397A JP 34405397 A JP34405397 A JP 34405397A JP H11164528 A JPH11164528 A JP H11164528A
Authority
JP
Japan
Prior art keywords
magnetized
magnet
magnetizing
yoke
waveform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34405397A
Other languages
Japanese (ja)
Other versions
JP3599547B2 (en
Inventor
Eiji Koyakata
栄次 古舘
Susumu Terada
進 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Corp
Original Assignee
Nidec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Corp filed Critical Nidec Corp
Priority to JP34405397A priority Critical patent/JP3599547B2/en
Publication of JPH11164528A publication Critical patent/JPH11164528A/en
Application granted granted Critical
Publication of JP3599547B2 publication Critical patent/JP3599547B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To perform magnetization into a magnetized waveform of a samarium cobalt magnet even through it is a neodymium magnet. SOLUTION: A magnetizing yoke 1, into which an annular member 2 to be magnetized is inserted, is provided. The magnetizing yoke 1 is a column, whose cross section is approximately square and the magnitude of each gap formed between the magnetizing yoke 1 and an internal peripheral surface 7 of the member 2 to be magnetized is made larger at the center part of a magnetic pole of the member 2 to be magnetized than at the boundary parts 10.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ディスク駆動用モ
ータに使用される駆動用マグネットに着磁する着磁装置
及び着磁方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetizing device and a magnetizing method for magnetizing a drive magnet used in a disk drive motor.

【0002】[0002]

【従来の技術】ディスク駆動用モータは、その用途(回
転数、記憶容量等)に合わせて駆動用マグネットに種々
の着磁がなされている。そして、ディスク駆動用モータ
は、高トルクでなおかつトルク変動の少ないことが要求
される。なぜならば、トルク変動が大きいと、スムーズ
な回転が実現できなくなるためである。
2. Description of the Related Art In a disk drive motor, various magnets are applied to a drive magnet in accordance with the application (rotation speed, storage capacity, etc.). The disk drive motor is required to have a high torque and a small torque fluctuation. This is because if the torque fluctuation is large, smooth rotation cannot be realized.

【0003】そのモータに使用される駆動用マグネット
の着磁方法としては、例えば、特開平8−223872号にあ
るように、非磁性材料にコイル部が一体モールドされ電
磁石により磁束を発生し、断面が円形の着磁コイル体
に、未着磁のマグネットを外嵌し、更に、非磁性部及び
強磁性部からなる部材を外嵌する。そして、着磁コイル
体を通電して磁束を発生させることでそのマグネットは
着磁される。
As a method of magnetizing a driving magnet used in the motor, for example, as disclosed in Japanese Patent Application Laid-Open No. 8-223872, a coil portion is integrally molded with a non-magnetic material, a magnetic flux is generated by an electromagnet, and a cross section is formed. , A non-magnetized magnet is externally fitted to a circular magnetized coil body, and further, a member composed of a non-magnetic portion and a ferromagnetic portion is externally fitted. The magnet is magnetized by generating a magnetic flux by energizing the magnetizing coil body.

【0004】しかして、上記駆動用マグネットの材料と
しては、一般には、希土類磁石の一つであるサマリウム
コバルト(Sm-Co) 系マグネット(以下、サマコバマグネ
ットという)が使用されていた。しかし、ディスク装置
の低コスト化に伴いモータの低コスト化の要請があり、
比較的高価なサマコバマグネットを同じ希土類磁石の一
つで安価なネオジム−鉄−ホウ素(Nd-Fe-B) 系マグネッ
ト(以下、ネオジマグネットという)とする場合があっ
た。
However, as a material of the driving magnet, a samarium-cobalt (Sm-Co) -based magnet (hereinafter, referred to as a samakoba magnet), which is one of rare earth magnets, has been generally used. However, with the cost reduction of disk drives, there has been a demand for lower cost motors.
In some cases, a relatively expensive samakoba magnet is one of the same rare earth magnets and is an inexpensive neodymium-iron-boron (Nd-Fe-B) -based magnet (hereinafter referred to as a neodymium magnet).

【0005】[0005]

【発明が解決しようとする課題】ところが、ネオジマグ
ネットはサマコバマグネットと同等の磁気特性が得られ
なかった。即ち、サマコバマグネットを組み込んだモー
タの起動トルク波形が図6であったものが、ネオジマグ
ネットを組み込んだモータの起動トルク波形が図7とな
り、ネオジマグネットの起動トルク波形のトルクリップ
ルが大きくなって、特性低下を招いていた。これは、図
7に示すように、励磁電流の通電切換点bに起動トルク
波形の最小値aが位置し、モータ動作中における通電切
換タイミングのズレがそのまま最低値を決定し、トルク
リップルを大きくする原因となっていた。また、トルク
リップルを大きくしないために、そのズレがないように
通電切換を正確に行わなければならないので、使いにく
いマグネットであった。なお、通常、駆動用マグネット
の特性として起動トルク波形が用いられる。起動トルク
波形とは、回転の駆動源となるトルクの変動を波形に表
したもので、例えば、3相モータの場合、各巻線毎に順
に通電されたときに生じるトルクを波形にして合成した
ものである。
However, neodymium magnets could not have the same magnetic properties as samakoba magnets. That is, the starting torque waveform of the motor incorporating the samakoba magnet is shown in FIG. 6, but the starting torque waveform of the motor incorporating the neodymium magnet is shown in FIG. 7, and the torque ripple of the starting torque waveform of the neodymium magnet increases. This has led to a decrease in characteristics. This is because, as shown in FIG. 7, the minimum value a of the starting torque waveform is located at the energization switching point b of the excitation current, the deviation of the energization switching timing during motor operation determines the minimum value as it is, and the torque ripple increases. Was causing it. In addition, in order not to increase the torque ripple, it is necessary to accurately switch the energization so as not to cause the displacement, so that the magnet is difficult to use. Note that a starting torque waveform is usually used as a characteristic of the driving magnet. The starting torque waveform is a waveform representing the fluctuation of torque serving as a driving source of rotation. For example, in the case of a three-phase motor, a torque generated when current is sequentially supplied to each winding is synthesized into a waveform. It is.

【0006】一方、サマコバマグネットの場合は、起動
トルク波形が図6に示すように通電切換点bよりも低い
磁気中央点が最小値aであるため通電切換にズレがあっ
たとしても、その通電切換点bから磁極中央点までは通
電切換のズレが許容され、トルクリップルは大きくなら
ない。従って、サマコバマグネットはネオジマグネット
より特性が良好で、使いやすい駆動用マグネットといえ
る。
On the other hand, in the case of the samba cover magnet, as shown in FIG. 6, the magnetic center point lower than the energization switching point b has the minimum value a as shown in FIG. From the switching point b to the center point of the magnetic pole, deviation of the energization switching is allowed, and the torque ripple does not increase. Therefore, the samakoba magnet has better characteristics than the neodymium magnet and can be said to be an easy-to-use driving magnet.

【0007】このように、ネオジマグネットの着磁特性
をサマコバマグネットの着磁特性に近づけることが好ま
しいことが分かる。
As described above, it is understood that it is preferable to make the magnetization characteristics of the neodymium magnet close to those of the samakoba magnet.

【0008】そこで、本発明では、安価なネオジマグネ
ットにてサマコバマグネットと同等の着磁特性を得るこ
とができてモータに組み込んだ際にはトルク変動の少な
い高精度のモータとなるマグネットを形成することがで
きる着磁装置及び着磁方法を提供することを目的とす
る。
Therefore, according to the present invention, a magnet can be obtained which can obtain the same magnetization characteristics as a samakoba magnet with an inexpensive neodymium magnet and, when incorporated in a motor, is a highly accurate motor with little torque fluctuation. It is an object of the present invention to provide a magnetizing device and a magnetizing method that can perform the magnetizing.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するた
め、本発明に係る着磁装置は、リング状の被着磁部材が
挿入される着磁ヨークを備えた着磁装置であって、上記
着磁ヨークは上記被着磁部材の内周面との間に形成され
る隙間の大きさを被着磁部材の磁極中心部で境界部より
も大きくしたものである。
In order to achieve the above object, a magnetizing device according to the present invention is a magnetizing device having a magnetizing yoke into which a ring-shaped magnetized member is inserted. In the magnetized yoke, the size of the gap formed between the magnetized yoke and the inner peripheral surface of the magnetized member is larger at the center of the magnetic pole of the magnetized member than at the boundary.

【0010】また、上記着磁ヨークを、断面が略正方形
となる柱体としたり、断面が星形となる柱体としたりで
きる。
Further, the magnetized yoke may be a column having a substantially square cross section or a column having a star cross section.

【0011】また、本発明に係る着磁方法は、外周面に
周方向に沿って所定ピッチで切欠部を形成した円柱状着
磁ヨークに着磁前のリング状のネオジム−鉄−ホウ素系
マグネットを外嵌して該マグネットを着磁するものであ
る。
Further, the magnetizing method according to the present invention provides a ring-shaped neodymium-iron-boron magnet before magnetizing a cylindrical magnetized yoke having cutouts formed at predetermined intervals along the circumferential direction on the outer peripheral surface. Is externally fitted to magnetize the magnet.

【0012】[0012]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づき詳説する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0013】図1は本発明に係る着磁装置の要部を示
し、この着磁装置は、着磁ヨーク1を備え、リング状の
被着磁部材2を該着磁ヨーク1に挿入して該被着磁部材
2を着磁するものである。着磁ヨーク1はその外周面に
切欠部5…が形成されて断面が略正方形とされた柱体か
らなり、また、被着磁部材2は希土類磁石の一つである
ネオジム−鉄−ホウ素(Nd-Fe-B) 系マグネットからな
る。
FIG. 1 shows a main part of a magnetizing device according to the present invention. The magnetizing device includes a magnetizing yoke 1, and a ring-shaped magnetized member 2 is inserted into the magnetizing yoke 1. The magnetized member 2 is magnetized. The magnetized yoke 1 is formed of a columnar body having a notch 5 formed on the outer peripheral surface thereof and having a substantially square cross section. The magnetized member 2 is formed of neodymium-iron-boron (one of rare earth magnets). It consists of Nd-Fe-B) based magnets.

【0014】しかして、着磁ヨーク1の外周面には、4
つのコーナ部に凹溝3…が設けられ、この凹溝3にコイ
ル4が嵌合される。即ち、コイル4に電流を流すことに
よって、この着磁ヨーク1から磁束が発生して、被着磁
部材2が着磁される。なお、被着磁部材2の外周は、図
示省略の磁性ヨーク部材にて包囲状とされる。即ち、こ
の磁性ヨーク部材は、例えば、内周側に短円筒状の非磁
性部が設けられ、外周側に電磁鋼からなる短円筒状の強
磁性部が設けられ、被着磁部材2に流れる磁束を多くす
るものである。
On the outer peripheral surface of the magnetized yoke 1,
A groove 3 is provided at one of the corners, and a coil 4 is fitted into the groove 3. That is, when a current flows through the coil 4, a magnetic flux is generated from the magnetized yoke 1, and the magnetized member 2 is magnetized. The outer periphery of the magnetized member 2 is surrounded by a magnetic yoke member (not shown). That is, this magnetic yoke member has, for example, a short cylindrical non-magnetic portion provided on the inner peripheral side, and a short cylindrical ferromagnetic portion made of electromagnetic steel provided on the outer peripheral side, and flows to the magnetized member 2. This increases the magnetic flux.

【0015】このように、着磁ヨーク1の外周面には、
切欠部5が形成されるので、この切欠部5の切欠面とこ
れに対向する被着磁部材2の内周面7との間に、断面略
円弧状の隙間6が形成される。即ち、切欠部5を形成し
ない場合(従来の着磁ヨークのように断面が円形の場
合)、この着磁ヨーク1の外周面と被着磁部材2の内周
面7との間の隙間Sが全周において一定であるが、切欠
部5を設けることによって、被着磁部材2の磁極中心部
で、該被着磁部材2の内周面7との間に形成される隙間
6の大きさを磁極境界部10よりも大きくしている。
As described above, on the outer peripheral surface of the magnetized yoke 1,
Since the notch 5 is formed, a gap 6 having a substantially arc-shaped cross section is formed between the notch surface of the notch 5 and the inner peripheral surface 7 of the magnetized member 2 facing the notch. That is, when the notch 5 is not formed (when the cross section is circular like a conventional magnetized yoke), the gap S between the outer peripheral surface of the magnetized yoke 1 and the inner peripheral surface 7 of the magnetized member 2 is formed. Is constant over the entire circumference, but by providing the notch 5, the size of the gap 6 formed between the center of the magnetic pole of the magnetized member 2 and the inner peripheral surface 7 of the magnetized member 2 is increased. The length is made larger than the magnetic pole boundary portion 10.

【0016】そのため、その磁極境界部10からこの隙間
6中間部に接近するにつれて着磁時の磁束の大きさが除
々に弱くなって、若干マグネットの磁束の大きさが下が
り、図2に示すように、このマグネットの着磁特性を表
す着磁波形は、山部8に凹部9が従来の場合よりも強調
されて形成される。つまり、サマリウムコバルト (Sm−
Co)系マグネットの着磁波形の如き波形となる。
As a result, the magnitude of the magnetic flux at the time of magnetization gradually decreases as the distance from the magnetic pole boundary portion 10 to the intermediate portion of the gap 6 decreases, and the magnitude of the magnetic flux of the magnet decreases slightly, as shown in FIG. In addition, the magnetization waveform representing the magnetization characteristics of the magnet is formed such that the concave portion 9 is emphasized in the peak portion 8 as compared with the conventional case. In other words, samarium cobalt (Sm−
It becomes a waveform like the magnetization waveform of the Co) system magnet.

【0017】従って、このマグネットをモータに組み込
んだ際の起動トルク波形は、図6とほぼ同様に、通電切
換点よりも低い磁極中央点が最小値であるため通電切換
にズレがあったとしても、その通電切換点から磁極中央
点までは通電切換のズレが許容されるため、トルクリッ
プルの小さいサマコバマグネットと同様の波形となる。
即ち、この場合のネオジマグネットにおける起動トルク
波形は、図3の(ア)に示すようになり、上述のサマコ
バマグネットのそれを表す図6の如き波形を連続したよ
うになる。従来の着磁方式によるネオジマグネットにお
ける起動トルク波形は、図3の(イ)に示すようにな
り、上述の図7の波形を連続したものとなる。図3の
(ア)と(イ)を比較すると、波形の最大値と最小値の
幅が大きい程、トルクリップルが大きいと判断でき、図
3の(イ)のように切換点bが最小値となると切換のタ
イミングのズレにより、その最小値はその都度変化し不
安定な回転となってしまう。(トルクリップルが大き
い。)
Accordingly, the starting torque waveform when this magnet is incorporated in the motor is substantially the same as in FIG. 6, even if the energization switching is deviated because the magnetic pole center point lower than the energization switching point has the minimum value. Since a shift in the energization switching is allowed from the energization switching point to the center point of the magnetic pole, the waveform is similar to that of the Samakoba magnet with small torque ripple.
That is, the starting torque waveform in the neodymium magnet in this case is as shown in FIG. 3A, and the waveform as shown in FIG. 6 representing that of the above-mentioned samakoba magnet is continuous. The starting torque waveform of the neodymium magnet according to the conventional magnetizing method is as shown in FIG. 3A, which is a continuation of the waveform of FIG. Comparing FIG. 3A and FIG. 3A, it can be determined that the larger the width between the maximum value and the minimum value of the waveform, the larger the torque ripple, and as shown in FIG. When this happens, the minimum value changes each time due to a shift in switching timing, resulting in unstable rotation. (The torque ripple is large.)

【0018】次に、図4は他の着磁ヨーク1を示し、こ
の場合、切欠部5が図1のものよりもさらに切り込まれ
たものとされて断面がいわゆる星形とされる。従って、
この図4の着磁ヨーク1も、被着磁部材2の磁極中心部
で、該被着磁部材2の内周面7との間に形成される隙間
6の大きさを磁極境界部10よりも大きくしている。
FIG. 4 shows another magnetized yoke 1. In this case, the cutout 5 is cut further than that of FIG. 1 so that the cross section has a so-called star shape. Therefore,
In the magnetized yoke 1 of FIG. 4 as well, the size of the gap 6 formed between the magnetic pole center of the magnetized member 2 and the inner peripheral surface 7 of the magnetized member 2 is determined by the magnetic pole boundary 10. Is also bigger.

【0019】このため、着磁波形は、図5に示すよう
に、山部8に凹部9が図2のものよりもさらに強調され
て形成されたサマコバマグネットの着磁波形の如き波形
となる。
Therefore, as shown in FIG. 5, the magnetized waveform is a waveform similar to the magnetized waveform of the samakoba magnet in which the concave portion 9 is formed in the crest 8 more emphasized than that in FIG.

【0020】ところで、上述の図1や図4の着磁ヨーク
1では、その断面を正方形状や星形としているが、これ
は、マグネットが4極用であるためであって、6極用で
あれば、6個の切欠部5を形成すればよい。即ち、着磁
時にマグネットの磁極中心部に相当する隙間が若干大き
くなるように設定すればよく、4極用や6極用に限定さ
れるものではない。
The magnetized yoke 1 shown in FIGS. 1 and 4 has a square or star-shaped cross section, because the magnet is for four poles and is for six poles. If so, six notches 5 may be formed. That is, the gap corresponding to the center of the magnetic pole of the magnet may be set slightly larger at the time of magnetization, and is not limited to four poles or six poles.

【0021】[0021]

【発明の効果】本発明は上述の構成により次のような著
大な効果を奏する。
According to the present invention, the following significant effects can be obtained by the above-described structure.

【0022】請求項1又は4によれば、ネオジマグネッ
トでもってサマコバマグネットの着磁波形の如き波形と
することができ、安価で磁気特性として優れたマグネッ
トを形成することができ、このマグネットをモータに組
み込めば、トルク変動の少ない高精度のモータとなる。
According to the first or fourth aspect, it is possible to form a magnet such as a magnetized waveform of a samakoba magnet by using a neodymium magnet, and to form a magnet which is inexpensive and has excellent magnetic characteristics. If incorporated into a motor, a high-precision motor with little torque fluctuation is obtained.

【0023】請求項2又は3によれば、4極用のマグネ
ットを簡単かつ確実に成形することができる。
According to the second or third aspect, the magnet for four poles can be formed easily and reliably.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る着磁装置の要部断面図である。FIG. 1 is a sectional view of a main part of a magnetizing device according to the present invention.

【図2】着磁波形図である。FIG. 2 is a magnetization waveform diagram.

【図3】起動トルク波形図である。FIG. 3 is a starting torque waveform diagram.

【図4】他の着磁装置の要部断面図である。FIG. 4 is a sectional view of a main part of another magnetizing device.

【図5】着磁波形図である。FIG. 5 is a magnetization waveform diagram.

【図6】サマコバマグネットの起動トルク波形図であ
る。
FIG. 6 is a waveform diagram of a starting torque of a samako magnet.

【図7】ネオジマグネットの起動トルク波形図である。FIG. 7 is a starting torque waveform diagram of the neodymium magnet.

【符号の説明】[Explanation of symbols]

1 着磁ヨーク 2 被着磁部材 5 切欠部 6 隙間 7 内周面 10 境界部 DESCRIPTION OF SYMBOLS 1 Magnetization yoke 2 Magnetized member 5 Notch 6 Gap 7 Inner peripheral surface 10 Boundary part

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 リング状の被着磁部材2が挿入される着
磁ヨーク1を備えた着磁装置であって、上記着磁ヨーク
1は上記被着磁部材2の内周面7との間に形成される隙
間6の大きさを被着磁部材2の磁極中心部で境界部10よ
りも大きくしたことを特徴とする着磁装置。
1. A magnetizing device comprising a magnetized yoke 1 into which a ring-shaped magnetized member 2 is inserted, wherein the magnetized yoke 1 is in contact with an inner peripheral surface 7 of the magnetized member 2. A magnetizing device characterized in that the size of the gap (6) formed therebetween is larger at the center of the magnetic pole of the magnetized member (2) than at the boundary (10).
【請求項2】 上記着磁ヨーク1を、断面が略正方形と
なる柱体とした請求項1記載の着磁装置。
2. The magnetizing device according to claim 1, wherein the magnetizing yoke 1 is a column having a substantially square cross section.
【請求項3】 上記着磁ヨーク1を、断面が星形となる
柱体とした請求項1記載の着磁装置。
3. The magnetizing device according to claim 1, wherein the magnetizing yoke 1 is a column having a star-shaped cross section.
【請求項4】 外周面に周方向に沿って所定ピッチで切
欠部5…を形成した円柱状着磁ヨーク1に着磁前のリン
グ状のネオジム−鉄−ホウ素系マグネットを外嵌して該
マグネットを着磁することを特徴とする着磁方法。
4. A ring-shaped neodymium-iron-boron-based magnet before magnetizing is externally fitted to a cylindrical magnetized yoke 1 having notches 5 formed at a predetermined pitch along the circumferential direction on the outer peripheral surface. A magnetizing method characterized by magnetizing a magnet.
JP34405397A 1997-11-27 1997-11-27 Magnetizing apparatus and magnetizing method Expired - Fee Related JP3599547B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34405397A JP3599547B2 (en) 1997-11-27 1997-11-27 Magnetizing apparatus and magnetizing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34405397A JP3599547B2 (en) 1997-11-27 1997-11-27 Magnetizing apparatus and magnetizing method

Publications (2)

Publication Number Publication Date
JPH11164528A true JPH11164528A (en) 1999-06-18
JP3599547B2 JP3599547B2 (en) 2004-12-08

Family

ID=18366297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34405397A Expired - Fee Related JP3599547B2 (en) 1997-11-27 1997-11-27 Magnetizing apparatus and magnetizing method

Country Status (1)

Country Link
JP (1) JP3599547B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107017711A (en) * 2017-03-21 2017-08-04 横店集团东磁股份有限公司 A kind of method for solving electric car cooling water pump rotor stall

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009142064A (en) 2007-12-06 2009-06-25 Nippon Densan Corp Brushless motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107017711A (en) * 2017-03-21 2017-08-04 横店集团东磁股份有限公司 A kind of method for solving electric car cooling water pump rotor stall

Also Published As

Publication number Publication date
JP3599547B2 (en) 2004-12-08

Similar Documents

Publication Publication Date Title
US5852335A (en) Stator structure for rotary electric machine
US5204569A (en) Anisotropic magnet for rotary electric machine
US20050001502A1 (en) DC brushless motor
JP3599547B2 (en) Magnetizing apparatus and magnetizing method
JP3262986B2 (en) Motor structure
JPH0436225Y2 (en)
JPH11308825A (en) Magnetization device of rotor magnet
JP2003017323A (en) Magnetization yoke
JP2008035636A (en) Magnetizing yoke
JP2831123B2 (en) Permanent magnet type DC machine
JPS61199455A (en) Stepping motor
JPH05176509A (en) Rotary electric machine
JPH0410655Y2 (en)
JPH0429529Y2 (en)
JP2875357B2 (en) Magnetizing device
KR100252831B1 (en) Method for magnetization of permanent magnet
JPH0453186Y2 (en)
JPH06225511A (en) Pulse motor
JPS61240844A (en) Magnetizing method for magnet for dc motor
JPS5961459A (en) Setting method of electric neutral shaft of brush for flat motor
KR970005567Y1 (en) Magnetization structure of permanent magnet
JPH046169Y2 (en)
JPH0475440A (en) Miniature motor
JPS633546B2 (en)
JPH0250704B2 (en)

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20040615

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040831

A61 First payment of annual fees (during grant procedure)

Effective date: 20040914

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees