JPH11163452A - Solid-state laser - Google Patents

Solid-state laser

Info

Publication number
JPH11163452A
JPH11163452A JP9326227A JP32622797A JPH11163452A JP H11163452 A JPH11163452 A JP H11163452A JP 9326227 A JP9326227 A JP 9326227A JP 32622797 A JP32622797 A JP 32622797A JP H11163452 A JPH11163452 A JP H11163452A
Authority
JP
Japan
Prior art keywords
slab
crystal
slab crystal
temperature distribution
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9326227A
Other languages
Japanese (ja)
Other versions
JP3269438B2 (en
Inventor
Takuya Togawa
拓哉 戸川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP32622797A priority Critical patent/JP3269438B2/en
Publication of JPH11163452A publication Critical patent/JPH11163452A/en
Application granted granted Critical
Publication of JP3269438B2 publication Critical patent/JP3269438B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve beam quality, the intensity distribution of output light, and stability and to prevent a slab seal material from deteriorating, by providing a temperature distribution adjustment heating means for adjusting temperature distribution of a slab crystal near an edge part. SOLUTION: As a temperature distribution adjustment heating means, soft heat-conductive materials 6 and 7 are so provided as to be adhesive to a crystal side surface, at an edge part of a slab crystal 1 outside a sealing material 5. Furthermore, flat plate-like heaters 8 and 9 for heating the slab crystal 1 through them are pasted to the heat-conductive materials 6 and 7. The heaters 8 and 9 change the temperature distribution at an edge part of the slab crystal 1, changing optical distortion at an edge part which is a cause for deterioration quality in conventional technologies, for even effect on beam. Thus, beam quality, beam intensity distribution, and output stability of a slab laser oscillator can be improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、くさび型のスラブ
結晶のエッジ部分からビームを入出射する入出射部分を
有するスラブレーザ集光器等の固体レーザ装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid-state laser device such as a slab laser concentrator having an input / output portion for inputting / outputting a beam from an edge portion of a wedge-shaped slab crystal.

【0002】[0002]

【従来の技術】スラブ型固体レーザ発振器は、数100
WからkW級の高い平均出力でも、低拡がり角の高いビ
ーム品質を維持し続けるため、高いビーム輝度を有する
レーザ光を発生させることができるという特徴をもつ。
これはスラブ厚み方向に対してスラブ結晶の側面で全反
射を繰り返しながら、結晶中を伝搬するジグザグ型の光
路を用いることにより、温度分布から生じる屈折率差、
複屈折などの光学歪みがビームに与える影響を打ち消し
て、高いビーム品質が得られるというスラブ型固体レー
ザ発振器の原理によるものである。
2. Description of the Related Art A slab type solid-state laser oscillator has several hundreds.
Even with a high average power of W to kW class, a high beam quality with a low divergence angle is maintained, so that a laser beam having high beam luminance can be generated.
This is achieved by using a zigzag optical path that propagates through the crystal while repeating total reflection on the side surface of the slab crystal in the slab thickness direction, thereby producing a refractive index difference resulting from the temperature distribution,
This is based on the principle of a slab-type solid-state laser oscillator that cancels out the influence of optical distortion such as birefringence on a beam and obtains high beam quality.

【0003】ただし、理想的に無限長のスラブ結晶の場
合は上記の原理の通りであるが、実際には、ジグザグ型
の光路を形成するため、スラブの入出射面において屈折
させる必要があり、一般的にスラブ結晶のエッジ部分は
先端が鋭角となるくさび型の形状である。
However, in the case of an ideally infinite slab crystal, the above principle is followed. In practice, however, it is necessary to refract light at the entrance / exit surface of the slab in order to form a zigzag optical path. Generally, the edge portion of a slab crystal has a wedge-shaped shape with a sharp tip.

【0004】図3は、従来技術の一例として、スラブレ
ーザ集光器の入出射部分の断面と、スラブ結晶内の等温
線を示す断面図である。このスラブレーザ集光器におい
て、スラブ結晶1は平板形状で断面は長方形であり、そ
の長辺を含む側面から均一に励起及び冷却できるよう
に、励起用の光源であるランプ2が配置され、さらにス
ラブ結晶1に平行するように配置されたガラス板3の間
に高速で冷却水4を流している。さらに短辺を含む側面
は、スラブ結晶1に断熱材が密着されており、この面か
らの熱の逃げは遮断されている。このような構造におい
て、結晶内の温度分布は、上記断面の長辺方向(スラブ
幅方向)には均一であり、短辺方向(スラブ厚み方向)
にのみ中心部から両側面に向かい低下する勾配として生
じる。このスラブ厚み方向の温度分布により発生する光
学歪みは、上記の長辺を含む両側面にて全反射を繰り返
すジグザグ光路によりビームへの影響が補償される。
FIG. 3 is a cross-sectional view showing, as an example of the prior art, a cross section of an input / output portion of a slab laser concentrator and an isotherm in a slab crystal. In this slab laser concentrator, a slab crystal 1 has a flat plate shape and a rectangular cross section, and a lamp 2 as a light source for excitation is arranged so that excitation and cooling can be performed uniformly from a side surface including a long side thereof. Cooling water 4 flows at high speed between glass plates 3 arranged parallel to the slab crystal 1. Further, on the side surface including the short side, a heat insulating material is adhered to the slab crystal 1, and escape of heat from this surface is blocked. In such a structure, the temperature distribution in the crystal is uniform in the long side direction (slab width direction) of the cross section and in the short side direction (slab thickness direction).
Only occurs as a gradient that decreases from the center toward both sides. The optical distortion generated by the temperature distribution in the thickness direction of the slab is compensated for its influence on the beam by a zigzag optical path that repeats total reflection on both side surfaces including the long side.

【0005】また、スラブ結晶1のエッジ部分付近に
は、冷却水4の外部への流出を防ぐためのスラブシール
材5が設けられ、このシール材5より外側の部分のスラ
ブ結晶1は、ジグザグ光路を形成するため入射光を屈折
するように、例えば入射がブリュースターとなる鋭角の
形状にカットされている。また、この部分は通常は空気
に触れる部分である。
A slab sealing material 5 is provided near the edge of the slab crystal 1 to prevent the cooling water 4 from flowing out. The slab crystal 1 outside the sealing material 5 has a zigzag shape. In order to refract incident light to form an optical path, for example, the incident light is cut into an acute angle shape that becomes Brewster. Also, this portion is a portion that normally comes into contact with air.

【0006】[0006]

【発明が解決しようとする課題】図3に示すようなスラ
ブ結晶においては、励起および冷却が行われているシー
ル材5より内側の部分は、スラブ側面に平行した等温線
が形成されるので、スラブ結晶1を透過するビーム20
の各部は均一に高温部24と低温部を通過し、上記の原
理によりビームの各部が受ける光学歪みの影響は均一化
される。
In the slab crystal as shown in FIG. 3, the portion inside the sealing material 5 where excitation and cooling are performed is formed with an isotherm parallel to the side surface of the slab. Beam 20 transmitted through slab crystal 1
Of the beam uniformly pass through the high-temperature section 24 and the low-temperature section, and the above-described principle makes uniform the influence of optical distortion on each section of the beam.

【0007】しかしながら、図3に示すように、シール
材5の外側のエッジ部分は、スラブの内部からの熱伝導
とエッジのくさび型の形状、エッジ付近の雰囲気への熱
の逃げなどの関係によって、結晶内の等温線21が乱れ
る。このエッジ部分をビーム20が通過する際、ビーム
の両サイドで大きく異なる温度領域を通過することにな
る。したがって、ビーム20の各部分が受ける光学歪み
の影響が異なることから、波面が乱れ、出射するビーム
が広がったり、干渉などにより部分的に強い部分が発生
することがある。
However, as shown in FIG. 3, the outer edge portion of the sealing material 5 is formed by the relationship between the heat conduction from the inside of the slab, the wedge shape of the edge, and the escape of heat to the atmosphere near the edge. , The isotherm 21 in the crystal is disturbed. When the beam 20 passes through the edge portion, the beam 20 passes through greatly different temperature regions on both sides of the beam. Therefore, since the influence of the optical distortion on each part of the beam 20 is different, the wavefront may be disturbed, the emitted beam may spread, or a partially strong part may be generated due to interference or the like.

【0008】また、例えば W.Koechner 著の「Solid-St
ate Laser Enginnering」(Springer-Verlag) の 7.3 Sl
ab and Disc Geometries に示されているように、エッ
ジ部分が鋭角であるために熱膨張によって結晶の変形が
生じる。すなわち、入出射面での反射ロスを押さえる目
的のブリュースター角にカットしたスラブ結晶1では、
先端が鋭角となるためスラブ内部の熱膨張によりエッジ
部分が変形して曲げられる。図3においては、元のスラ
ブ結晶1の形状22と励起状態のスラブ結晶1の形状2
3を定性的に示す。このスラブ結晶の変形の結果、出射
するレーザ光の方向がずれることになり、共振器内では
往復するレーザ光のスラブ結晶端面でのロスとなった
り、そのロスとなる迷光によるスラブシール材の劣化
や、また、励起入力の変化に対する最適な発振状態の変
化、つまり調整ずれという問題の要因となる。
Further, for example, “Solid-St” written by W. Koechner
ate Laser Enginnering '' (Springer-Verlag) 7.3 Sl
As shown in ab and Disc Geometries, the edges are sharp and the crystals expand due to thermal expansion. That is, in the slab crystal 1 cut to the Brewster angle for the purpose of suppressing the reflection loss at the entrance / exit surface,
Since the tip has an acute angle, the edge portion is deformed and bent by thermal expansion inside the slab. In FIG. 3, the shape 22 of the original slab crystal 1 and the shape 2 of the slab crystal 1 in the excited state are shown.
3 is qualitatively indicated. As a result of this deformation of the slab crystal, the direction of the emitted laser light is shifted, and the laser light reciprocating in the resonator becomes a loss at the end face of the slab crystal, and the loss of the slab seal material due to stray light resulting in the loss. Also, this causes a problem of a change in the optimum oscillation state with respect to a change in the excitation input, that is, an adjustment deviation.

【0009】以上のようなエッジ部分の光学歪みの不均
一性と、結晶の変形によるビームずれは、以下の各問題
点の要因となっていた。
The above-described nonuniformity of the optical distortion at the edge portion and the beam shift due to the deformation of the crystal have caused the following problems.

【0010】第一の問題点は、スラブ結晶のエッジ部分
に生じている不規則な屈折率勾配による熱レンズ効果の
補償の不十分さのために、スラブを出射するビーム拡が
り角が大きくなり、スラブレーザ発振器のビーム品質が
悪化することである。
The first problem is that the beam divergence exiting the slab becomes large due to insufficient compensation of the thermal lens effect due to the irregular refractive index gradient occurring at the edge of the slab crystal. The beam quality of the slab laser oscillator deteriorates.

【0011】第二の問題点は、エッジ部分を通過するレ
ーザ光の波面の乱れと全反射を繰り返すことにより生じ
る干渉のため、出力光の強度分布に局所的な集中が発生
することである。
The second problem is that the intensity distribution of the output light is locally concentrated due to interference caused by repeated wavefront disturbance and total reflection of the laser light passing through the edge portion.

【0012】第三の問題点は、スラブ結晶への励起入力
の変化に対するビームの変位によって生じる、調整ずれ
と出力の安定性の悪化である。
The third problem is the misalignment and the deterioration of output stability caused by the displacement of the beam with respect to the change of the excitation input to the slab crystal.

【0013】第四の問題点は、スラブ結晶から出射した
際に現れる迷光、散乱光が共振器ミラーで反射され再度
スラブ結晶の側に戻る場合に発生するスラブシール材の
劣化である。
A fourth problem is deterioration of the slab seal material which occurs when stray light and scattered light appearing when emitted from the slab crystal are reflected by the resonator mirror and return to the slab crystal again.

【0014】本発明は上述した従来技術の各問題点を解
決するためになされたものであり、ビーム品質、出力光
の強度分布や安定性、スラブシール材の劣化防止などに
おいて優れた固体レーザ装置を提供することを目的とす
る。
The present invention has been made to solve the above-mentioned problems of the prior art, and is a solid-state laser device which is excellent in beam quality, intensity distribution and stability of output light, deterioration prevention of a slab seal material, and the like. The purpose is to provide.

【0015】[0015]

【課題を解決するための手段】本発明は、スラブ結晶の
エッジ部分からビームを入射及び/又は出射するスラブ
レーザ集光器を有する固体レーザ装置において、該スラ
ブ結晶のエッジ部分近傍の温度分布を調整するための温
度分布調整用加熱手段を有することを特徴とする固体レ
ーザ装置である。
SUMMARY OF THE INVENTION The present invention is directed to a solid-state laser device having a slab laser concentrator for inputting and / or emitting a beam from an edge portion of a slab crystal. A solid-state laser device having a temperature distribution adjusting heating means for adjustment.

【0016】本発明においては、温度分布調整用加熱手
段を設け、スラブ結晶のエッジ部分近傍の温度分布を調
整することにより、ビームがエッジ部分を通過すること
により生じる光学歪みや、エッジ部分の変形を改善で
き、上記各問題点を解決できることになる。
In the present invention, a heating means for adjusting the temperature distribution is provided to adjust the temperature distribution in the vicinity of the edge of the slab crystal, so that the optical distortion or deformation of the edge caused by the beam passing through the edge is obtained. Can be improved, and the above problems can be solved.

【0017】[0017]

【発明の実施の形態】以下、本発明の好適な実施形態に
ついて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below.

【0018】図1は、本発明の固体レーザ装置の一例と
して、スラブレーザ集光器の入出射部分の断面と、スラ
ブ結晶内の等温線を示す断面図であり、図2は、図1の
スラブレーザ集光器の入出射側から見た、スラブ結晶の
エッジ部分を示す斜視図である。この図に示す装置にお
いては、ジグザグ・スラブ型レーザ結晶1を用いた集光
器の中でビームが入出射する部分について、ジグザグ光
路が形成される。なお図1では集光器の片側のエッジ付
近のみを表しているが、逆側のエッジ付近についても対
称に同じ形状及び等温線21が形成されている。
FIG. 1 is a sectional view showing a cross section of an input / output portion of a slab laser concentrator and an isotherm in a slab crystal as an example of a solid-state laser device of the present invention. FIG. FIG. 4 is a perspective view showing an edge portion of the slab crystal as viewed from the input / output side of the slab laser concentrator. In the apparatus shown in this figure, a zigzag optical path is formed in a part where a beam enters and exits in a condenser using the zigzag slab type laser crystal 1. Although FIG. 1 shows only the vicinity of one edge of the light collector, the same shape and isotherm 21 are formed symmetrically near the opposite edge.

【0019】この図1に示す装置は、図3に示した従来
例と同様に、スラブ結晶1は平板形状で断面は長方形で
あり、その長辺を含む側面から均一に励起及び冷却でき
るように、励起用の光源であるランプ2が配置され、さ
らにスラブ結晶1に平行するように配置されたガラス板
3の間に高速で冷却水4を流している。さらに短辺を含
む側面は、スラブ結晶1に断熱材が密着されており、こ
の面からの熱の逃げは遮断されている。
In the apparatus shown in FIG. 1, similarly to the conventional example shown in FIG. 3, the slab crystal 1 has a flat plate shape and a rectangular cross section, so that the slab crystal 1 can be uniformly excited and cooled from a side surface including its long side. A lamp 2 serving as a light source for excitation is arranged, and a cooling water 4 flows at a high speed between glass plates 3 arranged in parallel with the slab crystal 1. Further, on the side surface including the short side, a heat insulating material is adhered to the slab crystal 1, and escape of heat from this surface is blocked.

【0020】また、スラブ結晶1のエッジ部分付近に
は、冷却水4の外部への流出を防ぐためのスラブシール
材5が設けられ、このシール材5より外側の部分のスラ
ブ結晶1は、ジグザグ光路を形成するため入射光を屈折
するように、例えば入射がブリュースターとなる鋭角の
形状にカットされている。また、この部分は通常は空気
に触れる部分である。
A slab sealing material 5 is provided near the edge of the slab crystal 1 to prevent the cooling water 4 from flowing out. The slab crystal 1 outside the sealing material 5 has a zigzag shape. In order to refract incident light to form an optical path, for example, the incident light is cut into an acute angle shape that becomes Brewster. Also, this portion is a portion that normally comes into contact with air.

【0021】この図1に示す装置において、図3に示し
た従来例と異なる構成は、温度分布調整用加熱手段とし
て、シール材5より外側のスラブ結晶1のエッジ部分に
結晶側面に密着するように軟質の熱伝達材6,7を設
け、さらにこの熱伝達材6,7を介してスラブ結晶1を
加熱する目的の平板状のヒータ8,9を熱伝達材6,7
に貼り付けて設けていることである。このヒータ8,9
によりスラブ結晶1のエッジ部分に生じている温度分布
を変化させ、従来技術においてビーム品質悪化の原因で
あったエッジ部分の光学歪みを変化させ、ビームが受け
る影響を均一化でき、これによりスラブレーザ発振器の
ビーム品質、ビームの強度分布、出力安定性を改善でき
る。
In the apparatus shown in FIG. 1, a structure different from the conventional example shown in FIG. 3 is used as a heating means for adjusting a temperature distribution so that the edge of the slab crystal 1 outside the sealing material 5 is brought into close contact with the crystal side surface. Are provided with soft heat transfer materials 6 and 7, and flat heaters 8 and 9 for heating the slab crystal 1 through the heat transfer materials 6 and 7 are provided with heat transfer materials 6 and 7, respectively.
That is attached to the These heaters 8, 9
Changes the temperature distribution occurring at the edge portion of the slab crystal 1, changes the optical distortion at the edge portion, which caused beam quality deterioration in the prior art, and makes the effect of the beam uniform. The beam quality, beam intensity distribution and output stability of the oscillator can be improved.

【0022】エッジ部分の温度分布を最適化するために
は、共振器を取り付けてレーザ発振状態で調整するので
はなく、例えばHe−Neレーザ光のような可視レーザ
光をプローブ光として、高励起状態にあるスラブ結晶1
に入射し、出射光のパターンを観察しながらスラブ結晶
の両側に配置したヒータ8,9の加熱量を独立に調整し
て良好なパターンが得られるようにすることが好まし
い。従来、このようなプローブ光を透過したとき励起エ
ネルギーを増加するに従って、出射光のパターンはスラ
ブ厚み方向の拡がり角が大きくなり、干渉縞が現れてい
たが、スラブエッジ部分の温度分布を改善することによ
ってこの現象を緩和することができる。
In order to optimize the temperature distribution in the edge portion, instead of mounting a resonator and adjusting the laser oscillation state, a high excitation light is used by using a visible laser beam such as a He-Ne laser beam as a probe beam. Slab crystal 1 in the state
It is preferable that the heating amounts of the heaters 8 and 9 arranged on both sides of the slab crystal are independently adjusted while observing the pattern of the emitted light so that a good pattern can be obtained. Conventionally, as the excitation energy is increased when such probe light is transmitted, the pattern of the emitted light has a larger divergence angle in the slab thickness direction and interference fringes have appeared, but the temperature distribution at the slab edge is improved. This can alleviate this phenomenon.

【0023】図1では、スラブ結晶1のエッジ部の両側
面からの加熱により、スラブ内部の高温部24との温度
差が軽減されて等温線21が変化する状態を定性的に示
している。このような状態では、エッジ部分を通過する
ビームの両サイドは、従来より温度差の小さな部分を通
過することとなる。また、エッジ部分の変形に対しても
エッジ部全体が加熱されるために熱膨張による先端の曲
げは少ない。図1にて元のスラブ結晶1の形状22と励
起状態のスラブ結晶1の形状23を定性的に示す。この
結果は、スラブ結晶の両端のヒータの加熱量を最適化す
ることによって得られ、前述のようなビームへの影響の
問題点が解消される。
FIG. 1 qualitatively shows a state in which the heating from both sides of the edge of the slab crystal 1 reduces the temperature difference between the slab crystal 1 and the high-temperature portion 24 and changes the isotherm 21. In such a state, both sides of the beam passing through the edge portion pass through a portion having a smaller temperature difference than in the related art. In addition, since the entire edge portion is heated even when the edge portion is deformed, bending of the tip due to thermal expansion is small. FIG. 1 qualitatively shows the shape 22 of the original slab crystal 1 and the shape 23 of the slab crystal 1 in the excited state. This result is obtained by optimizing the heating amounts of the heaters at both ends of the slab crystal, and the problem of the influence on the beam as described above is solved.

【0024】また、このヒータ8,9の加熱温度の設定
は、スラブ結晶のエッジ部分の温度分布をサーモビュア
等の観測装置によって調製してもよい。
The heating temperature of the heaters 8 and 9 may be set by adjusting the temperature distribution at the edge of the slab crystal using an observation device such as a thermoviewer.

【0025】熱伝達材6,7としては、熱伝導度がよ
く、貼り付け時に結晶に与える歪みが少なく、レーザ光
による劣化のない軟質の部材、例えばインジウムなどの
金属が好ましい。
The heat transfer members 6 and 7 are preferably made of a soft material having good thermal conductivity, little distortion given to the crystal at the time of bonding and not deteriorated by laser light, for example, a metal such as indium.

【0026】ヒータ8,9としては、スラブ結晶の内部
温度が通常は100〜150℃なので、この温度範囲相
当の加熱が可能なセラミックヒータなどの面発熱体が好
ましい。
Since the internal temperature of the slab crystal is usually 100 to 150 ° C., the heaters 8 and 9 are preferably surface heating elements such as ceramic heaters capable of heating within this temperature range.

【0027】熱伝達材6,7及びヒータ8,9はスラブ
幅方向の結晶長以上の幅を有し、スラブ幅方向を均一に
加熱できるようになっている。ヒータ8,9からは電流
を流すための電線12が集光器外部に配線されており、
駆動用の電源に接続されている。ヒータ8,9はスラブ
の両側面に配置されており、各ヒータは独立に加熱量を
調整することができる。また、例えばスラブエッジ付近
の結晶を保持する部品などのレーザ散乱光の吸収による
発熱や、雰囲気の温度変化に対してもスラブエッジ付近
を所定の温度に安定させるために、測温体の信号を電源
の代わりに温度コントローラ側に入力して、ヒータに流
れる電流を調整することが望ましい。
The heat transfer materials 6, 7 and the heaters 8, 9 have a width equal to or larger than the crystal length in the slab width direction, so that the slab width direction can be uniformly heated. An electric wire 12 for flowing a current from the heaters 8 and 9 is wired outside the collector.
It is connected to the driving power supply. The heaters 8 and 9 are arranged on both side surfaces of the slab, and each heater can independently adjust the heating amount. In addition, in order to stabilize the vicinity of the slab edge at a predetermined temperature even when heat is generated by absorbing laser scattered light such as a part holding a crystal near the slab edge or a change in the temperature of the atmosphere, a signal of the temperature measuring element is used. It is desirable to adjust the current flowing through the heater by inputting it to the temperature controller instead of the power supply.

【0028】また、図1に示した例では、シール材5の
位置がスラブ入出射面より少し間隔を開けて内側にある
ため、スラブ結晶1の両側に長い熱伝達材7及びヒータ
9と短い熱伝達材6及びヒータ8の2式を配置したが、
スラブ入出射面の極く近傍にシール材を配置した場合
は、長い熱伝達材7及びヒータ9のみでも同様の効果が
得られる。
Further, in the example shown in FIG. 1, the position of the sealing material 5 is slightly inside the slab entrance / exit surface and is inside, so that the long heat transfer material 7 and the heater 9 are short on both sides of the slab crystal 1. Two types of heat transfer material 6 and heater 8 are arranged,
When a sealing material is arranged very close to the slab entrance / exit surface, the same effect can be obtained by using only the long heat transfer material 7 and the heater 9.

【0029】[0029]

【発明の効果】以上説明した本発明によれば、エッジ部
分の温度分布の乱れを調整する温度分布調整用加熱手段
を追加したことにより、通過するビームに与える光学歪
みを低減でき、また、熱膨張によるエッジ部分の変形を
抑制でき、これにより、以下の通り、ジグザグ光路を形
成しているスラブ厚み方向についての諸特性を改善でき
る。
According to the present invention described above, by adding a temperature distribution adjusting heating means for adjusting the turbulence of the temperature distribution at the edge portion, it is possible to reduce the optical distortion given to the passing beam and to reduce the heat distortion. The deformation of the edge portion due to the expansion can be suppressed, and as a result, various characteristics in the thickness direction of the slab forming the zigzag optical path can be improved as described below.

【0030】第一に、スラブ型固体レーザ発振器の特徴
であるレーザ媒質の熱的な光学歪みがビームに与える影
響が低く、十分に活用されていなかったスラブ結晶のエ
ッジ部分に対しても光学歪みを軽減することにより改善
し、低ビーム拡がり角でビーム品質の良いレーザ光を得
ることができる。
First, the influence of the thermal optical distortion of the laser medium, which is a characteristic of the slab type solid-state laser oscillator, on the beam is low, and the optical distortion is also exerted on the edge portion of the slab crystal which has not been fully utilized. Can be improved, and a laser beam with good beam quality at a low beam divergence angle can be obtained.

【0031】第二に、エッジ部分を通過するレーザ光の
波面の乱れと干渉により生じていた出力光の強度分布の
局所的な集中を軽減することができる。
Second, it is possible to reduce the local concentration of the intensity distribution of the output light caused by the disturbance and interference of the wavefront of the laser light passing through the edge portion.

【0032】第三に、スラブ結晶への励起入力の変化に
対して生じるビームの変位を抑えて調整ずれを低減し、
発振器の出力安定性を改善できる。
Third, the displacement of the beam caused by the change of the excitation input to the slab crystal is suppressed to reduce the adjustment deviation,
The output stability of the oscillator can be improved.

【0033】第四に、スラブ結晶から出射した際に現れ
る迷光や散乱光が、共振器ミラーにより戻され、スラブ
シール材に照射して起こる劣化を防ぎ、冷却水の漏れに
対する信頼度を向上できる。
Fourth, stray light and scattered light appearing when emitted from the slab crystal are returned by the resonator mirror, and are prevented from being deteriorated by irradiating the slab seal material, thereby improving the reliability of leakage of cooling water. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の固体レーザ装置の一例として、スラブ
レーザ集光器の入出射部分の断面と、スラブ結晶内の等
温線を示す断面図である。
FIG. 1 is a cross-sectional view showing a cross section of an input / output portion of a slab laser concentrator and an isotherm in a slab crystal as an example of a solid-state laser device of the present invention.

【図2】図1のスラブレーザ集光器の入出射側から見
た、スラブ結晶のエッジ部分を示す斜視図である。
FIG. 2 is a perspective view showing an edge portion of a slab crystal as viewed from an input / output side of the slab laser concentrator of FIG. 1;

【図3】従来技術の一例として、スラブレーザ集光器の
入出射部分の断面と、スラブ結晶内の等温線を示す断面
図である。
FIG. 3 is a cross-sectional view showing, as an example of the prior art, a cross section of an input / output portion of a slab laser concentrator and an isotherm in a slab crystal.

【符号の説明】[Explanation of symbols]

1 スラブ結晶 2 励起ランプ 3 ガラス板 4 冷却水 5 スラブシール材 6,7 熱伝達材 8,9 ヒータ 12 ヒータ用電線 20 レーザビーム 21 スラブ結晶内の等温線 22 励起していないときのスラブ結晶の形状 23 励起しているときのスラブ結晶の形状 24 スラブ結晶内の高温部 DESCRIPTION OF SYMBOLS 1 Slab crystal 2 Excitation lamp 3 Glass plate 4 Cooling water 5 Slab seal material 6,7 Heat transfer material 8,9 Heater 12 Heater wire 20 Laser beam 21 Isothermal line in slab crystal 22 of slab crystal when not excited Shape 23 Shape of slab crystal when excited 24 High temperature part in slab crystal

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 スラブ結晶のエッジ部分からビームを入
射及び/又は出射するスラブレーザ集光器を有する固体
レーザ装置において、 該スラブ結晶のエッジ部分近傍の温度分布を調整するた
めの温度分布調整用加熱手段を有することを特徴とする
固体レーザ装置。
1. A solid-state laser device having a slab laser concentrator for entering and / or emitting a beam from an edge portion of a slab crystal, for adjusting a temperature distribution for adjusting a temperature distribution near an edge portion of the slab crystal. A solid-state laser device having heating means.
【請求項2】 スラブ結晶のエッジ部分付近には、冷却
水の外部への流出を防ぐためのスラブシール材が設けら
れ、温度分布調整用加熱手段は、該シール材より外側の
スラブ結晶のエッジ部分の温度分布を調整するための手
段である請求項1記載の固体レーザ装置。
2. A slab seal member for preventing cooling water from flowing out of the slab crystal is provided near an edge of the slab crystal, and a heating means for adjusting a temperature distribution includes an edge of the slab crystal outside the seal member. 2. The solid-state laser device according to claim 1, wherein the device is a means for adjusting a temperature distribution of the portion.
【請求項3】 温度分布調整用加熱手段は、シール材よ
り外側のスラブ結晶面に密着する軟質の熱伝達材と、該
熱伝達材を介して該スラブ結晶を加熱するヒータからな
る請求項2記載の固体レーザ装置。
3. The heating means for adjusting a temperature distribution comprises a soft heat transfer material which is in close contact with a slab crystal surface outside the seal material, and a heater which heats the slab crystal via the heat transfer material. The solid-state laser device as described in the above.
【請求項4】 熱伝達材は、インジウムからなる請求項
3記載の固体レーザ装置。
4. The solid-state laser device according to claim 3, wherein the heat transfer material is made of indium.
【請求項5】 ヒータは、セラミックヒータである請求
項3又は4記載の固体レーザ装置。
5. The solid-state laser device according to claim 3, wherein the heater is a ceramic heater.
【請求項6】 スラブ結晶のエッジ部分が、くさび型の
形状を有する請求項1〜5の何れか一項記載の固体レー
ザ装置。
6. The solid-state laser device according to claim 1, wherein an edge portion of the slab crystal has a wedge shape.
JP32622797A 1997-11-27 1997-11-27 Solid state laser device Expired - Fee Related JP3269438B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32622797A JP3269438B2 (en) 1997-11-27 1997-11-27 Solid state laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32622797A JP3269438B2 (en) 1997-11-27 1997-11-27 Solid state laser device

Publications (2)

Publication Number Publication Date
JPH11163452A true JPH11163452A (en) 1999-06-18
JP3269438B2 JP3269438B2 (en) 2002-03-25

Family

ID=18185419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32622797A Expired - Fee Related JP3269438B2 (en) 1997-11-27 1997-11-27 Solid state laser device

Country Status (1)

Country Link
JP (1) JP3269438B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11289123A (en) * 1998-02-17 1999-10-19 Trw Inc Method and apparatus for minimizing thermo-optical path difference for stimulated emission medium in solid-phase laser
JP2006196882A (en) * 2004-12-14 2006-07-27 Hamamatsu Photonics Kk Optical amplifier, laser oscillator, and mopa laser equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0437180A (en) * 1990-06-01 1992-02-07 Fuji Electric Co Ltd Laser oscillator device
JPH05226732A (en) * 1992-02-12 1993-09-03 Hitachi Ltd Slab laser device and method of suppressing its heat lens effect and laser beam machining device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0437180A (en) * 1990-06-01 1992-02-07 Fuji Electric Co Ltd Laser oscillator device
JPH05226732A (en) * 1992-02-12 1993-09-03 Hitachi Ltd Slab laser device and method of suppressing its heat lens effect and laser beam machining device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11289123A (en) * 1998-02-17 1999-10-19 Trw Inc Method and apparatus for minimizing thermo-optical path difference for stimulated emission medium in solid-phase laser
JP2006196882A (en) * 2004-12-14 2006-07-27 Hamamatsu Photonics Kk Optical amplifier, laser oscillator, and mopa laser equipment

Also Published As

Publication number Publication date
JP3269438B2 (en) 2002-03-25

Similar Documents

Publication Publication Date Title
US4852109A (en) Temperature control of a solid state face pumped laser slab by an active siderail
US4253739A (en) Thermally compensated mirror
US6167069A (en) Thermal lens elimination by gradient-reduced zone coupling of optical beams
JP3269438B2 (en) Solid state laser device
JP2018129391A (en) Laser medium unit and laser device
JP2681278B2 (en) Solid-state laser device
JP2005515492A (en) Cooling mirror for laser light
US6034977A (en) Optical path difference control system and method for solid state lasers
JP2588931B2 (en) Solid state laser
JP3465477B2 (en) Slab type solid-state laser device
JPS60242434A (en) Optical deflector
JPH06310782A (en) Slab type solid state laser device
JP3500122B2 (en) Solid state laser oscillator / device and solid state laser oscillation method
WO2005031928A1 (en) Solid state laser
JP5933246B2 (en) Mode-controlled planar waveguide laser device
JP5014680B2 (en) LASER MEDIUM AND LASER DEVICE
JP4325036B2 (en) aperture
JPS60247627A (en) Optical deflector
WO2016117457A1 (en) Planar waveguide laser device
JP2001326405A (en) Solid-state slab laser device
JPH11340551A (en) Slab solid-state laser device pumped by semiconductor laser
JPH0412577A (en) Slab type solid laser oscillating apparatus
JP3153856B2 (en) Semiconductor laser pumped slab solid-state laser device.
JPH03188688A (en) Solid laser
JP2014219498A (en) Optical deflector and laser source including the same

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050810

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080118

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080118

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080118

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090118

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090118

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090118

Year of fee payment: 7

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090118

Year of fee payment: 7

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090118

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees