JPH11162771A - Laminated ceramic capacitor - Google Patents

Laminated ceramic capacitor

Info

Publication number
JPH11162771A
JPH11162771A JP9323347A JP32334797A JPH11162771A JP H11162771 A JPH11162771 A JP H11162771A JP 9323347 A JP9323347 A JP 9323347A JP 32334797 A JP32334797 A JP 32334797A JP H11162771 A JPH11162771 A JP H11162771A
Authority
JP
Japan
Prior art keywords
layer
ceramic capacitor
capacitor body
external electrodes
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9323347A
Other languages
Japanese (ja)
Inventor
Tsutomu Iemura
努 家村
Yoshinori Kawasaki
芳範 河崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP9323347A priority Critical patent/JPH11162771A/en
Publication of JPH11162771A publication Critical patent/JPH11162771A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/228Terminals
    • H01G4/232Terminals electrically connecting two or more layers of a stacked or rolled capacitor
    • H01G4/2325Terminals electrically connecting two or more layers of a stacked or rolled capacitor characterised by the material of the terminals

Abstract

PROBLEM TO BE SOLVED: To prevent a capacitor body from being cracked and external electrodes from peeling off. SOLUTION: A laminated ceramic capacitor has external electrodes 5a and 6a formed at the both ends of a capacitor body 2 wherein internal electrodes 3 and 4 are arranged via ceramic layers, and the external electrodes 5a and 6a are configured by forming electrode layers 11 formed by sequentially laminating a conductive paste of Ag or Ag alloy by dipping and baking it, conductive epoxy thermosetting resin layers 12, nickel plating layers 13, and tin group layers 14.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は外部電極を改善した
積層セラミックコンデンサに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multilayer ceramic capacitor having improved external electrodes.

【0002】[0002]

【従来の技術】従来の積層セラミックコンデンサを図3
により説明する。同図は積層セラミックコンデンサ1の
断面図であって、チタン酸バリウムなどの誘電体からな
るセラミック焼結体のコンデンサ本体2で構成され、こ
のコンデンサ本体2の内部にはセラミック層(誘電体
層)を介して、AgまたはAg−Pd合金などの貴金属
材料あるいはニッケル(Ni)などの卑金属材料からな
る内部電極3、4が配設されている。そして、内部電極
3は外部電極5に、内部電極4は外部電極6に電気的に
導通接続されている。
2. Description of the Related Art FIG.
This will be described below. FIG. 1 is a cross-sectional view of a multilayer ceramic capacitor 1, which is composed of a capacitor body 2 of a ceramic sintered body made of a dielectric material such as barium titanate. Inside the capacitor body 2, a ceramic layer (dielectric layer) is provided. , Internal electrodes 3 and 4 made of a noble metal material such as Ag or an Ag-Pd alloy or a base metal material such as nickel (Ni) are provided. The internal electrode 3 is electrically connected to the external electrode 5, and the internal electrode 4 is electrically connected to the external electrode 6.

【0003】外部電極5、6はそれぞれ三層構造の電極
層から構成されている。すなわち、コンデンサ本体2の
表面にAgまたはAg−Pd合金からなる導電ぺースト
を塗布し、そして、焼き付けることで形成された電極層
7があり、この電極層7の表面に半田食われが生じ難い
材料からなるニッケルメッキ層8が形成され、さらにニ
ッケルメッキ層8の上にスズ(Sn)または半田(Sn
−Pb合金)からなる電極層9が形成されている。
The external electrodes 5 and 6 are each composed of an electrode layer having a three-layer structure. That is, there is an electrode layer 7 formed by applying and baking a conductive paste made of Ag or an Ag-Pd alloy on the surface of the capacitor body 2, and the surface of the electrode layer 7 is unlikely to suffer from solder erosion. A nickel plating layer 8 made of a material is formed, and tin (Sn) or solder (Sn) is formed on the nickel plating layer 8.
-Pb alloy).

【0004】また、他の技術が特公昭58−40161
号公報および特開平4−257211号公報に提案され
ている。
Another technique is disclosed in Japanese Patent Publication No. 58-40161.
And Japanese Patent Application Laid-Open No. 4-257111.

【0005】前者の技術によれば、絶縁体基板の端部や
回路素子の両側に導電ペーストよりなした導電層を設
け、その上にAg一レジン系の導電性樹脂層を介して導
電層を設けた構成であり、その導電性樹脂層で外側の導
電層に対する密着強度を高め、部品の交換可能回数を向
上させている。
According to the former technique, a conductive layer made of a conductive paste is provided on an end portion of an insulating substrate or on both sides of a circuit element, and a conductive layer is formed on the conductive layer via an Ag-resin-based conductive resin layer. In this configuration, the conductive resin layer enhances the adhesive strength to the outer conductive layer, thereby increasing the number of times parts can be replaced.

【0006】後者の特開平4−257211号公報にお
いては、チップ型電子部品本体の外部に内部電極と導通
する引出し電極を設け、この引き出し電極上にエポキシ
/フエノール系の熱硬化性樹脂からなる緩衝材層を覆
い、さらにメッキ層を設けた横造であって、これによっ
て外部からの機械的および熱的なストレスを吸収してい
る。
In the latter Japanese Patent Application Laid-Open No. Hei 4-257221, a lead-out electrode is provided outside the chip-type electronic component body and is electrically connected to the internal electrode, and a buffer made of an epoxy / phenol-based thermosetting resin is provided on the lead-out electrode. This is a horizontal structure in which the material layer is covered and a plating layer is further provided, thereby absorbing external mechanical and thermal stress.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、図3の
積層セラミックコンデンサ1によれば、上記電極層7を
焼き付けによって形成させるので、外部電極5、6とコ
ンデンサ本体2との接合部、とくに外部電極5、6の周
辺部分に金属粉末の焼結収縮、誘電体層へのガラス成分
の拡散によってストレスが生じ、そのため、この積層セ
ラミックコンデンサ1を回路基板に実装したものに対
し、温度サイクル試験や熱衝撃試験のような急激な熱変
化を受けた場合、あるいはそのような厳しい環境のもと
では、誘電体層、外部電極5、6、半田、回路基板、各
々の熱膨張係数差により応力吸収が不十分となり、外部
電極5、6の周辺部の残留ストレス部からコンデンサ本
体2にクラックが発生し、その結果、積層セラミックコ
ンデンサ1が機能しなくなっていた。
However, according to the monolithic ceramic capacitor 1 of FIG. 3, since the electrode layer 7 is formed by baking, the joints between the external electrodes 5, 6 and the capacitor body 2, especially the external electrodes Stresses are generated in the peripheral portions of 5 and 6 due to the sintering shrinkage of the metal powder and the diffusion of the glass component into the dielectric layer. Therefore, when the multilayer ceramic capacitor 1 is mounted on a circuit board, a temperature cycle test or a thermal cycle test is performed. Under a sudden thermal change such as an impact test, or under such a severe environment, the stress absorption due to the difference in thermal expansion coefficient between the dielectric layer, the external electrodes 5, 6, the solder, and the circuit board. Insufficiently, cracks occur in the capacitor body 2 from residual stress portions around the external electrodes 5 and 6, and as a result, the multilayer ceramic capacitor 1 functions. Kuna' which was.

【0008】他方、特公昭58−40161号公報と特
開平4−257211号公報のように導電性樹脂層を形
成した各技術においては、外部電極に対し、本体から外
側に向けられた応力が加わると、導電性樹脂層において
部分的な剥離が生じやすく、そのために実装基板との固
着力が低下し、チップ自体が脱落していた。
On the other hand, in each of the techniques in which a conductive resin layer is formed as disclosed in Japanese Patent Publication No. 58-40161 and Japanese Patent Application Laid-Open No. 4-257111, a stress directed outward from a main body is applied to an external electrode. In this case, the conductive resin layer is likely to be partially peeled off, so that the fixing force with the mounting substrate is reduced, and the chip itself has fallen off.

【0009】したがって本発明は上記事情に鑑みて完成
されたものであり、その目的は冷熱サイクルなどの過激
な温度環境にあって応力が生じても、コンデンサ本体に
クラックが発生せず、しかも、外部電極の剥離が生じな
い高品質かつ高信頼性の積層セラミックコンデンサを提
供することにある。
Accordingly, the present invention has been completed in view of the above circumstances, and its purpose is to prevent cracks from occurring in the capacitor body even when stress is generated in an extreme temperature environment such as a cooling / heating cycle. An object of the present invention is to provide a high-quality and highly reliable multilayer ceramic capacitor in which external electrodes do not peel off.

【0010】[0010]

【課題を解決するための手段】本発明の積層セラミツク
コンデンサは、第1内部電極群と第2内部電極群との間
にそれぞれ誘電体層を介して交互に積層してコンデンサ
本体を形成するとともに、第1内部電極群の端をコンデ
ンサ本体の一方端面に、第2内部電極群の端をその他方
端面に露出させ、両者の端面にそれぞれ外部電極を形成
した構成であって、この外部電極は焼き付け電極層と、
金属粉末を含有する導電性のエポキシ系熱硬化性樹脂層
と、ニッケルメッキ層と、スズまたは半田のメッキ層と
を順次積層してなることを特徴とする。
A multilayer ceramic capacitor according to the present invention forms a capacitor body by alternately laminating a first internal electrode group and a second internal electrode group via a dielectric layer. The end of the first internal electrode group is exposed on one end surface of the capacitor body, the end of the second internal electrode group is exposed on the other end surface, and external electrodes are formed on both end surfaces, respectively. A baked electrode layer;
It is characterized in that a conductive epoxy thermosetting resin layer containing metal powder, a nickel plating layer, and a tin or solder plating layer are sequentially laminated.

【0011】[0011]

【発明の実施の形態】以下、本発明の積層セラミツクコ
ンデンサを図1と図2により詳述する。図1は本発明の
積層セラミックコンデンサ10の断面構造を示し、図2
は本発明の他の積層セラミックコンデンサ10aの破断
面構造を示す。なお、これらの図において従来の積層セ
ラミックコンデンサ1と同一箇所には同一符号を付す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a multilayer ceramic capacitor according to the present invention will be described in detail with reference to FIGS. FIG. 1 shows a sectional structure of a multilayer ceramic capacitor 10 of the present invention, and FIG.
Shows a cross-sectional structure of another multilayer ceramic capacitor 10a of the present invention. In these figures, the same portions as those of the conventional multilayer ceramic capacitor 1 are denoted by the same reference numerals.

【0012】図1の積層セラミックコンデンサ10にお
いては、チタン酸バリウムなどの誘電体からなるコンデ
ンサ本体2の内部にセラミック層を介在して、前記第1
内部電極群と第2内部電極群として、それを構成するP
dまたはAg−Pd合金などの貴金属材料あるいはニッ
ケル(Ni)などの卑金属材料からなる内部電極3、4
を配設している。
In the multilayer ceramic capacitor 10 shown in FIG. 1, the first ceramic body is interposed in a capacitor body 2 made of a dielectric such as barium titanate.
As the internal electrode group and the second internal electrode group, the P
internal electrodes 3 and 4 made of a noble metal material such as d or Ag-Pd alloy or a base metal material such as nickel (Ni).
Is arranged.

【0013】上記構成のコンデンサ本体2を作製するに
は、セラミックグリーンシートの所定の領域に内部電極
となる金属粉末のペーストを多数の長方形が規則的に並
ぶように印刷し、この印刷シートを所定の枚数を積層
し、そして、これを積層方向にある寸法に切断してチッ
プ材を形成し、ついでこのチップ材を所定の雰囲気、温
度で焼成して作製する。
To manufacture the capacitor body 2 having the above-described structure, a paste of metal powder to be used as an internal electrode is printed on a predetermined area of the ceramic green sheet so that a large number of rectangles are regularly arranged. Are laminated and cut into dimensions in the laminating direction to form a chip material, and then the chip material is fired at a predetermined atmosphere and temperature to produce a chip material.

【0014】つぎに上記構成のコンデンサ本体2の両端
面に外部電極5a、6aを形成する。コンデンサ本体2
の表面にAgまたはAg合金からなる導電ぺーストをデ
ィッピングして塗布する。そして、塗布した導電ペース
トを所定の雰囲気および温度で焼き付け、前記焼き付け
電極層としての電極層11を形成する。そして、電極層
11の表面に導電性のエポキシ系熱硬化性樹脂層12を
形成し、その上に半田食われが生じ難い材料からなるニ
ッケルメッキ層13を電解メッキなどで形成し、さらに
スズ(Sn)または半田(Sn−Pb合金)などの材料
からなるスズまたは半田のメッキ層14(以下、スズ系
層と略記する)を形成する。
Next, external electrodes 5a and 6a are formed on both end surfaces of the capacitor body 2 having the above configuration. Capacitor body 2
A conductive paste made of Ag or an Ag alloy is dipped and applied to the surface of the substrate. Then, the applied conductive paste is baked in a predetermined atmosphere and temperature to form the electrode layer 11 as the baked electrode layer. Then, a conductive epoxy-based thermosetting resin layer 12 is formed on the surface of the electrode layer 11, a nickel plating layer 13 made of a material that is unlikely to be eroded by solder is formed thereon by electrolytic plating or the like, and furthermore, tin ( A tin or solder plating layer 14 (hereinafter abbreviated as a tin-based layer) made of a material such as Sn) or solder (Sn—Pb alloy) is formed.

【0015】上記エポキシ系熱硬化性樹脂層12は、エ
ポキシ系熱硬化性樹脂の導電性樹脂ペーストを塗布、乾
燥、硬化の各工程を順次経て形成する。
The epoxy-based thermosetting resin layer 12 is formed by sequentially applying, drying, and curing a conductive resin paste of an epoxy-based thermosetting resin.

【0016】この導電性樹脂ペーストは金属粉末とエポ
キシ系樹脂バインダーと硬化剤との混合組成物、または
これに有機媒体を入れた混合組成物であって、金属粉末
と熱硬化性樹脂組成分を100:5〜100:45の重
量比で配合させたものである。
The conductive resin paste is a mixed composition of a metal powder, an epoxy resin binder, and a curing agent, or a mixed composition in which an organic medium is added, wherein the metal powder and the thermosetting resin component are mixed. It is blended in a weight ratio of 100: 5 to 100: 45.

【0017】上記金属粉末は金、銀、白金、パラジウ
ム、ロジウム、ニッケル、銅を単独でもしくは組み合わ
せて用いる。
As the metal powder, gold, silver, platinum, palladium, rhodium, nickel and copper are used alone or in combination.

【0018】エポキシ系樹脂バインダ−は分子中に2個
またはそれ以上のエポキシ基を有する化合物からなり、
硬化剤または触媒の作用で硬化する。そして、このエポ
キシ系樹脂はビスフェノールA型エポキシ系樹脂、ビス
フェノールF型エポキシ系樹脂、ビスフェノールAD型
エポキシ系樹脂の液状エポキシ樹脂より選択する。
The epoxy resin binder comprises a compound having two or more epoxy groups in a molecule,
It cures under the action of a curing agent or catalyst. The epoxy resin is selected from a liquid epoxy resin such as a bisphenol A epoxy resin, a bisphenol F epoxy resin, and a bisphenol AD epoxy resin.

【0019】硬化剤にはポリアミト硬化剤、脂肪族ポリ
アミン硬化剤、環状脂肪族ポリアミン硬化剤、芳香族ポ
リアミン硬化剤、ジシアンジアミド等を使用する。
As the curing agent, a polyamid curing agent, an aliphatic polyamine curing agent, a cycloaliphatic polyamine curing agent, an aromatic polyamine curing agent, dicyandiamide and the like are used.

【0020】上記有機媒体として、エタノ−ル、i,n
−プロパノール、ブタノールなどの脂肪族アルコール、
あるいは、これらアルコールのエステル、たとえばアセ
テート、プロピオネートなどがある。さらにメチルカル
ビト−ル、エチルカルビトール、ブチルカルビトール、
ブチルカルビトールアセテートなどのカルビトール系溶
媒、アセトン、メチルエチルケトン、2−ペンタノン、
3−ペンタノン、シクロヘキサノンなどのケトン系溶
媒、ベンゼン、トルエン、キシレン、エチルベンゼン、
テレピン、シクロヘキサン、メチルシクロヘキサン、メ
チルペンタンなどの炭化水素系溶媒が挙げられる。
As the organic medium, ethanol, i, n
-Aliphatic alcohols such as propanol, butanol,
Alternatively, there are esters of these alcohols such as acetate, propionate and the like. Further, methyl carbitol, ethyl carbitol, butyl carbitol,
Carbitol solvents such as butyl carbitol acetate, acetone, methyl ethyl ketone, 2-pentanone,
Ketone solvents such as 3-pentanone and cyclohexanone, benzene, toluene, xylene, ethylbenzene,
Examples include hydrocarbon solvents such as turpentine, cyclohexane, methylcyclohexane, and methylpentane.

【0021】かかる導電性樹脂ペーストは従来周知の手
段、たとえばスクリーン印刷、ディッピングなどによっ
て塗布し、付着させる。ついで80〜140℃の温度に
て仮乾燥させ、その後、ペースト中の溶媒成分を完全に
除去するために60〜120℃の温度雰囲気で15〜9
0分間脱溶剤をおこなう。しかる後に、150〜250
℃の温度にて30〜120分間加熱することで、硬化さ
せ、導電性のエポキシ系熱硬化性樹脂層を形成する。
The conductive resin paste is applied and adhered by a conventionally known means, for example, screen printing, dipping or the like. Next, the paste is temporarily dried at a temperature of 80 to 140 ° C., and thereafter, at a temperature of 60 to 120 ° C. for 15 to 9 to completely remove a solvent component in the paste.
Remove solvent for 0 minutes. After a while, 150-250
The resin is cured by heating at a temperature of 30 ° C. for 30 to 120 minutes to form a conductive epoxy-based thermosetting resin layer.

【0022】かくして本発明の積層セラミックコンデン
サ10によれば、上記のような導電性のエポキシ系熱硬
化性樹脂層12を設けると、この層12において、エポ
キシ系樹脂が硬化剤との反応により架橋した3次元網目
構造の硬化物となり、しかも、エポキシ系樹脂のなかで
も低い分子量のものを使用するので、架橋密度をさらに
向上させることができ、これにより、急激な熱変化を受
けても、エポキシ系熱硬化性樹脂層12が応力吸収し、
本体から外側に向けられた外力に対して応力吸収でき、
その結果、コンデンサ本体2にクラックが発生しなくな
り、外部電極5a、6aの剥離も生じなくなった。
Thus, according to the multilayer ceramic capacitor 10 of the present invention, when the conductive epoxy-based thermosetting resin layer 12 as described above is provided, the epoxy-based resin in the layer 12 is crosslinked by the reaction with the curing agent. The cured resin has a three-dimensional network structure and a low molecular weight epoxy resin is used, so that the crosslink density can be further improved. The system thermosetting resin layer 12 absorbs stress,
It can absorb stress against external force directed outward from the main body,
As a result, cracks did not occur in the capacitor body 2, and peeling of the external electrodes 5a and 6a did not occur.

【0023】図2の他の積層セラミックコンデンサ10
aによれば、コンデンサ本体2の端面に外部電極5a、
6aを被覆した場合、その一部をコンデンサ本体2の主
面上の端にまで延在させている。図中、両者外部電極5
a、6aの間を結ぶ方向をX方向としている。このX方
向に関しては、コンデンサ本体2の端面と平行で、かつ
コンデンサ本体2の厚み方向であって、X方向との直角
方向をY方向と定め、さらにコンデンサ本体2の端面と
平行で、かつ内部電極3、4の面方向であって、X方向
との直角方向をZ方向と定めている。
FIG. 2 shows another multilayer ceramic capacitor 10.
According to a, the external electrodes 5a,
In the case where 6a is covered, a part thereof extends to the end on the main surface of the capacitor body 2. In the figure, both external electrodes 5
The direction connecting between a and 6a is defined as the X direction. With respect to the X direction, the direction parallel to the end face of the capacitor body 2 and the thickness direction of the capacitor body 2 and perpendicular to the X direction is defined as the Y direction. The plane direction of the electrodes 3, 4 and the direction perpendicular to the X direction is defined as the Z direction.

【0024】そして、その延在した電極層11の端と、
コンデンサ本体2の端面上の最大厚みの箇所とのX方向
にわたる間隔をQとし、さらに同様な規定によるエポキ
シ系熱硬化性樹脂層12の間隔Pとして、比率Q/Pを
0.25〜0.8、好適には0.45〜0.6にすると
下記の点で好適である。
And an end of the extended electrode layer 11;
The distance Q in the X direction from the point of maximum thickness on the end face of the capacitor body 2 is Q, and the distance Q / P is 0.25-0. 8, preferably from 0.45 to 0.6 is preferable in the following points.

【0025】すなわち、過激な温度変化や温度サイクル
の環境にあっても、上記のように設定することで、電極
層11の焼き付けにより、その端部に生じたストレス
を、エポキシ系熱硬化性樹脂層12により応力吸収で
き、これにより、コンデンサ本体2にクラックが発生し
なくなり、外部電極5a、6aが剥離しなくなった。
That is, even in an environment of an extreme temperature change or a temperature cycle, by setting as described above, the stress generated at the end of the electrode layer 11 due to the baking of the electrode layer 11 can be reduced. Stress can be absorbed by the layer 12, whereby cracks do not occur in the capacitor body 2 and the external electrodes 5a and 6a do not peel off.

【0026】[0026]

【実施例】(例1)本発明の積層セラミックコンデンサ
10において、Agを主材としてガラスフリットを含む
導電ぺーストを5〜20μmの厚みで塗布し、乾燥し、
焼き付けして電極層11を形成シタ。ついで、Ag系フ
ィラーをエポキシ系樹脂に分散した導電性樹脂ペースト
を電極層11を完全に覆うように20〜200μmの厚
みで塗布し、さらに乾燥し、ついで80〜120℃の温
度にて脱溶剤し、その後、150〜200℃の温度で硬
化させ、これによってエポキシ系熱硬化性樹脂層12を
形成する。つづけてニッケルメッキ層13を電解メッキ
で形成し、このニッケルメッキ層13の上にスズ系層1
4を電解メッキで形成し、そして、規格にもとづく全長
2.0mmの2012型にした。
(Example 1) In a multilayer ceramic capacitor 10 of the present invention, a conductive paste containing Ag as a main material and containing a glass frit is applied in a thickness of 5 to 20 μm, and dried.
The electrode layer 11 is formed by baking. Next, a conductive resin paste in which an Ag-based filler is dispersed in an epoxy-based resin is applied to a thickness of 20 to 200 μm so as to completely cover the electrode layer 11, dried, and then desolvated at a temperature of 80 to 120 ° C. Then, it is cured at a temperature of 150 to 200 ° C., whereby the epoxy-based thermosetting resin layer 12 is formed. Subsequently, a nickel plating layer 13 is formed by electrolytic plating, and a tin-based layer 1 is formed on the nickel plating layer 13.
No. 4 was formed by electrolytic plating, and was made into a 2012 type having a total length of 2.0 mm according to the standard.

【0027】そして、このような積層セラミックコンデ
ンサを作製するに当たって、本発明のようなエポキシ系
熱硬化性樹脂層12と、比較例とする各種の層を形成
し、試料No.1〜10とした。ただし、試料No.7
〜9にて使用するエポキシ系熱硬化性樹脂層は本発明の
試料No.1、2のものに比べ、分子量が大きく、そし
て、試料No.7<試料No.8<試料No.9の順に
さらに大きくなっている。
In producing such a laminated ceramic capacitor, an epoxy-based thermosetting resin layer 12 as in the present invention and various layers as comparative examples were formed. 1 to 10. However, the sample No. 7
The epoxy-based thermosetting resin layers used in Sample Nos. To 9 of the present invention are the same as those of Sample Nos. The molecular weight is larger than those of Sample Nos. 7 <Sample No. 8 <Sample No. In the order of 9, they are even larger.

【0028】[0028]

【表1】 [Table 1]

【0029】これら10種類の試料に対し、温度サイク
ル耐久性テストと高温負荷テストをおこなった。
A temperature cycle durability test and a high temperature load test were performed on these 10 types of samples.

【0030】温度サイクル耐久性テストは、−55℃の
雰囲気に30分間保持し、そして、150℃の雰囲気に
30分間保持し、その冷却/加熱サイクルを1000回
おこなって、容量の低下状況、ならびに当初の固着強度
とテスト後の固着強度を調べた。その際に50個の試料
を用いて、クラックの発生頻度と外部電極の剥離頻度を
比率でもってだした。この比率は表に示すように50個
を分母して分子にて個数を表す。
In the temperature cycle durability test, the battery was kept in an atmosphere at -55 ° C. for 30 minutes, and then kept in an atmosphere at 150 ° C. for 30 minutes, and the cooling / heating cycle was repeated 1,000 times to reduce the capacity, and The initial fixing strength and the fixing strength after the test were examined. At that time, using 50 samples, the frequency of occurrence of cracks and the frequency of peeling of the external electrodes were determined in a ratio. As shown in the table, this ratio is represented by the number of numerators obtained by denominating 50 pieces.

【0031】高温負荷テスト(DC×2)については、
試料50個を125℃の雰囲気に置き、そして、100
0時間までの劣化状況を調べ、信頼性として3段階に区
分した。○印は1000時間経過してもなんら劣化し
なかった場合、△印は750時間程度経過して劣化し
た場合、×印は500時間程度経過して劣化した場合
である。
For the high temperature load test (DC × 2),
Place 50 samples in an atmosphere of 125 ° C.
The deterioration status up to 0 hours was examined, and the reliability was classified into three stages. The mark “○” indicates that no deterioration has occurred even after 1000 hours, the mark “△” indicates that the film has deteriorated after approximately 750 hours, and the mark “X” indicates that the film has deteriorated after approximately 500 hours.

【0032】表から明らかなとおり、本発明の試料N
o.1と試料No.2については、初期の固着強度が高
く、さらに温度サイクル耐久性テストをおこなっても、
ほとんど低下しなった。また、コンデンサ本体にクラッ
クが発生せず、外部電極の剥離もなった。しかも、高温
負荷テストでも1000時間経過してもまったく劣化し
なった。
As is clear from the table, the sample N of the present invention
o. 1 and Sample No. Regarding 2, the initial bond strength was high, and even if a temperature cycle durability test was performed,
Almost no drop. In addition, no cracks occurred in the capacitor body, and the external electrodes were peeled off. Moreover, even in the high-temperature load test, no deterioration occurred even after 1000 hours.

【0033】これに対し、試料No.3〜10では温度
サイクル耐久性テストおよび高温負荷テストともに劣っ
ていた。とくに試料No.9では実装基板より脱落し
た。
On the other hand, the sample No. In Nos. 3 to 10, both the temperature cycle durability test and the high-temperature load test were inferior. In particular, the sample No. In No. 9, it dropped off from the mounting board.

【0034】(例2) (例1)の積層セラミックコンデンサ試料No.1を作
製するに当たって、電極層11の間隔Qおよびエポキシ
系熱硬化性樹脂層12の間隔P、ならびに比率Q/Pを
それぞれ変えて、上述した温度サイクル耐久性テストと
高温負荷テスト、さらに密着強度を測定したところ、表
2に示すような結果が得られた。なお、密着強度はそれ
ぞれ10個の試料を用意して、端子L方向引張り試験を
おこなった。
Example 2 The multilayer ceramic capacitor sample No. of Example 1 was used. In the preparation of Sample No. 1, the interval Q between the electrode layers 11 and the interval P between the epoxy-based thermosetting resin layers 12 and the ratio Q / P were changed respectively, and the above-mentioned temperature cycle durability test, high-temperature load test, and adhesion strength were further changed. Was measured, the results as shown in Table 2 were obtained. Note that ten samples were prepared for each of the adhesion strengths, and a tensile test in the terminal L direction was performed.

【0035】[0035]

【表2】 [Table 2]

【0036】試料No.12〜試料No.15について
は、密着強度テスト、さらに温度サイクル耐久性テスト
と高温負荷テストのいずれにも良好な結果が得られた。
これに対し、試料No.11は電極層11をコンデンサ
本体2の端面のみに形成したことで、密着強度がもっと
も小さく、温度サイクル耐久性テストおよび高温負荷テ
ストにおいて、ともに熱応力によって不良と判定した。
また、試料No.16、17は電極層11の間隔Qが大
きく、そのために焼き付けに起因した焼き締まりによる
応力を受け、温度サイクルによりコンデンサ本体2にク
ラックが発生し、容量低下が生じた。
Sample No. 12 to sample no. With regard to No. 15, good results were obtained in the adhesion strength test, the temperature cycle durability test, and the high-temperature load test.
On the other hand, the sample No. Reference numeral 11 indicates that the electrode layer 11 was formed only on the end face of the capacitor body 2, so that the adhesion strength was the smallest, and both were judged to be defective due to thermal stress in the temperature cycle durability test and the high-temperature load test.
In addition, the sample No. In Nos. 16 and 17, the gap Q between the electrode layers 11 was large, so that stress was applied due to tightening caused by baking, and cracks occurred in the capacitor body 2 due to temperature cycling, resulting in a reduction in capacity.

【0037】なお、本発明は上記の実施の形態例に限定
されるものではなく、本発明の要旨を逸脱しない範囲内
で種々の変更や改良等は何ら差し支えない。
It should be noted that the present invention is not limited to the above-described embodiment, and various changes and improvements may be made without departing from the scope of the present invention.

【0038】[0038]

【発明の効果】以上のとおり、本発明の積層セラミック
コンデンサによれば、外部電極において、導電ペースト
を塗布し、焼き付けた電極層と、ニッケルメッキ層との
間に金属粉末を含有する導電性のエポキシ系熱硬化性樹
脂層を形成したので、回路基板に実装し、その後、温度
サイクルや熱衝撃によって応力が発生したとしても、コ
ンデンサ本体にクラックが発生しなくなり、さらに外部
電極が剥離しなくなり、しかも、実装基板との固着強度
にも優れ、その結果、高品質かつ長期信頼性の積層セラ
ミックコンデンサが提供できた。
As described above, according to the multilayer ceramic capacitor of the present invention, a conductive paste containing a metal powder is provided between an electrode layer coated with a conductive paste and baked on an external electrode and a nickel plating layer. Since the epoxy-based thermosetting resin layer was formed, it was mounted on a circuit board, and even if stress was generated due to temperature cycling or thermal shock, cracks did not occur in the capacitor body, and the external electrodes did not peel off, Moreover, the bonding strength with the mounting substrate is excellent, and as a result, a high-quality and long-term reliable multilayer ceramic capacitor can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の積層セラミックコンデンサの断面図で
ある。
FIG. 1 is a sectional view of a multilayer ceramic capacitor according to the present invention.

【図2】本発明の他の積層セラミックコンデンサの破断
面図である。
FIG. 2 is a cutaway view of another multilayer ceramic capacitor of the present invention.

【図3】従来の積層セラミックコンデンサの断面図であ
る。
FIG. 3 is a sectional view of a conventional multilayer ceramic capacitor.

【符号の説明】[Explanation of symbols]

1、10、10a 積層セラミックコンデンサ 2 コンデンサ本体 3、4 内部電極 5、6、5a、6a 外部電極 7、11 電極層 8、13 ニッケルメッキ層 12 エポキシ系熱硬化性樹脂層 14 スズ系層 DESCRIPTION OF SYMBOLS 1, 10, 10a Multilayer ceramic capacitor 2 Capacitor body 3, 4 Internal electrode 5, 6, 5a, 6a External electrode 7, 11 Electrode layer 8, 13 Nickel plating layer 12 Epoxy-based thermosetting resin layer 14 Tin-based layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】第1内部電極群と第2内部電極群との間に
それぞれ誘電体層を介して交互に積層してコンデンサ本
体を形成するとともに、第1内部電極群の端をコンデン
サ本体の一方端面に、第2内部電極群の端をその他方端
面に露出させ、両者端面にそれぞれ外部電極を形成した
積層セラミックコンデンサであって、該外部電極は焼き
付け電極層と、金属粉末を含有する導電性のエポキシ系
熱硬化性樹脂層と、ニッケルメッキ層と、スズまたは半
田のメッキ層とを順次積層してなることを特徴とする積
層セラミックコンデンサ。
1. A capacitor body is formed by alternately laminating a first internal electrode group and a second internal electrode group via a dielectric layer, respectively, and an end of the first internal electrode group is connected to the capacitor body. On the other hand, the end of the second internal electrode group is exposed to the other end face on one end face, and an external electrode is formed on each end face. The external electrode is a baked electrode layer and a conductive powder containing metal powder. A multilayer ceramic capacitor comprising: a laminated epoxy thermosetting resin layer; a nickel plating layer; and a tin or solder plating layer.
JP9323347A 1997-11-25 1997-11-25 Laminated ceramic capacitor Pending JPH11162771A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9323347A JPH11162771A (en) 1997-11-25 1997-11-25 Laminated ceramic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9323347A JPH11162771A (en) 1997-11-25 1997-11-25 Laminated ceramic capacitor

Publications (1)

Publication Number Publication Date
JPH11162771A true JPH11162771A (en) 1999-06-18

Family

ID=18153786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9323347A Pending JPH11162771A (en) 1997-11-25 1997-11-25 Laminated ceramic capacitor

Country Status (1)

Country Link
JP (1) JPH11162771A (en)

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000243662A (en) * 1999-02-19 2000-09-08 Tdk Corp Electronic device and manufacture thereof
EP1482524A1 (en) * 2002-03-07 2004-12-01 TDK Corporation Laminate type electronic component
EP1693864A1 (en) 2005-02-18 2006-08-23 TDK Corporation Ceramic electronic component and multilayer capacitor
DE10044429B4 (en) * 1999-09-08 2008-06-05 Murata Manufacturing Co., Ltd., Nagaokakyo Electric ceramic component
US7791256B2 (en) 2003-09-24 2010-09-07 Kyocera Corporation Multi-layer piezoelectric element
US7847371B2 (en) 2006-02-28 2010-12-07 Tdk Corporation Electronic component
JP2011233452A (en) * 2010-04-30 2011-11-17 Namics Corp Conductive paste for external electrode, and multilayered ceramic electronic part with external electrode formed by conductive paste
US8174816B2 (en) 2009-07-09 2012-05-08 Samsung Electro-Mechanics Co., Ltd. Ceramic electronic component
JP2014116340A (en) * 2012-12-06 2014-06-26 Taiyo Yuden Co Ltd Ceramic electronic component
CN103971930A (en) * 2013-01-24 2014-08-06 三星电机株式会社 Multilayer Ceramic Capacitor And Method Of Manufacturing The Same
WO2014162854A1 (en) * 2013-04-03 2014-10-09 太陽誘電株式会社 Ceramic electronic part
JP2015506103A (en) * 2011-12-16 2015-02-26 エプコス アーゲーEpcos Ag Electrical component and method of manufacturing the same
US8988850B1 (en) 2013-10-25 2015-03-24 Murata Manufacturing Co., Ltd Ceramic electronic component
JP2015111576A (en) * 2014-12-24 2015-06-18 ナミックス株式会社 Conductive paste for external electrode, and multilayered ceramic electronic part with external electrode formed by conductive paste
US9355762B2 (en) 2013-10-25 2016-05-31 Murata Manufacturing Co., Ltd. Ceramic electronic component and method for manufacturing ceramic electronic component
US9666366B2 (en) 2002-04-15 2017-05-30 Avx Corporation Method of making multi-layer electronic components with plated terminations
US20170154729A1 (en) * 2015-11-26 2017-06-01 Samsung Electro-Mechanics Co., Ltd. Capacitor and method of manufacturing the same
KR20170116949A (en) 2016-04-12 2017-10-20 가부시키가이샤 무라타 세이사쿠쇼 Multilayer ceramic capacitor
US9870864B2 (en) 2014-10-07 2018-01-16 Murata Manufacturing Co., Ltd. Ceramic electronic component
KR20180066851A (en) 2016-12-09 2018-06-19 가부시키가이샤 무라타 세이사쿠쇼 Multilayer ceramic capacitor
US10242797B2 (en) 2016-04-14 2019-03-26 Murata Manufacturing Co., Ltd. Multilayer-ceramic-capacitor mounting structure
US10262799B2 (en) 2016-10-26 2019-04-16 Murata Manufacturing Co., Ltd. Multilayer ceramic capacitor
US10269494B2 (en) 2015-07-30 2019-04-23 Murata Manufacturing Co., Ltd. Multilayer ceramic capacitor including external electrodes with multilayer structure and manufacturing method therefor
KR20190049479A (en) 2017-10-31 2019-05-09 가부시키가이샤 무라타 세이사쿠쇼 Multilayer ceramic capacitor
KR20190055752A (en) 2017-11-15 2019-05-23 가부시키가이샤 무라타 세이사쿠쇼 Multilayer ceramic capacitor
US10453612B2 (en) 2016-12-21 2019-10-22 Murata Manufacturing Co., Ltd. Multilayer ceramic capacitor
US10510486B2 (en) 2016-11-28 2019-12-17 Murata Manufacturing Co., Ltd. Multilayer ceramic electronic component
JP2020021754A (en) * 2018-07-30 2020-02-06 Tdk株式会社 Multi-layered electronic component
US20200075252A1 (en) * 2018-08-30 2020-03-05 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic electronic component
CN111063540A (en) * 2018-10-17 2020-04-24 三星电机株式会社 Multilayer ceramic electronic component and method of manufacturing multilayer ceramic electronic component
KR20200046002A (en) 2016-12-09 2020-05-06 가부시키가이샤 무라타 세이사쿠쇼 Multilayer ceramic capacitor
US10879004B2 (en) 2018-06-04 2020-12-29 Murata Manufacturing Co., Ltd. Multilayer ceramic capacitor and multilayer ceramic capacitor-mounting structure
US10930433B2 (en) 2018-11-27 2021-02-23 Murata Manufacturing Co., Ltd. Multilayer ceramic electronic component
US11062848B2 (en) 2018-11-27 2021-07-13 Murata Manufacturing Co., Ltd. Multilayer ceramic electronic component
US11335501B2 (en) 2019-08-23 2022-05-17 Murata Manufacturing Co., Ltd. Multilayer ceramic electronic component and method for producing the same
US11361906B2 (en) 2019-09-26 2022-06-14 Murata Manufacturing Co., Ltd. Multilayer ceramic electronic component
US11398351B2 (en) 2017-12-29 2022-07-26 Murata Manufacturing Co., Ltd. Multilayer ceramic capacitor, mount structure of multilayer ceramic capacitor, and series of electronic components
US11430609B2 (en) 2019-08-21 2022-08-30 Murata Manufacturing Co., Ltd. Multilayer ceramic electronic component
KR20220128274A (en) 2021-03-12 2022-09-20 가부시키가이샤 무라타 세이사쿠쇼 Conductive paste and ceramic electronic component
US11594372B2 (en) 2020-04-30 2023-02-28 Murata Manufacturing Co., Ltd. Multilayer ceramic capacitor
WO2023032519A1 (en) * 2021-08-31 2023-03-09 株式会社村田製作所 Electronic component

Cited By (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000243662A (en) * 1999-02-19 2000-09-08 Tdk Corp Electronic device and manufacture thereof
JP4501143B2 (en) * 1999-02-19 2010-07-14 Tdk株式会社 Electronic device and manufacturing method thereof
DE10044429B4 (en) * 1999-09-08 2008-06-05 Murata Manufacturing Co., Ltd., Nagaokakyo Electric ceramic component
EP1482524A4 (en) * 2002-03-07 2008-08-27 Tdk Corp Laminate type electronic component
EP1482524A1 (en) * 2002-03-07 2004-12-01 TDK Corporation Laminate type electronic component
US6956731B2 (en) 2002-03-07 2005-10-18 Tdk Corporation Laminate type electronic component
US11195659B2 (en) 2002-04-15 2021-12-07 Avx Corporation Plated terminations
US9666366B2 (en) 2002-04-15 2017-05-30 Avx Corporation Method of making multi-layer electronic components with plated terminations
US10020116B2 (en) 2002-04-15 2018-07-10 Avx Corporation Plated terminations
US10366835B2 (en) 2002-04-15 2019-07-30 Avx Corporation Plated terminations
US7791256B2 (en) 2003-09-24 2010-09-07 Kyocera Corporation Multi-layer piezoelectric element
US7936108B2 (en) 2003-09-24 2011-05-03 Kyocera Corporation Multi-layer piezoelectric element with electrodes made of glass and conductive material
US8004155B2 (en) 2003-09-24 2011-08-23 Kyocera Corporation Multi-layer piezoelectric element
US7304831B2 (en) 2005-02-18 2007-12-04 Tdk Corporation Ceramic electronic component and multilayer capacitor
EP1693864A1 (en) 2005-02-18 2006-08-23 TDK Corporation Ceramic electronic component and multilayer capacitor
US7847371B2 (en) 2006-02-28 2010-12-07 Tdk Corporation Electronic component
US8174816B2 (en) 2009-07-09 2012-05-08 Samsung Electro-Mechanics Co., Ltd. Ceramic electronic component
JP2011233452A (en) * 2010-04-30 2011-11-17 Namics Corp Conductive paste for external electrode, and multilayered ceramic electronic part with external electrode formed by conductive paste
JP2015506103A (en) * 2011-12-16 2015-02-26 エプコス アーゲーEpcos Ag Electrical component and method of manufacturing the same
US9805846B2 (en) 2011-12-16 2017-10-31 Epcos Ag Electrical component and method for producing an electrical component
US9349539B2 (en) 2012-12-06 2016-05-24 Taiyo Yuden Co., Ltd. Ceramic electronic component
JP2014116340A (en) * 2012-12-06 2014-06-26 Taiyo Yuden Co Ltd Ceramic electronic component
US9082557B2 (en) 2013-01-24 2015-07-14 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic capacitor and method of manufacturing the same
CN103971930A (en) * 2013-01-24 2014-08-06 三星电机株式会社 Multilayer Ceramic Capacitor And Method Of Manufacturing The Same
JP2014143387A (en) * 2013-01-24 2014-08-07 Samsung Electro-Mechanics Co Ltd Multilayer ceramic capacitor and method of manufacturing the same
CN105103250A (en) * 2013-04-03 2015-11-25 太阳诱电株式会社 Ceramic electronic part
WO2014162854A1 (en) * 2013-04-03 2014-10-09 太陽誘電株式会社 Ceramic electronic part
US9837213B2 (en) 2013-04-03 2017-12-05 Taiyo Yuden Co., Ltd. Ceramic electronic component
US9355762B2 (en) 2013-10-25 2016-05-31 Murata Manufacturing Co., Ltd. Ceramic electronic component and method for manufacturing ceramic electronic component
US8988850B1 (en) 2013-10-25 2015-03-24 Murata Manufacturing Co., Ltd Ceramic electronic component
CN104576052A (en) * 2013-10-25 2015-04-29 株式会社村田制作所 Ceramic electronic component and taped electronic component series
US9870864B2 (en) 2014-10-07 2018-01-16 Murata Manufacturing Co., Ltd. Ceramic electronic component
JP2015111576A (en) * 2014-12-24 2015-06-18 ナミックス株式会社 Conductive paste for external electrode, and multilayered ceramic electronic part with external electrode formed by conductive paste
US10269494B2 (en) 2015-07-30 2019-04-23 Murata Manufacturing Co., Ltd. Multilayer ceramic capacitor including external electrodes with multilayer structure and manufacturing method therefor
US20170154729A1 (en) * 2015-11-26 2017-06-01 Samsung Electro-Mechanics Co., Ltd. Capacitor and method of manufacturing the same
US10312022B2 (en) * 2015-11-26 2019-06-04 Samsung Electro-Mechanics Co., Ltd. Capacitor and method of manufacturing the same
US10062514B2 (en) 2016-04-12 2018-08-28 Murata Manufacturing Co., Ltd. Multilayer ceramic capacitor
KR20170116949A (en) 2016-04-12 2017-10-20 가부시키가이샤 무라타 세이사쿠쇼 Multilayer ceramic capacitor
US10242797B2 (en) 2016-04-14 2019-03-26 Murata Manufacturing Co., Ltd. Multilayer-ceramic-capacitor mounting structure
US10262799B2 (en) 2016-10-26 2019-04-16 Murata Manufacturing Co., Ltd. Multilayer ceramic capacitor
US10510486B2 (en) 2016-11-28 2019-12-17 Murata Manufacturing Co., Ltd. Multilayer ceramic electronic component
KR20180066851A (en) 2016-12-09 2018-06-19 가부시키가이샤 무라타 세이사쿠쇼 Multilayer ceramic capacitor
US10186378B2 (en) 2016-12-09 2019-01-22 Murata Manufacturing Co., Ltd. Multilayer ceramic capacitor
KR20200046002A (en) 2016-12-09 2020-05-06 가부시키가이샤 무라타 세이사쿠쇼 Multilayer ceramic capacitor
US10453612B2 (en) 2016-12-21 2019-10-22 Murata Manufacturing Co., Ltd. Multilayer ceramic capacitor
KR20190049479A (en) 2017-10-31 2019-05-09 가부시키가이샤 무라타 세이사쿠쇼 Multilayer ceramic capacitor
US10950385B2 (en) 2017-10-31 2021-03-16 Murata Manufacturing Co., Ltd. Multilayer ceramic capacitor with outer electrodes including resin layers
JP2019091805A (en) * 2017-11-15 2019-06-13 株式会社村田製作所 Multilayer ceramic capacitor
KR20190055752A (en) 2017-11-15 2019-05-23 가부시키가이샤 무라타 세이사쿠쇼 Multilayer ceramic capacitor
US10665392B2 (en) 2017-11-15 2020-05-26 Murata Manufacturing Co., Ltd. Multilayer ceramic capacitor
US11398351B2 (en) 2017-12-29 2022-07-26 Murata Manufacturing Co., Ltd. Multilayer ceramic capacitor, mount structure of multilayer ceramic capacitor, and series of electronic components
US10879004B2 (en) 2018-06-04 2020-12-29 Murata Manufacturing Co., Ltd. Multilayer ceramic capacitor and multilayer ceramic capacitor-mounting structure
JP2020021754A (en) * 2018-07-30 2020-02-06 Tdk株式会社 Multi-layered electronic component
US20200075257A1 (en) * 2018-08-30 2020-03-05 Samsung Electro-Mechanics Co., Ltd. Multilayer electronic component
US20200075252A1 (en) * 2018-08-30 2020-03-05 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic electronic component
US10879006B2 (en) * 2018-08-30 2020-12-29 Samung Electro-Mechanics Co., Ltd. Multilayer ceramic electronic component
US10832869B2 (en) * 2018-08-30 2020-11-10 Samsung Electro-Mechanics Co., Ltd. Multilayer electronic component
CN110875137A (en) * 2018-08-30 2020-03-10 三星电机株式会社 Multilayer ceramic electronic component
CN110875137B (en) * 2018-08-30 2022-04-26 三星电机株式会社 Multilayer ceramic electronic component
CN112712999B (en) * 2018-10-17 2023-07-14 三星电机株式会社 Multilayer ceramic electronic component and method for manufacturing the same
CN111063540A (en) * 2018-10-17 2020-04-24 三星电机株式会社 Multilayer ceramic electronic component and method of manufacturing multilayer ceramic electronic component
CN112712999A (en) * 2018-10-17 2021-04-27 三星电机株式会社 Multilayer ceramic electronic component and method of manufacturing multilayer ceramic electronic component
CN111063540B (en) * 2018-10-17 2023-03-24 三星电机株式会社 Multilayer ceramic electronic component and method of manufacturing multilayer ceramic electronic component
US11551874B2 (en) 2018-10-17 2023-01-10 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic electronic component and method of manufacturing the same
US11062848B2 (en) 2018-11-27 2021-07-13 Murata Manufacturing Co., Ltd. Multilayer ceramic electronic component
US10930433B2 (en) 2018-11-27 2021-02-23 Murata Manufacturing Co., Ltd. Multilayer ceramic electronic component
US11430609B2 (en) 2019-08-21 2022-08-30 Murata Manufacturing Co., Ltd. Multilayer ceramic electronic component
US11335501B2 (en) 2019-08-23 2022-05-17 Murata Manufacturing Co., Ltd. Multilayer ceramic electronic component and method for producing the same
US11361906B2 (en) 2019-09-26 2022-06-14 Murata Manufacturing Co., Ltd. Multilayer ceramic electronic component
US11594372B2 (en) 2020-04-30 2023-02-28 Murata Manufacturing Co., Ltd. Multilayer ceramic capacitor
KR20220128274A (en) 2021-03-12 2022-09-20 가부시키가이샤 무라타 세이사쿠쇼 Conductive paste and ceramic electronic component
US11817266B2 (en) 2021-03-12 2023-11-14 Murata Manufacturing Co., Ltd. Conductive paste and ceramic electronic component
WO2023032519A1 (en) * 2021-08-31 2023-03-09 株式会社村田製作所 Electronic component
DE112022003373T5 (en) 2021-08-31 2024-04-18 Murata Manufacturing Co., Ltd. Electronic component

Similar Documents

Publication Publication Date Title
JPH11162771A (en) Laminated ceramic capacitor
JP3376970B2 (en) Ceramic electronic components
JP4423707B2 (en) Manufacturing method of multilayer ceramic electronic component
JP3376971B2 (en) Ceramic electronic components
JP4561831B2 (en) Ceramic substrate, electronic device, and method for manufacturing ceramic substrate
JP3444826B2 (en) Array type multi-chip device and method of manufacturing the same
JPS63107087A (en) Hybrid integrated circuit board
JP3363369B2 (en) Multilayer ceramic capacitors
JP3760770B2 (en) Multilayer ceramic electronic component and manufacturing method thereof
JP2003318059A (en) Layered ceramic capacitor
JP3267067B2 (en) Ceramic electronic components
JPH04188810A (en) Composite ceramic capacitor
JP4803451B2 (en) Electronic component and its mounting structure
JPH08203771A (en) Ceramic electronic component
JPH097878A (en) Ceramic electronic part and manufacture thereof
JP2000138131A (en) Chip type electronic component
JPH04259205A (en) Chip type ceramic capacitor
JP2006332284A (en) Electronic component and its manufacturing method
JP2000138130A (en) Chip type electronic parts
JP2850200B2 (en) Multilayer ceramic electronic components
JP2003264118A (en) Multilayer ceramic electronic component
JPH04171911A (en) Compound ceramic capacitor
JPH08203769A (en) Ceramic electronic component
JP2001237137A (en) Laminated capacitor and external-electrode conductor paste therefor
JP3912129B2 (en) Manufacturing method of multilayer ceramic substrate