JPH11162450A - Electrode for nonaqueous electrolyte battery - Google Patents
Electrode for nonaqueous electrolyte batteryInfo
- Publication number
- JPH11162450A JPH11162450A JP9345780A JP34578097A JPH11162450A JP H11162450 A JPH11162450 A JP H11162450A JP 9345780 A JP9345780 A JP 9345780A JP 34578097 A JP34578097 A JP 34578097A JP H11162450 A JPH11162450 A JP H11162450A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- active material
- electrode active
- electrode layer
- conductive material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は非水電解質電池用電
極に係り、特にLix Niy Mz O2 (但し、0.8<
x<1.2、0.8<y+z<1.2、0≦z≦0.3
5であり、MはCo,Al,Mn,Feの1種類以上)
である電極活物質を用いた高放電電位、高放電容量の非
水電解質電池用電極に関する。The present invention relates to relates to electrode for a nonaqueous electrolyte battery, in particular Li x Ni y M z O 2 ( where 0.8 <
x <1.2, 0.8 <y + z <1.2, 0 ≦ z ≦ 0.3
5, M is one or more of Co, Al, Mn, and Fe)
The present invention relates to an electrode for a non-aqueous electrolyte battery having a high discharge potential and a high discharge capacity using the electrode active material.
【0002】[0002]
【従来の技術】高放電電位、高放電容量の非水電解質電
池の中でリチウムを吸蔵・放出するリチウムイオン2次
電池が実用化されている。この電池の電極は、電極活物
質とバインダー等からなる塗料を電極集電体上に塗布、
乾燥して電極層を形成したものであり、電極はその後必
要に応じてローラープレス機等で圧縮し、切断される。
従来のリチウムイオン2次電池では、正極活物質として
主にリチウムコバルト酸化物(LiCoO2 )が用いら
れている。また、リチウムニッケル酸化物(LiNiO
2 )を正極活物質として使用した場合、上記のLiCo
O2 に比べて電池の容量は大きくなるが安全性に問題が
あり、LiNiO2 にCo等を添加したものが検討され
ている。また、特開平7−29606号には、正極活物
質がリチウム含有遷移金属酸化物であり、正極合剤(電
極層)の密度が2.5g/cm3 以上3.5g/cm3
以下である非水2次電池の記載がある。さらに、特開平
8−17471号にはリチウムマンガン酸化物(LiM
n2 O4 )を用いてその比表面積と活物質層の密度を規
定することで電池容量を向上させることが示されてい
る。2. Description of the Related Art Among non-aqueous electrolyte batteries having a high discharge potential and a high discharge capacity, lithium ion secondary batteries that occlude and release lithium have been put to practical use. The electrode of this battery is coated with a paint composed of an electrode active material and a binder on the electrode current collector,
The electrode layer is formed by drying, and the electrode is thereafter compressed and cut by a roller press or the like as necessary.
In a conventional lithium ion secondary battery, lithium cobalt oxide (LiCoO 2 ) is mainly used as a positive electrode active material. In addition, lithium nickel oxide (LiNiO)
When 2 ) is used as the positive electrode active material, the above LiCo
Although the capacity of the battery is larger than that of O 2 , there is a problem in safety, and LiNiO 2 to which Co or the like is added is being studied. JP-A-7-29606 discloses that the positive electrode active material is a lithium-containing transition metal oxide, and the density of the positive electrode mixture (electrode layer) is 2.5 g / cm 3 or more and 3.5 g / cm 3.
The following non-aqueous secondary batteries are described. Further, JP-A-8-17471 discloses a lithium manganese oxide (LiM
It is shown that the battery capacity is improved by defining the specific surface area and the density of the active material layer using n 2 O 4 ).
【0003】ここで、電池の容量を上げる方法の一つ
に、電極層において電極活物質と導電材とのつながりを
良好にして電子の流れを向上させるとともに、電極活物
質と電解液の接触を良好にして電解質イオンの移動を向
上させる方法がある。電極層中の電極活物質と導電材の
つながりがよくない場合、利用されない電極活物質が生
じてしまい電池容量が低くなる。また、電極活物質と電
解液の接触が悪いと電解質イオンの移動が阻害されて容
量が低くなる。電極活物質と導電材のつながりを高める
手段として、通常、ローラープレス機等による圧縮が行
われるが、圧縮の程度を上げると電解液のしみ込みが悪
くなり電極活物質と電解液の接触が悪くなってしまう。
一方、圧縮程度が小さい場合は逆の状態となり、導電材
の含有量を多くするなどの方法で電極活物質と導電材の
つながりを高めることが必要となってしまい、電池に詰
め込める電極活物質量が減ってしまい、電池容量の低下
を来すことになる。Here, one of the methods for increasing the capacity of a battery is to improve the flow of electrons by improving the connection between the electrode active material and the conductive material in the electrode layer, and to improve the contact between the electrode active material and the electrolyte. There is a method for improving the transfer of electrolyte ions by improving the quality. When the connection between the electrode active material in the electrode layer and the conductive material is poor, an unused electrode active material is generated, and the battery capacity is reduced. In addition, if the electrode active material and the electrolyte are not in good contact, the movement of the electrolyte ions is hindered, and the capacity is reduced. As a means for enhancing the connection between the electrode active material and the conductive material, compression is usually performed by a roller press or the like, but when the degree of compression is increased, the penetration of the electrolyte becomes poor, and the contact between the electrode active material and the electrolyte becomes poor. turn into.
On the other hand, when the degree of compression is small, the situation is reversed, and it is necessary to increase the connection between the electrode active material and the conductive material by, for example, increasing the content of the conductive material. And the battery capacity is reduced.
【0004】[0004]
【発明が解決しようとする課題】正極活物質としての上
記LiCoO2 は乾式で混合し焼成され解砕されるため
に、その形状は角張ったものになり、電極製造段階にお
いてある程度圧縮しても電解液がしみ込むための空隙が
確保されやすい。しかし、LiNiO2 にCo等を添加
したものは、湿式で合成し焼成して作る方法が一般的で
あり、その形状は球状になりやすく、このような球状の
電極活物質を用いた電極を圧縮すると電極層が詰まりす
ぎて電解質イオンの流れが悪くなり容量の低下と効率が
悪くなるという問題がある。一方、圧縮を弱くすると電
解質イオンの流れはよくなるものの、導電材と接触して
いない電極活物質が生じてしまい容量が低くなるという
問題がある。The above LiCoO 2 as a positive electrode active material is dry-mixed, calcined and crushed, so that its shape becomes angular. It is easy to secure a space for liquid to permeate. However, LiNiO 2 to which Co or the like is added is generally made by a wet method of synthesis and firing, and the shape tends to be spherical, and an electrode using such a spherical electrode active material is compressed. Then, there is a problem that the electrode layer is too clogged, the flow of electrolyte ions is deteriorated, the capacity is reduced, and the efficiency is deteriorated. On the other hand, when the compression is weakened, the flow of electrolyte ions is improved, but there is a problem that an electrode active material not in contact with the conductive material is generated and the capacity is reduced.
【0005】また、上記の特開平8−17471号では
導電材としてアセチレンブラックとグラファイトを併用
した実施例が示されているが、アセチレンブラックを用
いた場合、電極層の電極集電体への付着性が悪くなり、
付着性を良くするためバインダー量を増やすと電解質イ
オンの流れが悪くなって容量が低下するという問題があ
る。In the above-mentioned Japanese Patent Application Laid-Open No. 8-17471, there is shown an embodiment in which acetylene black and graphite are used in combination as a conductive material. However, when acetylene black is used, the electrode layer adheres to the electrode current collector. Worse,
When the amount of the binder is increased to improve the adhesiveness, there is a problem that the flow of electrolyte ions is deteriorated and the capacity is reduced.
【0006】本発明は、このような事情に鑑みてなされ
たものであり、電極活物質と導電材とのつながりが良好
で電解質イオンの流れがよく充放電容量が高い電池を可
能とする非水電解質電池用電極を提供することを目的と
する。[0006] The present invention has been made in view of such circumstances, and a non-aqueous solution that enables a battery having a good connection between an electrode active material and a conductive material, a high flow of electrolyte ions, and a high charge / discharge capacity. An object of the present invention is to provide an electrode for an electrolyte battery.
【0007】[0007]
【課題を解決するための手段】このような目的を達成す
るために、本発明は少なくともLix Niy Mz O
2(但し、0.8<x<1.2、0.8<y+z<1.
2、0≦z≦0.35であり、MはCo,Al,Mn,
Feの1種類以上)である電極活物質、導電材、バイン
ダーからなる電極層が電極集電体上に形成された非水電
解質電池用電極において、電極層の単位体積における電
極活物質の量が2.5g/cm3 〜3.2g/cm3 の
範囲内であり、電極層中のバインダー量が1〜5重量%
に範囲内であり、導電材は中心粒径が電極活物質の中心
粒径よりも大きい薄片状のグラファイトであるような構
成とした。In order to achieve such an object, the present invention provides at least Li x Ni y M z O
2 (provided that 0.8 <x <1.2, 0.8 <y + z <1.
2, 0 ≦ z ≦ 0.35, and M is Co, Al, Mn,
In an electrode for a non-aqueous electrolyte battery in which an electrode layer made of an electrode active material, a conductive material, and a binder (one or more types of Fe) is formed on an electrode current collector, the amount of the electrode active material per unit volume of the electrode layer is 2.5 g / cm 3 in the range of ~3.2g / cm 3, amount of binder in the electrode layer is 1 to 5 wt%
And the conductive material was a flaky graphite having a center particle size larger than the center particle size of the electrode active material.
【0008】このような本発明では、電極層におけるバ
インダーの配合量と導電材種、電極活物質の単位体積当
たりの量を規定することにより、電極活物質と導電材と
のつながりが良好で電解質イオンの流れが極めて良好な
ものとなる。In the present invention, the amount of the binder in the electrode layer, the kind of the conductive material, and the amount per unit volume of the electrode active material are defined, so that the connection between the electrode active material and the conductive material is good and the electrolyte The flow of ions becomes extremely good.
【0009】[0009]
【発明の実施の形態】以下、本発明の実施の形態につい
て説明する。Embodiments of the present invention will be described below.
【0010】本発明の非水電解質電池用電極は、電極集
電体上に少なくとも電極活物質、導電材、バインダーか
らなる電極層を設けたものである。そして、電極層にお
ける電極活物質とその単位体積当たりの量、バインダー
の配合量、および導電材種を以下のように規定したもの
である。[0010] The electrode for a non-aqueous electrolyte battery according to the present invention comprises an electrode current collector provided with at least an electrode layer comprising an electrode active material, a conductive material, and a binder. The electrode active material and its amount per unit volume in the electrode layer, the blending amount of the binder, and the kind of the conductive material are defined as follows.
【0011】本発明の非水電解質電池用電極における電
極活物質は、安全性の問題からMとしてCo,Al,M
n,Feの1種類以上が添加されたLix Niy Mz O
2 を使用する(但し、0.8<x<1.2、0.8<y
+z<1.2、0≦z≦0.35)。そして、この電極
活物質の電極層の単位体積における量を2.5g/cm
3 〜3.2g/cm3 の範囲内とする。このように電極
層の単位体積における電極活物質量を規定するというこ
とは、電極層における電極活物質の状態(詰まり具合)
を規定することであり、電極活物質の詰まり具合を上記
のように規定することが電極層における電子の流れ、電
解質イオンの流れに対して重要である。電極層の単位体
積における電極活物質量が上記の範囲からはずれると電
極の充放電容量が低下し好ましくない。The electrode active material in the electrode for a non-aqueous electrolyte battery of the present invention is Co, Al, M
Li x Ni y M z O doped with at least one of n and Fe
2 (however, 0.8 <x <1.2, 0.8 <y
+ Z <1.2, 0 ≦ z ≦ 0.35). The amount of the electrode active material per unit volume of the electrode layer is set to 2.5 g / cm.
It is within the range of 3 to 3.2 g / cm 3 . Specifying the amount of the electrode active material per unit volume of the electrode layer as described above means that the state of the electrode active material in the electrode layer (the degree of clogging).
It is important to define the degree of clogging of the electrode active material as described above with respect to the flow of electrons and the flow of electrolyte ions in the electrode layer. If the amount of the electrode active material per unit volume of the electrode layer is out of the above range, the charge / discharge capacity of the electrode decreases, which is not preferable.
【0012】また、本発明の非水電解質電池用電極にお
ける電極層中のバインダー量は、1〜5重量%、好まし
くは2〜4重量%である。バインダー量が1重量%未満
であると、塗膜が形成しづらく、電極集電体への付着性
が低く剥れやすいものとなり、5重量%を超えると、電
極の充放電容量が低下してしまう。The amount of the binder in the electrode layer of the electrode for a non-aqueous electrolyte battery of the present invention is 1 to 5% by weight, preferably 2 to 4% by weight. When the amount of the binder is less than 1% by weight, the coating film is difficult to form, the adhesion to the electrode current collector is low and the film easily peels off, and when the amount exceeds 5% by weight, the charge / discharge capacity of the electrode is reduced. I will.
【0013】電極層を構成するバインダーとしては、熱
可塑性樹脂またはゴム弾性を有するポリマーを、一種ま
たは混合して用いることができ、具体的には、フッ素系
ポリマー、ポリビニルアルコール、カルボキシメチルセ
ルロース、ヒドロキシプロピルセルロース、再生セルロ
ース、ジアセチルセルロース、ポリビニルクロリド、ポ
リビニルピロリドン、ポリエチレン、ポリプロピレン、
エチレン−プロピレン−ジエンターポリマー(EPD
M)、スルホン化EPDM、スチレンブタジエンゴム、
ポリブタジエン、ポリエチレンオキシド等を挙げること
ができる。これらの中でも、フッ素原子/炭素原子の原
子比が0.75〜1.5、好ましくは0.75〜1.3
であるフッ素系ポリマーは特に好適に使用することがで
き、原子比が1.5を超える場合、電池の容量が充分に
得られず、0.75未満の場合、電解液にバインダーが
溶解してしまい好ましくない。このようなフッ素系ポリ
マーとしてはポリテトラフルオロエチレン、ポリフッ化
ビニリデン、フッ化ビニリデン−三フッ化エチレン共重
合体、エチレン−テトラフルオロエチレン共重合体、プ
ロピレン−テトラフルオロエチレン共重合体等が挙げら
れ、更に主鎖の水素をアルキル基で置換したフッ素系ポ
リマーも用いることができる。これらのフッ素系ポリマ
ーの中でも選択溶解性(電解液に対する溶解性が低く、
溶解可能な溶剤が存在する)を示すものが好ましく、例
えば、フッ化ビニリデン系ポリマーの場合、電解液に用
いられるカーボネート系の溶媒等には溶解しにくいが、
N,N−ジメチルホルムアミド、N−メチルピロリドン
等の溶剤には溶解可能である。As the binder constituting the electrode layer, a thermoplastic resin or a polymer having rubber elasticity can be used singly or as a mixture. Specifically, a fluorine-based polymer, polyvinyl alcohol, carboxymethyl cellulose, hydroxypropyl Cellulose, regenerated cellulose, diacetyl cellulose, polyvinyl chloride, polyvinyl pyrrolidone, polyethylene, polypropylene,
Ethylene-propylene-diene terpolymer (EPD
M), sulfonated EPDM, styrene butadiene rubber,
Examples thereof include polybutadiene and polyethylene oxide. Among them, the atomic ratio of fluorine atom / carbon atom is 0.75 to 1.5, preferably 0.75 to 1.3.
Can be particularly preferably used. When the atomic ratio exceeds 1.5, the battery capacity cannot be sufficiently obtained, and when the atomic ratio is less than 0.75, the binder dissolves in the electrolytic solution. It is not preferable. Examples of such a fluorine-based polymer include polytetrafluoroethylene, polyvinylidene fluoride, vinylidene fluoride-ethylene trifluoride copolymer, ethylene-tetrafluoroethylene copolymer, propylene-tetrafluoroethylene copolymer, and the like. Further, a fluorine-based polymer in which hydrogen in the main chain is substituted with an alkyl group can also be used. Selective solubility among these fluoropolymers (low solubility in electrolyte,
(A soluble solvent is present) is preferable.For example, in the case of a vinylidene fluoride-based polymer, it is difficult to dissolve in a carbonate-based solvent used for an electrolytic solution,
It can be dissolved in solvents such as N, N-dimethylformamide and N-methylpyrrolidone.
【0014】また、本発明の非水電解質電池用電極にお
ける導電材は、薄片状のグラファイトであることが要求
される。薄片状とは厚さが薄く、面としては広がりを持
っているということである。人造黒鉛、天然黒鉛で厚さ
の薄いものや膨張黒鉛の粉砕品がこの範疇に入る。具体
的には、中越黒鉛工業所(株)製のLFシリーズ、昭和
電工(株)製のUFGシリーズ、LONZA社製のKS
シリーズ、関西熱化学(株)製のMICROCARBO
−Gシリーズ、エコス技研(株)製のエコスカーボンシ
リーズ等が挙げられる。このグラファイトの中心粒径は
電極活物質の中心粒径よりも大きいことが必要である。
薄片状のグラファイトの中心粒径が電極活物質の中心粒
径よりも小さい場合、導電材同士のつながりが悪くなっ
て充放電のサイクル寿命が悪くなる等の不具合が生じ
る。Further, the conductive material in the electrode for a non-aqueous electrolyte battery of the present invention is required to be flaky graphite. The flaky shape means that the thickness is thin and the surface has a spread. Artificial graphite, natural graphite having a small thickness, and pulverized products of expanded graphite fall into this category. Specifically, LF series manufactured by Chuetsu Graphite Industry Co., Ltd., UFG series manufactured by Showa Denko KK, KS manufactured by LONZA
Series, MICROCARBO manufactured by Kansai Thermochemical Co., Ltd.
-G series, Ecos carbon series manufactured by Ecos Giken Co., Ltd. and the like. The central particle size of the graphite needs to be larger than the central particle size of the electrode active material.
If the center particle size of the flaky graphite is smaller than the center particle size of the electrode active material, problems such as poor connection between conductive materials and deterioration of the charge and discharge cycle life occur.
【0015】尚、中心粒径は日機装(株)製マイクロト
ラックのようなレーザー粒度分布計を用いて測定され、
頻度累積が50%である累積パーセント径をいう。The center particle size is measured using a laser particle size distribution meter such as a Microtrack manufactured by Nikkiso Co., Ltd.
It means the cumulative percent diameter at which the frequency cumulative is 50%.
【0016】本発明の非水電解質電池用電極を構成する
電極集電体としては、構成された電池において化学変化
を起こさない電子伝導体であれば何でもよいが、例え
ば、アルミニウム、銅、ステンレス、ニッケル、チタ
ン、焼成炭素等を用いることができ、さらにこれらの表
面にカーボン、ニッケル、チタンあるいは銀を処理させ
たものであってもよいが、特に耐酸化性、電極の柔軟性
およびコストなどを考慮すればアルミニウム箔が望まし
い。The electrode current collector constituting the electrode for a non-aqueous electrolyte battery of the present invention may be any electronic conductor which does not cause a chemical change in the battery thus constituted. For example, aluminum, copper, stainless steel, Nickel, titanium, calcined carbon, and the like can be used, and further, carbon, nickel, titanium, or silver may be treated on the surface thereof. Aluminum foil is desirable if considered.
【0017】本発明の非水電解質電池用電極は、電極集
電体上に電極層を形成し、その後、ローラープレス機等
で圧縮し、切断することにより製造される。The electrode for a non-aqueous electrolyte battery of the present invention is manufactured by forming an electrode layer on an electrode current collector, and thereafter compressing and cutting with a roller press or the like.
【0018】電極集電体への電極層の形成は、リバース
ロール法、ダイレクトロール法、ブレード法、ナイフ
法、エクストルージョン法、カーテン法、グラビアロー
ル法、バーコート法、ディップ法、キスコート法および
スクイズ法等の一般的によく知られた塗布法によって電
極活物質組成塗料を塗布することより行う。なかでもエ
クストルージョン法が好ましく、5〜100m/分の速
度で塗布できるように、電極活物質組成塗料の溶剤組
成、乾燥条件を選定することにより、良好な塗膜を得る
ことができる。The formation of the electrode layer on the electrode current collector includes a reverse roll method, a direct roll method, a blade method, a knife method, an extrusion method, a curtain method, a gravure roll method, a bar coating method, a dip method, a kiss coating method, and the like. The coating is performed by applying the electrode active material composition coating by a generally well-known coating method such as a squeeze method. Among them, the extrusion method is preferable, and a good coating film can be obtained by selecting the solvent composition and the drying conditions of the electrode active material composition coating so that the coating can be performed at a speed of 5 to 100 m / min.
【0019】上記の電極活物質組成塗料は、上述の電極
活物質と導電材、バインダー、溶剤を混合して製造する
のが一般的である。より性能の高い電極を作るために
は、電極活物質と導電材とのつながりをよくするため、
塗料化する前に処理することが好ましい。この場合、電
極活物質と薄片状のグラファイトを混合粉砕してグラフ
ァイト同士のスタックを取り除き、必要に応じてさらに
グラファイトを粉砕して薄片化することが好ましい。混
合粉砕にはニーダーやオングミル等が使用できる。The above-mentioned electrode active material composition paint is generally produced by mixing the above-mentioned electrode active material with a conductive material, a binder and a solvent. In order to make electrodes with higher performance, to improve the connection between the electrode active material and the conductive material,
It is preferable to treat before coating. In this case, it is preferable to mix and pulverize the electrode active material and flaky graphite to remove a stack of graphites, and to further pulverize the graphite as necessary to make the flakes thin. For mixing and pulverization, a kneader or an ong mill can be used.
【0020】また、上記の電極活物質組成塗料用の溶剤
としては、一般の有機溶剤を使用することができ、具体
的にはヘキサン等の飽和炭化水素類、トルエン、キシレ
ン等の芳香族炭化水素類、メタノール、エタノール、プ
ロパノール、ブタノール等のアルコール類、アセトン、
メチルエチルケトン、メチルイソブチルケトン、ジイソ
ブチルケトン等のケトン類、酢酸エチル、酢酸ブチル等
のエステル類、テトラヒドロフラン、ジオキサン、ジエ
チルエーテル等のエーテル類、N,N−ジメチルホルム
アミド、N−メチルピロリドン、N,N−ジメチルアセ
トアミド等のアミド類、エチレンクロライド、クロルベ
ンゼン等のハロゲン化炭化水素等の有機溶剤を挙げるこ
とができ、これらの溶剤は単独でも2種以上の混合した
ものでも使用することができる。これらのなかで、アミ
ド系の溶剤は上記フッ素系ポリマーを溶解可能なため好
ましく使用することができる。As the solvent for the electrode active material composition coating, general organic solvents can be used. Specifically, saturated hydrocarbons such as hexane and aromatic hydrocarbons such as toluene and xylene can be used. , Methanol, ethanol, alcohols such as propanol and butanol, acetone,
Ketones such as methyl ethyl ketone, methyl isobutyl ketone and diisobutyl ketone, esters such as ethyl acetate and butyl acetate, ethers such as tetrahydrofuran, dioxane and diethyl ether, N, N-dimethylformamide, N-methylpyrrolidone, N, N- Examples thereof include organic solvents such as amides such as dimethylacetamide and halogenated hydrocarbons such as ethylene chloride and chlorobenzene, and these solvents can be used alone or in combination of two or more. Among these, an amide-based solvent can be preferably used because it can dissolve the fluorine-based polymer.
【0021】電極層の単位体積における電極活物質量を
上述にように2.5g/cm3 〜3.2g/cm3 の範
囲とするためには、ローラプレス機等の圧縮工程で調整
することができ、上記の範囲になるような圧力を設定す
る。圧縮を一回かけて上記の範囲になるようにしてもよ
く、数回かけて上記の範囲になるようにしてもよい。圧
縮を数回かける場合、各回の圧力を変更してもよい。[0021] The electrode active material weight per unit volume of the electrode layer to the range of 2.5g / cm 3 ~3.2g / cm 3 as the above is to adjust the compression process such as roller press And set the pressure so that it is within the above range. The compression may be performed in the above range once, or may be performed several times in the above range. When compressing several times, the pressure of each time may be changed.
【0022】[0022]
【実施例】次に、実施例を示して本発明を更に詳細に説
明する。 (実施例1)下記組成の電極活物質組成塗料を調製し
た。Next, the present invention will be described in more detail with reference to examples. (Example 1) An electrode active material composition paint having the following composition was prepared.
【0023】 電極活物質組成塗料 ・電極活物質(LiNi0.8 Co0.2 O2 ) … 92重量部 中心粒径10μm ・導電材(LONZA社製Graphite KS25)… 4重量部 薄片状、中心粒径11μm ・バインダー(ポリフッ化ビニリデン(PVDF)) … 4重量部 エルフアルケムジャパン社製KYNAR741 ・溶剤(N−メチル−2−ピロリドン(NMP)) … 67重量部 上記の電極活物質組成塗料の調製は、まず、PVDF
(4重量部)をNMP(67重量部)に溶解し、バイン
ダー溶液(71重量部)を調製した。次に、電極活物質
(92重量部)と導電材(4重量部)をオングミルに投
入し20分間混合粉砕した。これに上記バインダー溶液
(71重量部)を加えてハイパーミキサーにて60分間
撹拌混合して、電極活物質組成塗料を得た。 Electrode active material composition paint / electrode active material (LiNi 0.8 Co 0.2 O 2 ) 92 parts by weight Central particle diameter 10 μm Conductive material (Graphite KS25 manufactured by LONZA) 4 parts by weight Flaky, central particle diameter 11 μm Binder (polyvinylidene fluoride (PVDF)) 4 parts by weight KYNAR741 manufactured by Elf Alchem Japan Co., Ltd. Solvent (N-methyl-2-pyrrolidone (NMP)) 67 parts by weight , PVDF
(4 parts by weight) was dissolved in NMP (67 parts by weight) to prepare a binder solution (71 parts by weight). Next, the electrode active material (92 parts by weight) and the conductive material (4 parts by weight) were charged into an ang mill and mixed and pulverized for 20 minutes. The above binder solution (71 parts by weight) was added thereto, and the mixture was stirred and mixed with a hyper mixer for 60 minutes to obtain an electrode active material composition paint.
【0024】次に、上記の電極活物質組成塗料を、ブレ
ードコーターにてアルミニウム箔の電極集電体の片面に
塗布・乾燥して電極層を形成した。その後、アルミニウ
ム箔の他の面に同様の塗布操作を行って電極層を形成し
た。このように両面に電極層が形成された電極集電体を
ローラープレス機で圧縮して電極層の単位体積における
電極活物質の量が2.9g/cm3 となるようにし、所
定の大きさに切断して実施例1の電極を得た。 (実施例2)ローラープレス機による圧縮の圧力を上げ
て、電極層の単位体積における電極活物質の量が3.2
g/cm3 となるようにした他は、実施例1と同様にし
て実施例2の電極を得た。 (実施例3)ローラープレス機による圧縮の圧力を下げ
て、電極層の単位体積における電極活物質の量が2.5
g/cm3 となるようにした他は、実施例1と同様にし
て実施例3の電極を得た。 (比較例1)ローラープレス機による圧縮の圧力を上げ
て、電極層の単位体積における電極活物質の量が3.4
g/cm3 となるようにした他は、実施例1と同様にし
て比較例1の電極を得た。 (比較例2)ローラープレス機による圧縮の圧力を下げ
て、電極層の単位体積における電極活物質の量が2.1
g/cm3 となるようにした他は、実施例1と同様にし
て比較例2の電極を得た。 (実施例4)実施例1と同様の調製手順により下記組成
の電極活物質組成塗料を調製した。Next, the above-mentioned electrode active material composition paint was applied to one side of an aluminum foil electrode current collector with a blade coater and dried to form an electrode layer. Thereafter, the same coating operation was performed on the other surface of the aluminum foil to form an electrode layer. The electrode current collector having the electrode layers formed on both surfaces is compressed by a roller press so that the amount of the electrode active material per unit volume of the electrode layer is 2.9 g / cm 3 , The electrode of Example 1 was obtained. (Example 2) The amount of the electrode active material per unit volume of the electrode layer was increased to 3.2 by increasing the pressure of the compression by the roller press.
An electrode of Example 2 was obtained in the same manner as in Example 1 except that g / cm 3 was obtained. (Example 3) The pressure of the compression by the roller press was reduced, and the amount of the electrode active material per unit volume of the electrode layer was reduced to 2.5.
An electrode of Example 3 was obtained in the same manner as in Example 1, except that g / cm 3 was obtained. (Comparative Example 1) The amount of the electrode active material in the unit volume of the electrode layer was 3.4 by increasing the pressure of the compression by the roller press.
An electrode of Comparative Example 1 was obtained in the same manner as in Example 1 except that g / cm 3 was obtained. (Comparative Example 2) The amount of the electrode active material per unit volume of the electrode layer was reduced to 2.1 by reducing the pressure of the compression by the roller press.
An electrode of Comparative Example 2 was obtained in the same manner as in Example 1 except that g / cm 3 was obtained. Example 4 An electrode active material composition paint having the following composition was prepared by the same preparation procedure as in Example 1.
【0025】 電極活物質組成塗料 ・電極活物質(LiNi0.8 Co0.2 O2 ) … 91重量部 中心粒径10μm ・導電材(LONZA社製Graphite KS25)… 4重量部 薄片状、中心粒径11μm ・バインダー(ポリフッ化ビニリデン(PVDF)) … 5重量部 エルフアルケムジャパン社製KYNAR741 ・溶剤(N−メチル−2−ピロリドン(NMP)) … 67重量部 次に、上記の電極活物質組成塗料を使用し、電極層の単
位体積における電極活物質の量が2.8g/cm3 とな
るようにした他は、実施例1と同様にして実施例4の電
極を得た。 (比較例3)実施例1と同様の調製手順により下記組成
の電極活物質組成塗料を調製した。 Electrode active material composition paint / electrode active material (LiNi 0.8 Co 0.2 O 2 ): 91 parts by weight, center particle diameter: 10 μm Conductive material (Graphite KS25 manufactured by LONZA): 4 parts by weight, flake, center particle diameter: 11 μm Binder (polyvinylidene fluoride (PVDF)) 5 parts by weight KYNAR741 manufactured by Elf Alchem Japan Co., Ltd. Solvent (N-methyl-2-pyrrolidone (NMP)) 67 parts by weight Next, the above-mentioned electrode active material composition paint is used. An electrode of Example 4 was obtained in the same manner as in Example 1, except that the amount of the electrode active material per unit volume of the electrode layer was 2.8 g / cm 3 . Comparative Example 3 An electrode active material composition paint having the following composition was prepared by the same preparation procedure as in Example 1.
【0026】 電極活物質組成塗料 ・電極活物質(LiNi0.8 Co0.2 O2 ) … 89重量部 中心粒径10μm ・導電材(LONZA社製Graphite KS25)… 4重量部 薄片状、中心粒径11μm ・バインダー(ポリフッ化ビニリデン(PVDF)) … 7重量部 エルフアルケムジャパン社製KYNAR741 ・溶剤(N−メチル−2−ピロリドン(NMP)) … 67重量部 次に、上記の電極活物質組成塗料を使用し、電極層の単
位体積における電極活物質の量が2.8g/cm3 とな
るようにした他は、実施例1と同様にして比較例3の電
極を得た。 (比較例4)実施例1と同様の調製手順により下記組成
の電極活物質組成塗料を調製した。 Electrode active material composition paint / electrode active material (LiNi 0.8 Co 0.2 O 2 ) 89 parts by weight Central particle diameter 10 μm Conductive material (Graphite KS25 manufactured by LONZA) 4 parts by weight Flaky, central particle diameter 11 μm Binder (polyvinylidene fluoride (PVDF)) 7 parts by weight KYNAR741 manufactured by Elf Alchem Japan Co., Ltd. Solvent (N-methyl-2-pyrrolidone (NMP)) 67 parts by weight Next, the above-mentioned electrode active material composition paint is used. Then, an electrode of Comparative Example 3 was obtained in the same manner as in Example 1, except that the amount of the electrode active material per unit volume of the electrode layer was 2.8 g / cm 3 . Comparative Example 4 An electrode active material composition paint having the following composition was prepared by the same preparation procedure as in Example 1.
【0027】 電極活物質組成塗料 ・電極活物質(LiNi0.8 Co0.2 O2 ) …95.5重量部 中心粒径10μm ・導電材(LONZA社製Graphite KS25)… 4重量部 薄片状、中心粒径11μm ・バインダー(ポリフッ化ビニリデン(PVDF)) …0.5重量部 エルフアルケムジャパン社製KYNAR741 ・溶剤(N−メチル−2−ピロリドン(NMP)) … 67重量部 次に、上記の電極活物質組成塗料を使用し、電極層の単
位体積における電極活物質の量が2.8g/cm3 とな
るようにした他は、実施例1と同様にして比較例4の電
極を得た。 (実施例5)導電材としてLONZA社製Graphi
te KS25の代わりに、LONZA社製Graph
ite KS44(薄片状、中心粒径17μm)を使用
した他は、実施例1と同様にして実施例5の電極を得
た。 (比較例5)導電材としてLONZA社製Graphi
te KS25の代わりに、薄片状のアセチレンブラッ
ク(電気化学工業(株)製デンカブラック 中心粒径1
1μm)を使用した他は、実施例1と同様にして比較例
5の電極を得た。 (比較例6)導電材としてLONZA社製Graphi
te KS25の代わりに、LONZA社製Graph
ite KS6(薄片状、中心粒径3.8μm)を使用
した他は、実施例1と同様にして比較例6の電極を得
た。 (比較例7)導電材としてLONZA社製Graphi
te KS25の代わりに、大阪ガス(株)製MCMB
(球形状、中心粒径11μm)を使用した他は、実施例
1と同様にして比較例7の電極を得た。 (各電極の評価)上述の各電極(実施例1〜5、比較例
1〜7)について、電極特性、電極集電体に対する電極
層の付着性を下記の方法で評価して結果を下記表1に示
した。 Electrode active material composition paint / electrode active material (LiNi 0.8 Co 0.2 O 2 ) 95.5 parts by weight Central particle diameter 10 μm Conductive material (Graphite KS25 manufactured by LONZA) 4 parts by weight Flaky, central particle diameter 11 μm Binder (polyvinylidene fluoride (PVDF)) 0.5 part by weight KYNAR741 manufactured by ELF Alchem Japan Co., Ltd. Solvent (N-methyl-2-pyrrolidone (NMP)) 67 parts by weight Next, the above electrode active material An electrode of Comparative Example 4 was obtained in the same manner as in Example 1, except that the composition paint was used and the amount of the electrode active material per unit volume of the electrode layer was 2.8 g / cm 3 . (Example 5) Graphi manufactured by LONZA as a conductive material
te Instead of KS25, Graph made by LONZA
An electrode of Example 5 was obtained in the same manner as in Example 1, except that item KS44 (flake shape, center particle size: 17 μm) was used. (Comparative Example 5) Graphi manufactured by LONZA as a conductive material
Instead of KS25, flaky acetylene black (Denka Black manufactured by Denki Kagaku Kogyo KK)
An electrode of Comparative Example 5 was obtained in the same manner as in Example 1 except that 1 μm) was used. (Comparative Example 6) Graphi manufactured by LONZA as a conductive material
te Instead of KS25, Graph made by LONZA
An electrode of Comparative Example 6 was obtained in the same manner as in Example 1, except that item KS6 (flake shape, center particle size: 3.8 μm) was used. (Comparative Example 7) Graphi manufactured by LONZA as a conductive material
instead of te KS25, MCMB made by Osaka Gas Co., Ltd.
An electrode of Comparative Example 7 was obtained in the same manner as in Example 1 except that (spherical shape, central particle size: 11 μm) was used. (Evaluation of each electrode) For each of the above-mentioned electrodes (Examples 1 to 5 and Comparative Examples 1 to 7), the electrode characteristics and the adhesion of the electrode layer to the electrode current collector were evaluated by the following methods, and the results were shown in the following table. 1 is shown.
【0028】電極特性 各電極を縦25mm、横20mmの大きさに切断し、上
端部を5mmの幅で電極層を除去して20mm角の電極
層を残した。電極層を除去した上端部にリードとしてス
テンレス線をスポット溶接し、電極(作用極)を作成し
た。次に、この電極(作用極)を用いて、図1に示した
ような充放電容量測定用セルを作製した。すなわち、ビ
ーカー1中に、ステンレス線に接続したリチウム板を用
いた1対の対極4と、同様の参照極5を有するルギン管
6と、さらに対極4の中間に上記電極(作用極)3を配
置し、電解液7には、電解質塩として1mol/lの過
塩素酸リチウムをエチレンカーボネイトとジエチルカー
ボネイトの体積比1:1の混合溶媒に溶解したものを用
い、ビーカー1およびルギン管6をシリコン栓2で封じ
て充放電容量測定用セルを作製した。次いで、充放電容
量測定用セルに、6mAの定電流で3Vから4.2V
(Potential vs Li/Li+)までの範
囲で充放電を5回繰り返して行い、1回目のLiイオン
吸蔵時の容量(初期容量)と5回目の容量を測定した。 Electrode Characteristics Each electrode was cut to a size of 25 mm in length and 20 mm in width, and the upper end was removed with a width of 5 mm to leave a 20 mm square electrode layer. A stainless wire was spot-welded as a lead to the upper end from which the electrode layer had been removed to form an electrode (working electrode). Next, a charge / discharge capacity measurement cell as shown in FIG. 1 was produced using this electrode (working electrode). That is, in the beaker 1, a pair of counter electrodes 4 using a lithium plate connected to a stainless steel wire, a lugine tube 6 having a similar reference electrode 5, and the above-mentioned electrode (working electrode) 3 between the counter electrodes 4. The electrolyte solution 7 was prepared by dissolving 1 mol / l lithium perchlorate as an electrolyte salt in a mixed solvent of ethylene carbonate and diethyl carbonate at a volume ratio of 1: 1. The cell was sealed with the stopper 2 to produce a cell for charge / discharge capacity measurement. Next, a constant current of 6 mA was applied to the charge / discharge capacity measurement cell from 3 V to 4.2 V.
Charge / discharge was repeated five times in the range up to (Potential vs Li / Li +), and the capacity (initial capacity) at the time of the first Li ion occlusion and the fifth capacity were measured.
【0029】付着性 JIS K 5400 8.5.1碁盤目法に準じて試
験を行い、電極のアルミニウム箔への付着性を調べた。
すなわち、アルミニウム箔の両面に形成した電極の片面
を引掻き試験器(ERICHSEN社製MODEL29
5、1mm間隔11枚刃)を用いて碁盤目状に切り傷を
つけJISに準じて点数をつけた。 Adhesion A test was conducted in accordance with the JIS K 5400 8.5. 1 grid method to examine the adhesion of the electrode to the aluminum foil.
That is, one side of an electrode formed on both sides of an aluminum foil was scratched with a scratch tester (Model 29, manufactured by ERICHSEN).
(5 blades, 11 blades at 1 mm intervals) were cut in a grid pattern and scored according to JIS.
【0030】[0030]
【表1】 表1に示されるように、実施例1〜5の電極は、いずれ
も5回の充放電において容量が高いレベルで維持され、
また、電極層の付着性も良好であった。[Table 1] As shown in Table 1, the electrodes of Examples 1 to 5 were all maintained at a high level in five charge / discharge cycles,
Also, the adhesion of the electrode layer was good.
【0031】これに対して、電極層中の電極活物質量が
2.5g/cm3 〜3.2g/cm3 の範囲からはずれ
る電極(比較例1、2)は、充放電において容量が低い
ものであった。また、電極層中のバインダー量が5重量
%を超える電極(比較例3)は充放電における容量が低
く、バインダー量が1重量%を下回る電極(比較例4)
は、塗膜形成が不十分で、付着性が極めて悪く電解液中
で剥れが生じて測定できないものであった。さらに、導
電材としてアセチレンブラックを使用した電極(比較例
5)は、5回の充放電における容量は本発明と同レベル
にあるが、電極の付着性が悪く実用に供し得ないもので
あった。中心粒径が電極活物質の中心粒径よりも小さい
薄片状のグラファイトを使用した電極(比較例6)と、
薄片状ではなく球状のグラファイトを使用した電極(比
較例7)は、充放電における容量が低いものであった。[0031] On the contrary, the electrode (Comparative Examples 1 and 2) in which the electrode active material of the electrode layer is outside the range of 2.5g / cm 3 ~3.2g / cm 3 is less capacity in the charge and discharge Was something. An electrode having a binder amount in the electrode layer of more than 5% by weight (Comparative Example 3) has a low capacity in charge and discharge, and an electrode having a binder amount of less than 1% by weight (Comparative Example 4).
Was insufficient in film formation and adhesion was extremely poor, and peeling occurred in the electrolytic solution, making measurement impossible. Further, the electrode using acetylene black as the conductive material (Comparative Example 5) had the same level of capacity as that of the present invention in five charge / discharge cycles, but had poor adhesion of the electrode and could not be put to practical use. . An electrode using flaky graphite having a center particle diameter smaller than the center particle diameter of the electrode active material (Comparative Example 6);
The electrode using the spherical graphite instead of the flaky graphite (Comparative Example 7) had a low capacity in charge and discharge.
【0032】[0032]
【発明の効果】以上詳述したように、本発明によれば電
極集電体上に少なくとも電極活物質、導電材、バインダ
ーからなる電極層を設け、上記電極活物質をLix Ni
y MzO2 (但し、0.8<x<1.2、0.8<y+
z<1.2、0≦z≦0.35であり、MはCo,A
l,Mn,Feの1種類以上)として電極層中に2.5
g/cm3 〜3.2g/cm3 の範囲内で含有させ、電
極層中のバインダー量を1〜5重量%の範囲内とし、導
電材を中心粒径が電極活物質の中心粒径よりも大きい薄
片状のグラファイトとして非水電解質電池用電極とする
ので、電極活物質と導電材とのつながりが良好で電解質
イオンの流れが極めて良好なものとなり、電極集電体へ
の電極層の付着性が優れ、かつ、充放電容量の高い非水
電解質電池用電極が可能となる。As described in detail above, according to the present invention, an electrode layer made of at least an electrode active material, a conductive material and a binder is provided on an electrode current collector, and the electrode active material is made of Li x Ni.
y M z O 2 (provided that 0.8 <x <1.2, 0.8 <y +
z <1.2, 0 ≦ z ≦ 0.35, and M is Co, A
1, at least one of Mn and Fe) in the electrode layer.
g / cm 3 is contained in the range of ~3.2g / cm 3, the amount of binder in the electrode layer is in the range of 1 to 5 wt%, median particle size of conductive material than the median particle size of the electrode active material The electrode for the non-aqueous electrolyte battery is made of large flaky graphite, so the connection between the electrode active material and the conductive material is good, the flow of electrolyte ions is very good, and the electrode layer adheres to the electrode current collector. An electrode for a non-aqueous electrolyte battery having excellent chargeability and high charge / discharge capacity can be obtained.
【図1】充放電容量測定用セルの構造を示す概略構成図
である。FIG. 1 is a schematic configuration diagram showing the structure of a charge / discharge capacity measurement cell.
1…ビーカー 2…シリコン栓 3…電極(作用極) 4…対極 5…参照極 6…ルギン管 7…電解液 DESCRIPTION OF SYMBOLS 1 ... Beaker 2 ... Silicon stopper 3 ... Electrode (working electrode) 4 ... Counter electrode 5 ... Reference electrode 6 ... Luggin tube 7 ... Electrolyte
Claims (1)
し、0.8<x<1.2、0.8<y+z<1.2、0
≦z≦0.35であり、MはCo,Al,Mn,Feの
1種類以上)である電極活物質、導電材、バインダーか
らなる電極層が電極集電体上に形成された非水電解質電
池用電極において、電極層の単位体積における電極活物
質の量が2.5g/cm3 〜3.2g/cm3 の範囲内
であり、電極層中のバインダー量が1〜5重量%に範囲
内であり、導電材は中心粒径が電極活物質の中心粒径よ
りも大きい薄片状のグラファイトであることを特徴とす
る非水電解質電池用電極。At least Li x Ni y M z O 2 (provided that 0.8 <x <1.2, 0.8 <y + z <1.2, 0
≦ z ≦ 0.35, and M is one or more of Co, Al, Mn, and Fe), and a non-aqueous electrolyte in which an electrode layer made of an electrode active material, a conductive material, and a binder is formed on an electrode current collector. in the battery electrode, in the range the amount of the electrode active material in a unit volume of the electrode layers is 2.5g / cm 3 ~3.2g / cm 3 , a range amount of binder in the electrode layer is 1 to 5 wt% Wherein the conductive material is flaky graphite having a central particle diameter larger than the central particle diameter of the electrode active material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34578097A JP3884550B2 (en) | 1997-12-01 | 1997-12-01 | Method for producing electrode for non-aqueous electrolyte battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34578097A JP3884550B2 (en) | 1997-12-01 | 1997-12-01 | Method for producing electrode for non-aqueous electrolyte battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11162450A true JPH11162450A (en) | 1999-06-18 |
JP3884550B2 JP3884550B2 (en) | 2007-02-21 |
Family
ID=18378932
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP34578097A Expired - Fee Related JP3884550B2 (en) | 1997-12-01 | 1997-12-01 | Method for producing electrode for non-aqueous electrolyte battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3884550B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20030025037A (en) * | 2001-09-19 | 2003-03-28 | 주식회사 기노리텍 | Manufacturing method of thin film type electric double layer capacitor |
JP2003100299A (en) * | 2001-09-21 | 2003-04-04 | Tdk Corp | Lithium secondary battery |
WO2012043765A1 (en) * | 2010-09-30 | 2012-04-05 | 旭硝子株式会社 | Positive electrode material mixture for nonaqueous secondary cell, and positive electrode for nonaqueous secondary cell and secondary cell using the same |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06333558A (en) * | 1993-05-26 | 1994-12-02 | Sony Corp | Nonaqueous electrolytic secondary battery |
JPH0883607A (en) * | 1994-09-12 | 1996-03-26 | Asahi Chem Ind Co Ltd | Lithium secondary battery and electrode |
JPH09153360A (en) * | 1994-11-22 | 1997-06-10 | Sumitomo Chem Co Ltd | Lithium secondary battery positive electrode and its manufacture, and lithium secondary battery |
-
1997
- 1997-12-01 JP JP34578097A patent/JP3884550B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06333558A (en) * | 1993-05-26 | 1994-12-02 | Sony Corp | Nonaqueous electrolytic secondary battery |
JPH0883607A (en) * | 1994-09-12 | 1996-03-26 | Asahi Chem Ind Co Ltd | Lithium secondary battery and electrode |
JPH09153360A (en) * | 1994-11-22 | 1997-06-10 | Sumitomo Chem Co Ltd | Lithium secondary battery positive electrode and its manufacture, and lithium secondary battery |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20030025037A (en) * | 2001-09-19 | 2003-03-28 | 주식회사 기노리텍 | Manufacturing method of thin film type electric double layer capacitor |
JP2003100299A (en) * | 2001-09-21 | 2003-04-04 | Tdk Corp | Lithium secondary battery |
WO2012043765A1 (en) * | 2010-09-30 | 2012-04-05 | 旭硝子株式会社 | Positive electrode material mixture for nonaqueous secondary cell, and positive electrode for nonaqueous secondary cell and secondary cell using the same |
US9214665B2 (en) | 2010-09-30 | 2015-12-15 | Asahi Glass Company, Limited | Positive electrode material mixture, and positive electrode for non-aqueous secondary battery and secondary battery, employing it |
Also Published As
Publication number | Publication date |
---|---|
JP3884550B2 (en) | 2007-02-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3585122B2 (en) | Non-aqueous secondary battery and its manufacturing method | |
KR101460930B1 (en) | Electrode for electricity storage device, slurry for electrode, binder composition for electrode, and electricity storage device | |
US8802289B2 (en) | Composition for electrode comprising an iron compound with carbon and a (meth)acrylate-nitrile copolymer | |
CN107660316B (en) | Positive electrode of lithium electrochemical power generation device | |
WO2011080884A1 (en) | Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery | |
JP2971451B1 (en) | Lithium secondary battery | |
JP2007234277A (en) | Positive electrode for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery | |
EP2947711A1 (en) | Method for manufacturing conductive adhesive composition for electrochemical element electrode | |
CN107925090B (en) | Electrode active material slurry and lithium secondary battery comprising the same | |
JP4529288B2 (en) | Nonaqueous electrolyte secondary battery electrode | |
JP3157079B2 (en) | Manufacturing method of lithium secondary battery | |
JP3067544B2 (en) | Positive electrode for lithium secondary battery and method for producing the same | |
JP2005294078A (en) | Negative electrode for secondary battery, and secondary battery | |
JP4203866B2 (en) | Method for producing electrode for non-aqueous electrolyte battery | |
JPH10106542A (en) | Lithium secondary battery | |
CN115513513A (en) | Secondary battery and electric equipment | |
EP0986115A1 (en) | Electrode for non-aqueous electrolytic cells | |
JP4984384B2 (en) | Electrode manufacturing method | |
JP3884550B2 (en) | Method for producing electrode for non-aqueous electrolyte battery | |
JP2000348729A (en) | Positive electrode plate for lithium secondary battery, its manufacture and lithium secondary battery manufactured by using the positive electrode plate | |
JPH11312523A (en) | Electrode for battery and nonaqueous electrolyte battery | |
KR101083129B1 (en) | 2 method for preparing slurry composition for electrode of secondary cell | |
US6300012B1 (en) | Electrode for non-aqueous electrolytic cells | |
KR100502531B1 (en) | Method of producing an electrode for non-aqueous electrolytic cells | |
JP7475091B1 (en) | Slurry for positive electrode of lithium ion battery and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041201 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060406 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060606 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060807 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20061031 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20061117 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101124 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111124 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121124 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121124 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131124 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |