JPH11160368A - Current detection circuit - Google Patents

Current detection circuit

Info

Publication number
JPH11160368A
JPH11160368A JP34854597A JP34854597A JPH11160368A JP H11160368 A JPH11160368 A JP H11160368A JP 34854597 A JP34854597 A JP 34854597A JP 34854597 A JP34854597 A JP 34854597A JP H11160368 A JPH11160368 A JP H11160368A
Authority
JP
Japan
Prior art keywords
current
detection
transistor
resistor
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34854597A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Hanabusa
一義 花房
Ryoichi Shishikura
良一 宍倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP34854597A priority Critical patent/JPH11160368A/en
Publication of JPH11160368A publication Critical patent/JPH11160368A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Current Or Voltage (AREA)
  • Control Of Voltage And Current In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To calibrate an irregularity of a detection signal current resulting from an irregularity of a detection resistor and at the same time improve current detection accuracy, by making linear a relationship of a current to be detected which runs in the detection resistor and the detection signal current. SOLUTION: An emitter of a second transistor Q2 of a current mirror circuit having bases of a first and the second transistors Q1 , Q2 connected in common is connected to one end of a detection resistor R1 and moreover, a collector is connected to a constant current source 1 or a resistor. An emitter of the first transistor Q1 is connected to the other end of the detection resistor R1 via a series resistor R2 . The detection resistor R1 is inserted in series to a current detection line, and a current Iin to be detected which runs in the detection resistor R1 is detected at the collector side of the first transistor Q1 .

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、検出抵抗を電流検
出線路に直列に挿入して電流検出を行う電流検出回路に
係り、とくにDC−DCコンバータの過電流保護回路等
に用いることのできる電流検出回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a current detection circuit for detecting a current by inserting a detection resistor in series with a current detection line, and more particularly to a current detection circuit which can be used for an overcurrent protection circuit of a DC-DC converter. It relates to a detection circuit.

【0002】[0002]

【従来の技術】従来、レギュレータの保護回路として、
カレントミラー回路を応用した電流検出回路が特開昭6
4−67613号で提案されている。図9はそこで開示
されている電流検出回路であり、トランジスタQ1,Q2
のベースを共通に接続したカレントミラー回路のQ1,
Q2のエミッタを検出抵抗R1の両端にそれぞれ接続しか
つQ2のコレクタを定電流源1に接続して、前記検出抵
抗R1を電流検出線路に直列に挿入している。
2. Description of the Related Art Conventionally, as a protection circuit for a regulator,
A current detection circuit using a current mirror circuit is disclosed in
No. 4-67613. FIG. 9 shows a current detection circuit disclosed therein, which includes transistors Q1 and Q2.
Q1 of the current mirror circuit with the bases connected in common
The emitter of Q2 is connected to both ends of the detection resistor R1 and the collector of Q2 is connected to the constant current source 1, and the detection resistor R1 is inserted in series with the current detection line.

【0003】図9において、電流検出線路に流れる被検
出電流をIin、定電流源1の電流をI1、トランジスタ
Q1のコレクタより流出する検出信号電流(出力電流)
をIoutとしたとき、IinとIoutとの関係は以下の各式
により導出される。
In FIG. 9, the detected current flowing through the current detection line is Iin, the current of the constant current source 1 is I 1 , and a detection signal current (output current) flowing out of the collector of the transistor Q1.
Is Iout, the relationship between Iin and Iout is derived by the following equations.

【0004】Iout≒IE(Q1) (但し、IE(Q1):Q1の
エミッタ電流) とすると、 Iout=IS1exp{(qVBE(Q1)/kT)−1} …(1) (但し、IS1:Q1の飽和電流、VBE(Q1):Q1のベー
ス、エミッタ間電圧、q:電子の電荷量、k:ボルツマ
ン定数、T:絶対温度) I1≒IE(Q2) (但し、IE(Q2):Q2のエミッタ電流)
とすると、 I1=IS2exp{(qVBE(Q2)/kT)−1} …(2) (但し、IS2:Q2の飽和電流、VBE(Q2):Q2のベー
ス、エミッタ間電圧) VBE(Q2)=(kT/q){ln(I1/IS2)+1} …(3) また、VBE(Q1)は次式でも表せる。 VBE(Q1)=VBE(Q2)+IinR1 …(4) (4)式に(3)式を代入すると、 VBE(Q1)=(kT/q){ln(I1/IS2)+1}+IinR1 …(5) モノリシックの対のトランジスタをQ1,Q2に使用する
と、 IS1≒IS2 …(6) といえる。(5)式及び(6)式を(1)式に代入すると、 Iout=IS1exp{ln(I1/IS2)+1+(q/kT)IinR1−1} =(IS1/IS2)I1exp{(q/kT)IinR1} =I1exp{(q/kT)R1Iin} …(7) (7)式より検出信号電流Ioutは被検出電流Iinに対して
指数関数的に変化することになる。
[0004] Iout ≒ I E (Q1) (where, I E (Q1): Q1 emitter current) of the to, Iout = I S1 exp {( qV BE (Q1) / kT) -1} ... (1) ( Where I S1 : saturation current of Q1, V BE (Q1) : base-emitter voltage of Q1, q: charge of electrons, k: Boltzmann constant, T: absolute temperature. I 1 IE (Q2) ( However, IE (Q2) : emitter current of Q2)
Then, I 1 = I S2 exp {(qV BE (Q2) / kT) −1} (2) (where, I S2 : saturation current of Q2, V BE (Q2) : base-emitter voltage of Q2 V BE (Q2) = (kT / q) {ln (I 1 / I S2 ) +1} (3) V BE (Q1) can also be expressed by the following equation. V BE (Q1) = V BE (Q2) + IinR1 (4) By substituting equation (3) into equation (4), V BE (Q1) = (kT / q) {ln (I 1 / I S2 ) +1 } + IinR1 ... (5) with the transistor Q1, Q2 of the pair of monolithic, I S1 ≒ I S2 ... can be said that (6). (5) and are substituted into the expression (6) (1), Iout = I S1 exp {ln (I 1 / I S2) +1+ (q / kT) IinR1-1} = (I S1 / I S2) I 1 exp {(q / kT ) IinR1} = I 1 exp {(q / kT) R1Iin} ... (7) (7) detection signal current Iout from the equation changes exponentially with respect to the detected current Iin Will be.

【0005】図10は図9の如き従来回路における被検
出電流Iinと検出信号電流(出力電流)Ioutとの関係
を表したグラフであり、検出抵抗R1一定の条件下で両
者は指数関数的な関係となっている。ここでは、検出抵
抗R1が標準値R1(typ)から最大値R1(max)〜最小
値R1(min)の範囲でばらつくものとして、標準値R1
(typ)、最大値R1(max)、最小値R1(min)のそれ
ぞれの場合について被検出電流Iinと検出信号電流Iou
tとの関係を示す曲線を描いている。
FIG. 10 is a graph showing the relationship between the detected current Iin and the detection signal current (output current) Iout in the conventional circuit as shown in FIG. Relationship. Here, assuming that the detection resistor R1 varies from the standard value R1 (typ) to the maximum value R1 (max) to the minimum value R1 (min), the standard value R1
(Typ), the maximum value R1 (max), and the minimum value R1 (min) in each case, the detected current Iin and the detection signal current Iou
The curve showing the relationship with t is drawn.

【0006】[0006]

【発明が解決しようとする課題】ところで、図10から
わかるように、図9の従来回路では、ある被検出電流I
inに対して検出抵抗R1が僅かにばらついても検出信号
電流Ioutは大きく変化することになり、それを校正す
ることが困難であり(とくにR1の抵抗値に変更を加え
ることなく校正するのが難しい)、電流検出精度を向上
させることが難しい問題があった。
By the way, as can be seen from FIG. 10, in the conventional circuit of FIG.
Even if the detection resistor R1 varies slightly with respect to in, the detection signal current Iout greatly changes, and it is difficult to calibrate it (especially, it is necessary to calibrate without changing the resistance value of R1). It is difficult to improve the current detection accuracy.

【0007】本発明は、上記の点に鑑み、検出抵抗を流
れる被検出電流と検出信号電流との関係をリニアにし
て、検出抵抗のばらつきに起因する検出信号電流のばら
つきを校正可能とし、あわせて電流検出精度の向上を図
った電流検出回路を提供することを目的とする。
In view of the above, the present invention makes the relationship between the current to be detected flowing through the detection resistor and the detection signal current linear, and makes it possible to calibrate the variation in the detection signal current caused by the variation in the detection resistor. It is an object of the present invention to provide a current detection circuit that improves the current detection accuracy.

【0008】本発明のその他の目的や新規な特徴は後述
の実施の形態において明らかにする。
[0008] Other objects and novel features of the present invention will be clarified in embodiments described later.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、本発明の電流検出回路は、第1及び第2のトランジ
スタのベースを共通に接続したカレントミラー回路の前
記第2のトランジスタのエミッタを検出抵抗の一端に接
続しかつコレクタを定電流源に接続し、前記第1のトラ
ンジスタのエミッタは直列抵抗を介して前記検出抵抗の
他端に接続し、前記検出抵抗を電流検出線路に直列に挿
入するとともに、前記検出抵抗に流れる被検出電流を前
記第1のトランジスタのコレクタ側にて検出する構成と
している。
In order to achieve the above object, a current detecting circuit according to the present invention comprises an emitter of the second transistor in a current mirror circuit in which the bases of the first and second transistors are connected in common. Is connected to one end of a detection resistor, the collector is connected to a constant current source, the emitter of the first transistor is connected to the other end of the detection resistor via a series resistor, and the detection resistor is connected in series to a current detection line. And the detected current flowing through the detection resistor is detected on the collector side of the first transistor.

【0010】前記電流検出回路において、前記第1のト
ランジスタのコレクタ側に前記第1のトランジスタと同
極性の第3のトランジスタを直列に挿入し、該第3のト
ランジスタのベースを前記第2のトランジスタのコレク
タに接続した構成としてもよい。
In the current detection circuit, a third transistor having the same polarity as the first transistor is inserted in series on the collector side of the first transistor, and the base of the third transistor is connected to the second transistor. May be connected to the collector.

【0011】[0011]

【発明の実施の形態】以下、本発明に係る電流検出回路
の実施の形態を図面に従って説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The embodiments of the current detection circuit according to the present invention will be described below with reference to the drawings.

【0012】図1は本発明に係る電流検出回路の第1の
実施の形態であって、基本的な回路構成を示す。この電
流検出回路は、第1及び第2のPNPトランジスタQ
1,Q2のベースを共通に接続したカレントミラー回路の
前記第2のトランジスタQ2のエミッタを検出抵抗R1の
一端(電流流出端)に接続しかつコレクタを定電流源1
(電流I1)に接続し、前記第1のトランジスタQ1のエ
ミッタは直列抵抗R2を介して検出抵抗R1の他端(電流
流入端)に接続し、検出抵抗R1を電流検出線路に直列
に挿入している。そして、前記検出抵抗R1に流れる被
検出電流Iinを、第1のトランジスタQ1のコレクタ側
の検出信号電流Ioutから検出する構成となっている。
FIG. 1 shows a first embodiment of a current detection circuit according to the present invention, and shows a basic circuit configuration. This current detection circuit includes first and second PNP transistors Q
1, the emitter of the second transistor Q2 of the current mirror circuit in which the bases of Q2 are commonly connected is connected to one end (current outflow end) of the detection resistor R1, and the collector is a constant current source 1
(Current I 1 ), the emitter of the first transistor Q1 is connected to the other end (current inflow end) of the detection resistor R1 via the series resistor R2, and the detection resistor R1 is inserted in series with the current detection line. doing. The detected current Iin flowing through the detection resistor R1 is detected from the detection signal current Iout on the collector side of the first transistor Q1.

【0013】なお、モノリシックの対のトランジスタを
Q1,Q2に使用することが望ましい。また、電流検出線
路の端子Pは、グランド線路のグランド端子Gに対して
高い電位となっていることが前提であり、Q1コレクタ
に接続した出力端子2とグランド端子G間の抵抗R3
は、検出信号電流Ioutに比例した検出信号電圧を取り
出したい場合に接続する。
It is desirable to use a monolithic pair of transistors for Q1 and Q2. It is assumed that the terminal P of the current detection line has a higher potential than the ground terminal G of the ground line, and the resistance R3 between the output terminal 2 connected to the Q1 collector and the ground terminal G is assumed.
Is connected when it is desired to extract a detection signal voltage proportional to the detection signal current Iout.

【0014】前記第1のトランジスタQ1のエミッタを
直列抵抗R2を介して検出抵抗R1に接続した図1の回路
の場合に、検出信号電流Ioutが被検出電流Iinに対し
リニアに変化する理由を以下の各式により示す。
In the case of the circuit shown in FIG. 1 in which the emitter of the first transistor Q1 is connected to the detection resistor R1 via the series resistor R2, the reason why the detection signal current Iout changes linearly with respect to the detected current Iin is as follows. Are shown by the following equations.

【0015】前記(4)式が直列抵抗R2を挿入したことに
より次式となる。 VBE(Q1)+IoutR2=VBE(Q2)+IinR1 …(8) また(1)式よりVBE(Q1)は、 VBE(Q1)=(kT/q){ln(Iout/IS1)+1} …(9) (3)式及び(9)式を(8)式に代入すると、 Iin=(kT/qR1)ln(Iout/I1)+(R2/R1)Iout …(10) (10)式を検出信号電流Ioutで微分すると、 (dIin/dIout)=(R2/R1)+(kT/qR1・loge・Iout) …(11) (11)式でR2>>(kT/q・loge・Iout)≒1.987×10-4
(T/Iout)ならば、検出信号電流Ioutは被検出電流
Iinに対してリニアに変化することがわかり、このよう
なR2の値に設定することは十分可能である。
The equation (4) becomes the following equation by inserting the series resistor R2. V BE (Q1) + I out R 2 = V BE (Q 2) + I in R 1 (8) From the equation (1), V BE (Q 1) is V BE (Q 1) = (kT / q) {ln (Iout / I S1 ) +1 } ... (9) (3) and (9) substituting expression (8) below, Iin = (kT / qR1) ln (Iout / I 1) + (R2 / R1) Iout ... (10) (10 ) Is differentiated by the detection signal current Iout. (DIin / dIout) = (R2 / R1) + (kT / qR1 · log · Iout) (11) In the equation (11), R2 >> (kT / q · log)・ Iout) ≒ 1.987 × 10 -4
If (T / Iout), it is understood that the detection signal current Iout changes linearly with respect to the detected current Iin, and it is sufficiently possible to set such a value of R2.

【0016】この第1の実施の形態によれば、次の通り
の効果を得ることができる。
According to the first embodiment, the following effects can be obtained.

【0017】(1) 検出信号電流Ioutは被検出電流Iin
に対してリニアに変化する(実質的に比例関係とな
る)。このため、検出抵抗R1にばらつきがある場合で
も、直列抵抗R2又は抵抗R3の抵抗値を調整することで
校正可能である。
(1) The detection signal current Iout is the detected current Iin
Changes linearly (substantially proportionally). Therefore, even when the detection resistance R1 varies, calibration can be performed by adjusting the resistance value of the series resistance R2 or the resistance R3.

【0018】(2) 検出抵抗R1のばらつきに起因する検
出信号電流Ioutの変動は図9の従来回路に比べて少な
くでき、電流検出精度の向上を図ることができる。
(2) The fluctuation of the detection signal current Iout due to the fluctuation of the detection resistor R1 can be reduced as compared with the conventional circuit of FIG. 9, and the current detection accuracy can be improved.

【0019】図2は本発明の第2の実施の形態を示す。
この場合、第2のトランジスタQ2のコレクタ側の定電
流源を抵抗R4,R5及び定電圧ダイオードZDで実現し
ている。また、第1のトランジスタQ1のコレクタとグ
ランド端子G間に検出信号電流Ioutを流す抵抗R31,
R32の直列回路が接続され、抵抗R31,R32の接続点が
出力端子3となっている。その他の構成は前述した第1
の実施の形態と同様である。
FIG. 2 shows a second embodiment of the present invention.
In this case, a constant current source on the collector side of the second transistor Q2 is realized by resistors R4 and R5 and a constant voltage diode ZD. Also, a resistor R31, which allows a detection signal current Iout to flow between the collector of the first transistor Q1 and the ground terminal G,
A series circuit of R32 is connected, and a connection point of the resistors R31 and R32 is an output terminal 3. Other configurations are the same as those of the first
This is the same as the embodiment.

【0020】図2において、電流検出線路の端子Pとグ
ランド線路のグランド端子G間に入力電圧Vinを供給
し、検出抵抗R1を通して被検出電流Iinが流れるよう
に負荷Ldを接続して、被検出電流Iinと出力端子3の
検出信号電圧Vsenseとの関係を求めたところ、図3の
グラフのようになった。但し、図3中、線(イ)は入力
電圧Vin=20V、線(ロ)は入力電圧Vin=30V、
線(ハ)は入力電圧Vin=40Vの場合であり、回路定
数は、R1:0.39Ω、R2:39Ω、R31:1kΩ、
R32:470Ω、R4:4.7kΩ、,R5:10kΩ、
ZDのツェナー電圧:5Vである。これらより、入力電
圧Vinが一定の条件下で、被検出電流Iinと検出信号電
圧Vsenseとの関係がリニアであることが明らかとなっ
た。
In FIG. 2, an input voltage Vin is supplied between a terminal P of a current detection line and a ground terminal G of a ground line, and a load Ld is connected so that a current Iin to be detected flows through a detection resistor R1. When the relationship between the current Iin and the detection signal voltage Vsense at the output terminal 3 was obtained, the graph shown in FIG. 3 was obtained. However, in FIG. 3, the line (a) is the input voltage Vin = 20 V, the line (b) is the input voltage Vin = 30 V,
The line (c) shows the case where the input voltage Vin = 40 V, and the circuit constants are R1: 0.39Ω, R2: 39Ω, R31: 1 kΩ,
R32: 470Ω, R4: 4.7kΩ, R5: 10kΩ,
Zener voltage of ZD: 5V. From these, it became clear that the relationship between the detected current Iin and the detection signal voltage Vsense is linear under the condition that the input voltage Vin is constant.

【0021】なお、入力電圧Vinが変化するのに伴って
検出信号電圧Vsenseが変動するのは、トランジスタQ1
のVCEが変化することに起因するアーリー効果と呼ばれ
る現象であり、入力電圧Vinが変化する条件下で使用す
る場合には注意を要する。
The reason why the detection signal voltage Vsense fluctuates as the input voltage Vin fluctuates is that the transistor Q1
Is a phenomenon called the Early effect caused by a change in V CE of the device, and care must be taken when the device is used under conditions where the input voltage Vin changes.

【0022】図4は本発明の第3の実施の形態であっ
て、上記のアーリー効果を解消するためにウィルソンの
カレントミラー回路(ウィルソンミラー回路)を応用し
た回路構成を示す。この図において、第1のトランジス
タQ1のコレクタ側に第1のトランジスタQ1と同極性の
第3のトランジスタQ3を直列に挿入し、トランジスタ
Q1,Q2のベースを第3のトランジスタQ3のエミッタ
に接続し、第3のトランジスタQ3のベースを第2のト
ランジスタQ2のコレクタに接続し、Q3のコレクタを出
力端子2に接続している。なお、その他の構成は前述し
た第1の実施の形態と同様である。
FIG. 4 shows a third embodiment of the present invention, and shows a circuit configuration in which a Wilson current mirror circuit (Wilson mirror circuit) is applied to eliminate the Early effect. In this figure, a third transistor Q3 having the same polarity as the first transistor Q1 is inserted in series on the collector side of the first transistor Q1, and the bases of the transistors Q1 and Q2 are connected to the emitter of the third transistor Q3. , The base of the third transistor Q3 is connected to the collector of the second transistor Q2, and the collector of Q3 is connected to the output terminal 2. The other configuration is the same as that of the first embodiment.

【0023】この第3の実施の形態によれば、アーリー
効果を解消して、入力電圧の変化伴う検出信号電流Iou
tの変動を除去でき、電流検出精度のいっそうの改善を
図ることができる。
According to the third embodiment, the Early effect is eliminated and the detection signal current Iou accompanying the change in the input voltage is reduced.
The fluctuation of t can be removed, and the current detection accuracy can be further improved.

【0024】図5は本発明の第4の実施の形態であっ
て、上記のアーリー効果を解消するためにウィルソンの
カレントミラー回路(ウィルソンミラー回路)を応用し
た場合の具体的な回路構成を示す。この場合、第2のト
ランジスタQ2のコレクタ側の定電流源を抵抗R4,R5
及び定電圧ダイオードZDで実現している。また、第3
のトランジスタQ3のコレクタとグランド端子G間に検
出信号電流Ioutを流す抵抗R31,R32の直列回路が接
続され、抵抗R31,R32の接続点が出力端子3となって
いる。その他の構成は前述した第3の実施の形態と同様
である。
FIG. 5 shows a fourth embodiment of the present invention, and shows a specific circuit configuration in the case where a Wilson current mirror circuit (Wilson Miller circuit) is applied to eliminate the Early effect. . In this case, the constant current source on the collector side of the second transistor Q2 is connected to the resistors R4 and R5.
And a constant voltage diode ZD. Also, the third
A series circuit of resistors R31 and R32 for flowing the detection signal current Iout is connected between the collector of the transistor Q3 and the ground terminal G, and the connection point of the resistors R31 and R32 is the output terminal 3. Other configurations are the same as those of the third embodiment.

【0025】図5において、電流検出線路の端子Pとグ
ランド線路のグランド端子G間に入力電圧Vinを供給
し、検出抵抗R1を通して被検出電流Iinが流れるよう
に負荷Ldを接続して、被検出電流Iinと出力端子3の
検出信号電圧Vsenseとの関係を求めたところ、図6の
グラフのようになった。但し、図6中、線(ニ)は入力
電圧Vin=20V、線(ホ)は入力電圧Vin=30V,
40Vの場合であり、線(ニ)と線(ホ)とは大部分が
重なっていて入力電圧Vinが変化しても検出信号電圧V
senseは変動していないことがわかる。なお、回路定数
は、R1:0.39Ω、R2:39Ω、R31:1kΩ、R
32:470Ω、R4:4.7kΩ、,R5:10kΩ、Z
Dのツェナー電圧:5Vとした(図2と同じ)。これら
より、入力電圧にかかわりなく、被検出電流Iinと検出
信号電圧Vsenseとの関係がリニアであることが明らか
となった。
In FIG. 5, an input voltage Vin is supplied between a terminal P of a current detection line and a ground terminal G of a ground line, and a load Ld is connected so that a current Iin to be detected flows through a detection resistor R1. When the relationship between the current Iin and the detection signal voltage Vsense at the output terminal 3 was obtained, the graph shown in FIG. 6 was obtained. However, in FIG. 6, line (d) is input voltage Vin = 20V, line (e) is input voltage Vin = 30V,
In the case of 40 V, the line (d) and the line (e) are mostly overlapped, and even if the input voltage Vin changes, the detection signal voltage V
It can be seen that sense does not change. The circuit constants are: R1: 0.39Ω, R2: 39Ω, R31: 1 kΩ, R
32: 470Ω, R4: 4.7kΩ, R5: 10kΩ, Z
The Zener voltage of D was 5 V (same as FIG. 2). From these, it has become clear that the relationship between the detected current Iin and the detection signal voltage Vsense is linear regardless of the input voltage.

【0026】図7は本発明の第5の実施の形態であっ
て、検出信号電流Ioutの流れる可変抵抗VR1の両端に
生じる検出信号電圧と、基準電圧Vrefとを比較する比
較器4を設けている。その他の構成は前述した第1の実
施の形態と同様である。
FIG. 7 shows a fifth embodiment of the present invention, in which a comparator 4 for comparing a detection signal voltage generated at both ends of a variable resistor VR1 through which a detection signal current Iout flows with a reference voltage Vref is provided. I have. Other configurations are the same as those of the first embodiment.

【0027】この第5の実施の形態では、検出抵抗R1
を流れる被検出電流Iinが所定値を越えたとき、比較器
4の出力端子5にハイレベル出力が得られるので、過電
流検出等に応用できる。
In the fifth embodiment, the detection resistor R1
When the detected current Iin flowing through the comparator exceeds a predetermined value, a high-level output is obtained at the output terminal 5 of the comparator 4, so that it can be applied to overcurrent detection and the like.

【0028】図8は本発明の第6の実施の形態であっ
て、第1及び第2のトランジスタQ1,Q2としてNPN
トランジスタを用いている。従って、第1〜第5の実施
の形態とは電圧の正負が逆となり、グランド端子Gに接
続されたグランド線路を電流検出線路として、ここに検
出抵抗R1を挿入することができる。そして、検出抵抗
R1に流れる被検出電流Iinを、第1のトランジスタQ1
のコレクタ側の検出信号電流Ioutから検出する。つま
り、正側の端子Pと第1のトランジスタQ1のコレクタ
間に接続された可変抵抗VR2の両端の電圧から検出信
号電圧を取り出す構成となっている。なお、その他の構
成は前述した第1の実施の形態と同様である。
FIG. 8 shows a sixth embodiment of the present invention, in which NPN is used as the first and second transistors Q1, Q2.
A transistor is used. Therefore, the polarity of the voltage is opposite to that of the first to fifth embodiments, and the ground line connected to the ground terminal G can be used as the current detection line, and the detection resistor R1 can be inserted here. The detected current Iin flowing through the detection resistor R1 is supplied to the first transistor Q1.
From the detection signal current Iout on the collector side. That is, the detection signal voltage is extracted from the voltage across the variable resistor VR2 connected between the positive terminal P and the collector of the first transistor Q1. The other configuration is the same as that of the first embodiment.

【0029】この第6の実施の形態では、電流検出をグ
ランド側にて行うことが可能な利点がある。
The sixth embodiment has an advantage that the current can be detected on the ground side.

【0030】なお、図7及び図8の第5及び第6の実施
の形態に対しても、アーリー効果を解消するためにウィ
ルソンのカレントミラー回路(ウィルソンミラー回路)
を応用した回路構成に変更することが可能である。
The fifth and sixth embodiments shown in FIGS. 7 and 8 also have a Wilson current mirror circuit (Wilson mirror circuit) in order to eliminate the Early effect.
It is possible to change to a circuit configuration that applies.

【0031】また、入力変動が少ない条件下では、各実
施の形態における定電流源の代わりに電流安定化用抵抗
を用いることができ、図2や図5の定電圧ダイオードZ
Dを省略した回路構成とすることも可能である。
Further, under the condition that the input fluctuation is small, a current stabilizing resistor can be used instead of the constant current source in each embodiment, and the constant voltage diode Z shown in FIGS. 2 and 5 can be used.
It is also possible to adopt a circuit configuration in which D is omitted.

【0032】以上本発明の実施の形態について説明して
きたが、本発明はこれに限定されることなく請求項の記
載の範囲内において各種の変形、変更が可能なことは当
業者には自明であろう。
Although the embodiments of the present invention have been described above, it is obvious to those skilled in the art that the present invention is not limited to the embodiments and various modifications and changes can be made within the scope of the claims. There will be.

【0033】[0033]

【発明の効果】以上説明したように、本発明に係る電流
検出回路によれば、第1及び第2のトランジスタのベー
スを共通に接続したカレントミラー回路の前記第2のト
ランジスタのエミッタを検出抵抗の一端に接続し、前記
第1のトランジスタのエミッタは直列抵抗を介して前記
検出抵抗の他端に接続し、前記検出抵抗を電流検出線路
に直列に挿入した構成であるから、前記検出抵抗に流れ
る被検出電流に略比例した検出信号(電圧又は電流)を
前記第1のトランジスタのコレクタ側より取り出すこと
が可能である。従って、前記検出抵抗のばらつきに起因
する前記検出信号のずれを容易に校正可能である。ま
た、前記検出抵抗のばらつきに起因する検出信号の変動
は従来回路に比べて少なく、電流検出精度の向上を図る
ことができる。
As described above, according to the current detection circuit of the present invention, the emitter of the second transistor of the current mirror circuit in which the bases of the first and second transistors are connected in common is connected to the detection resistor. , The emitter of the first transistor is connected to the other end of the detection resistor via a series resistor, and the detection resistor is inserted in series with the current detection line. It is possible to take out a detection signal (voltage or current) substantially proportional to the flowing current to be detected from the collector side of the first transistor. Therefore, it is possible to easily calibrate the deviation of the detection signal due to the variation of the detection resistance. Further, the variation of the detection signal due to the variation of the detection resistor is smaller than that of the conventional circuit, and the current detection accuracy can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る電流検出回路の第1の実施の形態
を示す回路図である。
FIG. 1 is a circuit diagram showing a first embodiment of a current detection circuit according to the present invention.

【図2】本発明の第2の実施の形態を示す回路図であ
る。
FIG. 2 is a circuit diagram showing a second embodiment of the present invention.

【図3】第2の実施の形態における被検出電流Iinと検
出信号電圧Vsenseとの関係を示すグラフである。
FIG. 3 is a graph showing a relationship between a detected current Iin and a detection signal voltage Vsense in the second embodiment.

【図4】本発明の第3の実施の形態を示す回路図であ
る。
FIG. 4 is a circuit diagram showing a third embodiment of the present invention.

【図5】本発明の第4の実施の形態を示す回路図であ
る。
FIG. 5 is a circuit diagram showing a fourth embodiment of the present invention.

【図6】第4の実施の形態における被検出電流Iinと検
出信号電圧Vsenseとの関係を示すグラフである。
FIG. 6 is a graph showing a relationship between a detected current Iin and a detection signal voltage Vsense in the fourth embodiment.

【図7】本発明の第5の実施の形態を示す回路図であ
る。
FIG. 7 is a circuit diagram showing a fifth embodiment of the present invention.

【図8】本発明の第6の実施の形態を示す回路図であ
る。
FIG. 8 is a circuit diagram showing a sixth embodiment of the present invention.

【図9】電流検出回路の従来回路を示す回路図である。FIG. 9 is a circuit diagram showing a conventional circuit of a current detection circuit.

【図10】従来回路における被検出電流Iinと検出信号
電流Ioutとの関係を示すグラフである。
FIG. 10 is a graph showing a relationship between a detected current Iin and a detection signal current Iout in a conventional circuit.

【符号の説明】[Explanation of symbols]

1 定電流源 2,3,5 出力端子 4 比較器 Q1,Q2,Q3 トランジスタ R1,R2,R3,R4,R5,R31,R32 抵抗 ZD 定電圧ダイオード DESCRIPTION OF SYMBOLS 1 Constant current source 2, 3, 5 Output terminal 4 Comparator Q1, Q2, Q3 Transistor R1, R2, R3, R4, R5, R31, R32 Resistance ZD Constant voltage diode

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 第1及び第2のトランジスタのベースを
共通に接続したカレントミラー回路の前記第2のトラン
ジスタのエミッタを検出抵抗の一端に接続しかつコレク
タを定電流源又は抵抗に接続し、前記第1のトランジス
タのエミッタは直列抵抗を介して前記検出抵抗の他端に
接続し、前記検出抵抗を電流検出線路に直列に挿入する
とともに、前記検出抵抗に流れる被検出電流を前記第1
のトランジスタのコレクタ側にて検出することを特徴と
する電流検出回路。
1. A current mirror circuit in which the bases of a first transistor and a second transistor are commonly connected, an emitter of the second transistor is connected to one end of a detection resistor, and a collector is connected to a constant current source or a resistor. An emitter of the first transistor is connected to the other end of the detection resistor via a series resistor, the detection resistor is inserted in series into a current detection line, and a current to be detected flowing through the detection resistor is connected to the first transistor.
A current detection circuit characterized in that the current is detected on the collector side of the transistor.
【請求項2】 前記第1のトランジスタのコレクタ側に
前記第1のトランジスタと同極性の第3のトランジスタ
を直列に挿入し、該第3のトランジスタのベースを前記
第2のトランジスタのコレクタに接続してなる請求項1
記載の電流検出回路。
2. A third transistor having the same polarity as the first transistor is inserted in series on the collector side of the first transistor, and a base of the third transistor is connected to a collector of the second transistor. Claim 1
The current detection circuit as described.
JP34854597A 1997-12-02 1997-12-02 Current detection circuit Pending JPH11160368A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34854597A JPH11160368A (en) 1997-12-02 1997-12-02 Current detection circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34854597A JPH11160368A (en) 1997-12-02 1997-12-02 Current detection circuit

Publications (1)

Publication Number Publication Date
JPH11160368A true JPH11160368A (en) 1999-06-18

Family

ID=18397740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34854597A Pending JPH11160368A (en) 1997-12-02 1997-12-02 Current detection circuit

Country Status (1)

Country Link
JP (1) JPH11160368A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1096262A2 (en) * 1999-10-27 2001-05-02 Harness System Technologies Research, Ltd. Current detector
WO2002041491A1 (en) * 2000-11-16 2002-05-23 Robert Bosch Gmbh A current-sensing switching circuit
JP2007114966A (en) * 2005-10-19 2007-05-10 Toshiba Microelectronics Corp Current limiting circuit
JP2008129977A (en) * 2006-11-24 2008-06-05 Yokogawa Electric Corp Voltage shift circuit
WO2008084593A1 (en) * 2007-01-11 2008-07-17 Panasonic Corporation Voltage detector for storage element
EP2157437A1 (en) 2008-08-19 2010-02-24 SMA Solar Technology AG Method for measuring a current, particularly through an earthing device
EP2239591A1 (en) * 2009-04-08 2010-10-13 Alcatel Lucent Current monitor for sensing the current in a current path and corresponding control device
US8717047B2 (en) 2008-08-19 2014-05-06 Sma Solar Technology Ag Method for measuring a current, in particular by means of a grounding apparatus

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1096262A2 (en) * 1999-10-27 2001-05-02 Harness System Technologies Research, Ltd. Current detector
EP1096262A3 (en) * 1999-10-27 2004-01-02 Autonetworks Technologies, Ltd. Current detector
WO2002041491A1 (en) * 2000-11-16 2002-05-23 Robert Bosch Gmbh A current-sensing switching circuit
US7362010B2 (en) 2000-11-16 2008-04-22 Robert Bosch Gmbh Currents-sensing switching circuit
JP2007114966A (en) * 2005-10-19 2007-05-10 Toshiba Microelectronics Corp Current limiting circuit
JP2008129977A (en) * 2006-11-24 2008-06-05 Yokogawa Electric Corp Voltage shift circuit
WO2008084593A1 (en) * 2007-01-11 2008-07-17 Panasonic Corporation Voltage detector for storage element
EP2157437A1 (en) 2008-08-19 2010-02-24 SMA Solar Technology AG Method for measuring a current, particularly through an earthing device
KR101117611B1 (en) 2008-08-19 2012-03-07 에스엠에이 솔라 테크놀로지 아게 Apparatus for measuring grounding current in photovoltaic power system with photovoltaic generator
US8169226B2 (en) 2008-08-19 2012-05-01 Sma Solar Technology Ag Method for measuring a current, in particular by means of a grounding apparatus
US8717047B2 (en) 2008-08-19 2014-05-06 Sma Solar Technology Ag Method for measuring a current, in particular by means of a grounding apparatus
EP2239591A1 (en) * 2009-04-08 2010-10-13 Alcatel Lucent Current monitor for sensing the current in a current path and corresponding control device
WO2010115681A1 (en) * 2009-04-08 2010-10-14 Alcatel Lucent Current monitor for sensing the current in a current path and corresponding control device
US8729915B2 (en) 2009-04-08 2014-05-20 Alcatel Lucent Current monitor for sensing the current in a current path and corresponding control device

Similar Documents

Publication Publication Date Title
JP3065605B2 (en) DC stabilized power supply
US6956727B1 (en) High side current monitor with extended voltage range
US6011413A (en) Structure of current measuring circuit
JPH11160368A (en) Current detection circuit
JPS6053924B2 (en) limiter circuit
JP3342367B2 (en) Overcurrent protection circuit
US8102191B2 (en) Window comparator circuit for limiting input voltage applied to object circuit
JP2721100B2 (en) Current limiting device
JP2546051Y2 (en) Stabilized power supply circuit
JP3105716B2 (en) Current mirror circuit
JPH0643951A (en) Current limiting circuit
JPH05306958A (en) Temperature detection circuit
JPH07222343A (en) Overcurrent preventing circuit
JP2548022Y2 (en) Stabilized power supply circuit
JP2714151B2 (en) Current limit circuit
JP3512935B2 (en) DC stabilized power supply circuit
JP2002135966A (en) Overvoltage output protective circuit
JP2802937B2 (en) Dropper type constant voltage circuit
JPH09204232A (en) Constant current circuit
US5336987A (en) Voltage stabilizing circuit of switching power supply circuit
JP3671519B2 (en) Current supply circuit
KR930004584Y1 (en) Schmit trigger circuit
JPH02109384A (en) Optical-output stabilizing apparatus for semiconductor laser
SU905805A1 (en) Dc voltage stabilizer
JPS62114014A (en) Constant-voltage power supply circuit

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041116

A131 Notification of reasons for refusal

Effective date: 20041130

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20050713

Free format text: JAPANESE INTERMEDIATE CODE: A02