JPH11158665A - Method for preventing corrosion of steel - Google Patents

Method for preventing corrosion of steel

Info

Publication number
JPH11158665A
JPH11158665A JP33648397A JP33648397A JPH11158665A JP H11158665 A JPH11158665 A JP H11158665A JP 33648397 A JP33648397 A JP 33648397A JP 33648397 A JP33648397 A JP 33648397A JP H11158665 A JPH11158665 A JP H11158665A
Authority
JP
Japan
Prior art keywords
steel
titanium oxide
resin
coating film
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33648397A
Other languages
Japanese (ja)
Inventor
Shinsuke Shizuru
真介 志鶴
Yasuhiko Ono
泰彦 大野
Sadayoshi Nakamura
定好 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nakabohtec Corrosion Protecting Co Ltd
Original Assignee
Nakabohtec Corrosion Protecting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nakabohtec Corrosion Protecting Co Ltd filed Critical Nakabohtec Corrosion Protecting Co Ltd
Priority to JP33648397A priority Critical patent/JPH11158665A/en
Publication of JPH11158665A publication Critical patent/JPH11158665A/en
Pending legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Prevention Of Electric Corrosion (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide the method for preventing the corrosion of a steel independently of the conventional physical method, capable of being easily applied to the jog site and excellent in rust preventing effect as the method of protecting the steel of the structure submerged in the seawater or fresh water or intermittently covered with the waters and wetted, the structure irradiated with artificial light having <=400 nm wavelength or the outdoor structure exposed to sunlight. SOLUTION: A resin coating film 2 contg. anatase-structure titanium oxide is formed on the surface of the steel 1 submerged in seawater of freash water, the steel intermittently covered with the waters and wetted or the steel material exposed to or irradiated with the artificial light having <=400 nm wavelength or sunlight to cathodically prevent the corrosion of the steel by the photoelectrochemical reaction of the coating film. Besides, stainless steel is preferably used as the steel, an acrylic resin is used as the resin as a binder for forming the resin coating film, and the weight ratio of the anatase-structure titanium oxide to the resin forming the film is preferably controlled to 0.1 to 0.2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、海洋もしくは淡水
液中またはこれら液により間歇的に被水して湿潤状態に
あり、かつ400nm以下の波長を有する人工光に照射され
るかあるいは屋外の太陽光に曝されるような構造物の鋼
材の防食方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to a method for irradiating an artificial light having a wavelength of 400 nm or less in an ocean or a freshwater liquid or an intermittently wetted state with these liquids, The present invention relates to a method for preventing corrosion of a steel material of a structure exposed to light.

【0002】[0002]

【従来の技術】通常、海洋もしくは淡水液中またはこれ
ら液により間歇的に被水して湿潤状態にある、例えばス
プラッシュゾーン等のように乾燥、湿潤状態の環境下に
ある港湾構造物用鋼材、あるいは淡水ダム堰等の構造物
等のように海水あるいは淡水が鋼材表面に薄い水膜を形
成するようにして存在するような鋼材の防食はもっぱら
塗装あるいは被覆を施す以外に方法はなく、カソード防
食を行うことは不可能であった。それは、上記のような
環境にある鋼材表面には薄い水膜が形成され、この薄い
水膜を通じて電流を鋼材へ供給しようとしても、鋼材側
の分極抵抗が低いこと、水膜の厚みが薄すぎて回路抵抗
が大きくなることが関係しあって防食電流が広範囲に供
給されないためである。
2. Description of the Related Art Generally, steel materials for harbor structures in marine or freshwater liquids or intermittently wetted by these liquids and in a wet state, for example, in a dry and wet environment such as a splash zone, Alternatively, there is no other method for preventing corrosion of steel such as a structure such as a freshwater dam weir where seawater or freshwater exists so as to form a thin water film on the surface of the steel except for painting or coating. Was impossible to do. The reason is that a thin water film is formed on the steel surface in the above environment, and even if an attempt is made to supply current to the steel material through this thin water film, the polarization resistance of the steel material is low, and the thickness of the water film is too thin. This is because the corrosion resistance is not supplied over a wide range because the circuit resistance increases.

【0003】一方、近時において、酸化チタンの電気化
学的反応を応用して鋼材を防食する技術が提案され、注
目を集めている。例えば、特開平8−201578号公
報の発明は、還元性雰囲気中で鋼材表面にチタン酸化物
の粉末溶射を行うことにより酸素欠損構造を有するチタ
ン酸化物半導体層を形成し、原子炉構造物の放射線及び
水中環境における原子炉構造物の防食を行わんとするも
のである。また、「材料と環境」43,(P482〜486,1994
年、社団法人腐食防食協会発行)には、304ステンレス
鋼表面に直流マグネトロンスパッタリングによりTiO
2膜を被覆して光照射と防食効果につき考察した論文が
開示されている。
On the other hand, recently, a technique for preventing corrosion of steel by applying an electrochemical reaction of titanium oxide has been proposed and attracted attention. For example, the invention of Japanese Patent Application Laid-Open No. Hei 8-201578 discloses that a titanium oxide semiconductor layer having an oxygen deficient structure is formed by performing powder spraying of titanium oxide on a steel material surface in a reducing atmosphere to form a titanium oxide semiconductor layer. It is intended to prevent corrosion of nuclear reactor structures in radiation and underwater environment. Also, “Materials and Environment” 43, (P482-486, 1994
Issued by the Corrosion and Corrosion Protection Association of Japan in 1989).
A paper has been disclosed that covers two films and discusses light irradiation and anticorrosion effects.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記し
たような従来技術は、鋼材表面に成膜する酸化チタンは
直流マグネトロンスパッタリング法あるいは還元性雰囲
気中における溶射で酸素欠損構造を有するチタン酸化物
半導体層を形成するものであり、前者の方法は物理的手
段により極く薄いスパッタリング皮膜を形成するもので
あり、適用する鋼材がこれら物理的成膜法を適用できる
ような比較的小さい鋼材に限定され、しかも大型の設備
等を必要とし極めてコストが高いものであり現場での施
工が複雑、困難になる等の問題を有するものであった。
また後者の方法は放射線照射という特殊な環境中で使用
される原子炉用構造物の防食を意図し、限定された溶射
雰囲気中で施された酸素欠損構造を有する皮膜を形成す
るものである。
However, in the prior art as described above, the titanium oxide film formed on the surface of the steel material has a titanium oxide semiconductor layer having an oxygen-deficient structure by DC magnetron sputtering or thermal spraying in a reducing atmosphere. The former method is to form an extremely thin sputtering film by physical means, and the applied steel material is limited to relatively small steel materials to which these physical film forming methods can be applied. In addition, large equipment and the like are required and the cost is extremely high, so that the construction on site is complicated and difficult.
The latter method is intended to form a coating having an oxygen-deficient structure applied in a limited thermal spray atmosphere with the intention of preventing corrosion of a reactor structure used in a special environment of radiation irradiation.

【0005】本発明者らは、前述した海洋もしくは淡水
液中またはこれら液により間歇的に被水して湿潤状態に
ある、例えばスプラッシュゾーン等のように乾燥、湿潤
状態の環境下にある港湾構造物用鋼材、あるいは淡水ダ
ム堰等の構造物等のように海水あるいは淡水が鋼材表面
に薄い水膜を形成するようにして存在するような鋼材の
防食につき研究を続けてきたが、酸化チタンの電気化学
的性質を前述のような比較的大型の鋼構造物の防食に利
用できないかどうかに着目し、検討を重ねてきた。も
し、物理的方法によらずに簡単な手段で適用でき、しか
も防食効果に優れた鋼材の防食方法が提案できれば、前
述のような比較的大型の設備等を必要とし極めてコスト
高となるとともに現場での施工が複雑、困難になる等の
問題がなくなり、当該分野において、その技術的、経済
的効果は極めて有用である。
The present inventors have proposed a harbor structure in the above-mentioned marine or freshwater liquid or in a wet state intermittently wetted by these liquids, for example, in a dry or wet environment such as a splash zone. We have been studying the corrosion prevention of steel products, such as seawater or freshwater that forms a thin water film on the surface of steel products, such as structures such as freshwater dam weirs. We have focused on whether electrochemical properties can be used for the corrosion prevention of relatively large steel structures as described above, and have continued to study. If an anticorrosion method for a steel material that can be applied by simple means without relying on a physical method and has an excellent anticorrosion effect can be proposed, the above-described relatively large equipment and the like will be required, resulting in extremely high costs and on-site Problems such as complicated and difficult construction work are eliminated, and the technical and economic effects are extremely useful in this field.

【0006】[0006]

【課題を解決するための手段】本発明は、海洋もしくは
淡水液中またはこれら液により間歇的に被水して湿潤状
態にあり、かつ400nm以下の波長を有する人工光もしく
は太陽光に曝されるかもしくは照射される鋼材表面に、
アナタース型酸化チタンを含んだ樹脂塗膜を形成し、該
塗膜の光電気化学反応により鋼材をカソード電気防食す
る鋼材の防食方法であり、これにより前記課題を達成し
たものである。なお、前記鋼材はステンレス鋼材とする
ことが好ましく、また樹脂塗膜を形成するバインダーと
しての樹脂はアクリル系樹脂とし、該塗膜は形成する塗
膜形成樹脂の重量1.0に対してアナタース型酸化チタン
重量を0.1〜1.2の比率とすることが好ましい。
SUMMARY OF THE INVENTION The present invention is directed to an artificial light or sunlight having a wavelength of 400 nm or less which is in a marine or freshwater liquid or intermittently wetted by such a liquid and is in a wet state. Or on the steel surface to be irradiated,
The present invention is a method for preventing a steel material from being subjected to cathodic cathodic protection by forming a resin coating film containing anatase-type titanium oxide and performing a photoelectrochemical reaction of the coating film, thereby achieving the above object. Preferably, the steel material is a stainless steel material, and a resin as a binder for forming a resin coating film is an acrylic resin, and the coating film has anatase type titanium oxide with respect to a weight of 1.0 of a coating film forming resin to be formed. Preferably, the weight is in the ratio of 0.1 to 1.2.

【0007】[0007]

【発明の実施の形態】本発明では、鋼材の防食方法とし
て、酸化チタンを含有した樹脂塗膜を鋼材表面に刷毛塗
りあるいはスプレー塗装等により塗布し、この塗膜に太
陽光あるいは400nm以下の波長を有する人工光を照射
し、塗膜中に含有された酸化チタンの光電気化学反応に
より鋼材の防食を行うものである。酸化チタンはアナタ
ース型のものとし、通常の好ましくは球状の市販品を使
用し、樹脂中に含有させる。この塗膜形成物質(バイン
ダー)としては、主としてアクリル系樹脂が使用される
が、酸化特性、耐候性、耐水性に優れるフッ素系樹脂ま
たはシリコーン系樹脂等が使用できる。詳しくは、シリ
コーン系樹脂に関してはアルキド変性シリコーン樹脂、
アクリル変性シリコーン樹脂、エポキシ変性シリコーン
樹脂等が挙げられる。フッ素系樹脂に関してはポリイソ
シアネート硬化フッ素樹脂等が挙げられる。これらはい
ずれも常温硬化型樹脂であり、中でも本発明用に使用す
るにはアクリル系樹脂が最も好ましい。これら塗膜形成
物質中に含有させるアナタース型の酸化チタンは樹脂重
量1.0に対して酸化チタン重量を0.1〜1.2の比率とす
る。酸化チタン重量が樹脂重量1.0に対して0.1未満では
光電気化学反応が十分でなく、逆に酸化チタン重量が樹
脂重量1.0に対して1.2を越えると、アクリル系樹脂、フ
ッ素樹脂およびシリコン系樹脂の塗膜の粘性が増加し、
刷毛塗りやスプレー塗装が困難となり、良好な塗膜が得
られなくなる。酸化チタンは上記樹脂に含有され、さら
に適宜有機溶剤を加えて混練される。この酸化チタン含
有樹脂塗料を、鋼構造物表面に塗布あるいはスプレー塗
装等の手段により、好ましくは厚さ40〜80μmで形成す
る。塗膜は厚いほど光化学反応にとってカソード電位が
卑となるが、60μmあれば十分である。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, as a method for preventing corrosion of steel, a resin coating containing titanium oxide is applied to the surface of the steel by brushing or spray coating, and the coating is coated with sunlight or a wavelength of 400 nm or less. The artificial steel is irradiated with artificial light having the following properties to prevent corrosion of the steel material by a photoelectrochemical reaction of titanium oxide contained in the coating film. Titanium oxide is of an anatase type, and is usually a commercially available, preferably spherical product, and is contained in the resin. As the coating film forming substance (binder), an acrylic resin is mainly used, but a fluororesin or a silicone resin having excellent oxidation characteristics, weather resistance and water resistance can be used. For details, alkyd-modified silicone resin for silicone resin,
An acrylic-modified silicone resin, an epoxy-modified silicone resin, and the like are included. Examples of the fluorine-based resin include a polyisocyanate-cured fluorine resin. These are all cold-setting resins, and among them, acrylic resins are most preferable for use in the present invention. The anatase-type titanium oxide contained in these film-forming substances has a weight ratio of the titanium oxide of 0.1 to 1.2 with respect to a resin weight of 1.0. If the weight of titanium oxide is less than 0.1 with respect to the resin weight of 1.0, the photoelectrochemical reaction is not sufficient, and if the weight of titanium oxide exceeds 1.2 with respect to the weight of the resin of 1.0, acrylic resin, fluororesin, and silicone resin will not be obtained. The viscosity of the coating increases,
Brush coating and spray coating become difficult, and a good coating film cannot be obtained. Titanium oxide is contained in the above resin and kneaded by further adding an organic solvent as appropriate. The titanium oxide-containing resin paint is preferably applied to the surface of a steel structure by a method such as coating or spray coating, preferably to have a thickness of 40 to 80 μm. The thicker the coating, the lower the cathode potential for the photochemical reaction, but 60 μm is sufficient.

【0008】本発明における防食対象の鋼材は、好まし
くはステンレス鋼であるが、その他インコネル材、低合
金鋼等が適用できる。これら鋼材は本発明の適用箇所で
ある海洋もしくは淡水液中またはこれら液により間歇的
に被水して湿潤状態にあるような部位、具体的にはスプ
ラッシュゾーン等のように乾燥、湿潤状態の環境下にあ
る港湾構造物用、あるいは淡水ダム堰等の構造物用等の
ように海水あるいは淡水が鋼材表面に薄い水膜を形成す
る鋼材に対して使用される。鋼材表面に形成された酸化
チタンを含有する樹脂塗膜は前述の用途の鋼構造物表面
に存在する水膜を通して、屋外の太陽光に曝されるか、
400nm以下の人工光に曝される。
In the present invention, the steel material to be protected against corrosion is preferably stainless steel, but other inconel materials, low alloy steels and the like can be applied. These steel materials are applied to the present invention in the marine or freshwater liquid or in a part where the liquid is intermittently wetted by these liquids and is in a wet state, specifically, in a dry or wet environment such as a splash zone. It is used for steel materials where seawater or freshwater forms a thin water film on the steel material surface, such as for harbor structures below or for structures such as freshwater dam weirs. The resin coating containing titanium oxide formed on the surface of the steel material is exposed to sunlight outdoors, through a water film existing on the surface of the steel structure for the above-mentioned use,
Exposure to artificial light below 400nm.

【0009】樹脂中に含有されるアナタース型酸化チタ
ンは太陽光、400nm以下の波長を有する人工光等の光に
曝されもしくは照射されると、光電気化学反応を生じて
鋼材をカソード防食することができる。以下、その原理
を図2に示す概念モデルを参照して説明する。酸化チタ
ン表面にバンドギャップ以上のエネルギーを有する光を
照射すると、式1に従って価電子帯の電子が伝導帯まで
励起され、価電子帯に正孔を生じる。
The anatase-type titanium oxide contained in the resin, when exposed or irradiated with light such as sunlight or artificial light having a wavelength of 400 nm or less, causes a photoelectrochemical reaction to cause cathodic protection of the steel material. Can be. Hereinafter, the principle will be described with reference to a conceptual model shown in FIG. When the surface of the titanium oxide is irradiated with light having energy equal to or greater than the band gap, electrons in the valence band are excited to the conduction band according to the formula 1, and holes are generated in the valence band.

【式1】 価電子帯に生じた正孔は、酸化チタン表面において水と
接することにより、式2で示す酸素発生反応を生じる。
(Equation 1) The holes generated in the valence band come into contact with water on the surface of the titanium oxide, thereby causing an oxygen generation reaction represented by Formula 2.

【式2】 また、伝導帯に励起された電子は、酸化チタンから鋼材
へと移行し、鋼材表面において式3に示す水素発生反応
を生じる。
(Equation 2) The electrons excited in the conduction band move from the titanium oxide to the steel material, and generate a hydrogen generation reaction represented by Formula 3 on the surface of the steel material.

【式3】 (Equation 3)

【0010】上記反応が酸化チタン表面および鋼材表面
で行われることによって、酸化チタンから鋼材へ電子が
移行し、電気回路が形成されることになる、これによっ
て酸化チタン側がアノードとなり、鋼材側をカソード防
食することとなる。また、上記の酸化チタンの酸化・還
元反応における酸化チタン自身の電気化学的安定性に関
しては、酸化物分解反応の標準電極電位に相当するエネ
ルギー準位ε°(D)および水の酸化反応の標準電極電位
に相当するエネルギー準位ε°(O2/H2O)の相対関係で決
まる。酸化チタンにおいては、ε°(D)=−5.92eVであ
り、この値はε°(O2/H2O)=−5.73eVよりも低いため、
水の酸化反応が優先し、酸化チタン自身は電気化学的に
安定である。従って、酸化チタンは非犠牲アノードとな
り、鋼材のカソード防食を可能にする。これら酸化チタ
ンの電気化学的反応は、酸化チタンのバンドギャップエ
ネルギーが3.0eVであるため、400nm以下の波長の光、特
に太陽光によって反応が進み、鋼材の防食効果を発現す
る。
When the above reaction is carried out on the surface of titanium oxide and the surface of steel material, electrons are transferred from titanium oxide to steel material to form an electric circuit, whereby the titanium oxide side becomes an anode and the steel side becomes a cathode. It will be anti-corrosion. Regarding the electrochemical stability of the titanium oxide itself in the oxidation and reduction reactions of the titanium oxide, the energy level ε ° (D) corresponding to the standard electrode potential of the oxide decomposition reaction and the standard value of the water oxidation reaction It is determined by the relative relationship of the energy level ε ° (O 2 / H 2 O) corresponding to the electrode potential. In titanium oxide, ε ° (D) = − 5.92 eV, which is lower than ε ° (O 2 / H 2 O) = − 5.73 eV,
The oxidation reaction of water takes precedence, and titanium oxide itself is electrochemically stable. Thus, titanium oxide becomes a non-sacrificial anode, enabling cathodic protection of steel. Since the titanium oxide has a bandgap energy of 3.0 eV in the electrochemical reaction of titanium oxide, the reaction proceeds by light having a wavelength of 400 nm or less, particularly sunlight, and the corrosion prevention effect of the steel material is exhibited.

【0011】本発明において、前記鋼材表面に塗布形成
された塗膜中に含有されるアナタース型酸化チタンは鋼
材全面に存在するため、これら酸化チタンに太陽光ある
いは400nm以下の波長の人工光に含まれる光エネルギー
が照射されことにより励起された酸化チタンからの電子
の供給が、防食されるべき鋼材全表面において生じ、薄
い水膜内においても電子の供給ができるという、一種の
面電極的な作用を発揮して、鋼材の全面防食を可能とす
る。
In the present invention, since the anatase-type titanium oxide contained in the coating film formed on the surface of the steel material is present on the entire surface of the steel material, the titanium oxide is contained in sunlight or artificial light having a wavelength of 400 nm or less. The supply of electrons from titanium oxide excited by the irradiation of light energy occurs on the entire surface of the steel material to be protected, and the electrons can be supplied even in a thin water film. To achieve the overall corrosion protection of steel.

【0012】[0012]

【発明の効果】以上のような本発明によれば、前記海洋
もしくは淡水液中またはこれら液により間歇的に被水し
て湿潤状態にあるような部位、具体的にはスプラッシュ
ゾーン等のように乾燥、湿潤状態の環境下にある港湾構
造物用、あるいは淡水ダム堰等の構造物用等のように海
水あるいは淡水が鋼材表面に薄い水膜を形成する鋼材の
表面に、常温で刷毛塗りあるいはスプレー塗装等により
塗布することができ、焼成工程あるいは物理的な薄膜形
成技術のような高温、煩雑な皮膜形成手段を要さずに適
用でき、工程が極めて簡単でかつ十分な防食が長期にわ
たって可能となる。
According to the present invention as described above, the marine or freshwater liquid or a portion which is intermittently wetted by these liquids and is in a wet state, specifically, such as a splash zone, etc. Brushing or coating at room temperature on steel surfaces where seawater or freshwater forms a thin water film on the steel surface, such as for harbor structures in dry or wet environment, or for structures such as freshwater dam weirs, etc. It can be applied by spray coating, etc., it can be applied without the need for high temperature and complicated film forming means such as baking process or physical thin film forming technology, the process is extremely simple and sufficient corrosion protection can be performed for a long time Becomes

【0013】[0013]

【実施例1】第1図は本発明方法に従って形成した塗膜
を示すものである。図1において、SUS 304鋼板1の表
面には光電気化学反応性を有する酸化チタン(関東化学
(株)製)を含有した樹脂塗膜2を形成したものであ
る。塗膜2の構成材料はアクリル系樹脂を塗膜形成物質
(バインダー)とし、塗膜形成物質の重量1.0に対する
酸化チタン(アナタース型)の粉末重量比を変えて添
加、混合したものである。この材料をSUS 304鋼板へデ
ィップコート回数、一回で厚さ60μm塗布し、常温で乾
燥することによって光電気化学反応性を有する酸化チタ
ン含有の樹脂塗膜を形成した。この塗膜鋼板を天然海水
中(室温)に深さ1〜2cm浸漬し、波長365nmの人工光
(100W紫外線ランプ)を照射したところ、図4に示され
るような結果が得られた。これより、塗膜鋼板の電位が
光照射前の30mV vs 飽和カロメル基準電極(以下、SCE
と略す)であったものが、塗膜形成物質の重量1.0に対
する酸化チタンの重量比が0.1〜1.2の範囲で卑化し、好
ましくは塗膜形成物質の重量1.0に対する酸化チタンの
重量比が0.3〜0.8の範囲では−440以下に、特に酸化チ
タンの重量比が0.5では−630mV vs SCEに卑化すること
が確認された。これから、光照射後の電位は海水中にお
けるSUS 304鋼の再不働態化電位E(R,crev)よりも卑で
あるため、SUS 304鋼のすきま腐食を抑制することがで
き、鋼材の電気防食が可能であることが分かる。
EXAMPLE 1 FIG. 1 shows a coating film formed according to the method of the present invention. In FIG. 1, a resin coating film 2 containing titanium oxide having photoelectrochemical reactivity (manufactured by Kanto Chemical Co., Ltd.) is formed on the surface of a SUS 304 steel plate 1. The constituent material of the coating film 2 is obtained by adding and mixing an acrylic resin as a coating film forming substance (binder), changing the powder weight ratio of titanium oxide (anatase type) to the weight of the coating film forming substance 1.0. This material was applied to a SUS 304 steel plate by dip coating one time, at a thickness of 60 μm, and dried at room temperature to form a titanium oxide-containing resin coating film having photoelectrochemical reactivity. When this coated steel sheet was immersed in natural seawater (room temperature) at a depth of 1 to 2 cm and irradiated with artificial light (100 W ultraviolet lamp) having a wavelength of 365 nm, the results shown in FIG. 4 were obtained. From this, the potential of the coated steel sheet was 30 mV before light irradiation vs. the saturated calomel reference electrode (hereinafter, SCE).
Was abbreviated), but the weight ratio of titanium oxide to the weight of the film-forming substance became 1.0, and the weight ratio of titanium oxide to the weight of the film-forming substance became 1.0. It was confirmed that in the range of 0.8, the weight ratio of titanium oxide was -440 or less, and especially when the weight ratio of titanium oxide was 0.5, -630 mV vs. SCE was lowered. From this, since the potential after light irradiation is lower than the repassivation potential E (R, crev) of SUS 304 steel in seawater, crevice corrosion of SUS 304 steel can be suppressed, and the electrolytic protection of steel material is improved. It turns out that it is possible.

【0014】[0014]

【実施例2】次に、試験体としてSUS 304鋼表面に光化
学反応性を有する酸化チタン(関東化学(株)製を含有
した樹脂塗膜鋼板を用いて本発明法を実施する場合の概
念図を示す第3図を参照して説明する。この実施例にお
ける塗膜2の構成材料は、アクリル系樹脂を塗膜形成物
質(バインダー)とし、塗膜形成物質の重量1.0に対し
て重量比0.3相当の酸化チタンの粉末を添加、混合した
ものとした。この材料をSUS 304鋼材1へ塗布し、常温
で乾燥することによって光電気化学反応性を有する酸化
チタンを含有した樹脂塗膜2(ディップコート厚み45μ
m)を形成した。この塗膜鋼板上に厚さ1mmの水膜3を
形成し、屋外にて太陽光を照射して塩化銀電極4を用
い、電位測定装置5で電位測定を行ったところ、−400
〜−450mV vs SCE の電位の低下が確認された。その
後、100日間試験を継続したが酸化チタンを含有しない
通常の塗膜鋼板には錆が発生したのに対し、酸化チタン
を含有させた塗膜鋼板には全く錆の発生は見らなかっ
た。この結果より、薄い水膜が存在する環境下にある鋼
材に対して酸化チタン含有樹脂塗膜による電気防食が有
効であることが確認できた。
Embodiment 2 Next, a conceptual diagram of the case where the method of the present invention is carried out using a titanium oxide having photochemical reactivity on the surface of SUS 304 steel (a resin coated steel sheet containing a product made by Kanto Chemical Co., Ltd.) as a test body. The composition of the coating film 2 in this example is an acrylic resin as a coating material (binder), and a weight ratio of 0.3 to the weight 1.0 of the coating material. This material was added to and mixed with a considerable amount of titanium oxide powder, and this material was applied to SUS 304 steel material 1 and dried at room temperature to form a resin coating film 2 containing titanium oxide having photoelectrochemical reactivity (dip). Coat thickness 45μ
m) was formed. A water film 3 having a thickness of 1 mm was formed on the coated steel sheet, and the potential was measured with a potential measuring device 5 using a silver chloride electrode 4 by irradiating sunlight outdoors.
A decrease in the potential of ~ -450 mV vs SCE was confirmed. Thereafter, the test was continued for 100 days, but rust was generated on the normal coated steel sheet containing no titanium oxide, whereas no rust was observed on the coated steel sheet containing titanium oxide. From these results, it was confirmed that the electrolytic protection by the titanium oxide-containing resin coating film was effective for steel materials in an environment where a thin water film was present.

【0015】[0015]

【実施例3】試験体としてSUS 304鋼表面に光化学反応
性を有する酸化チタン(関東化学(株)製を含有した樹
脂塗膜鋼板を形成し、太陽光照射下で大気中にて試験体
を暴露した際の塗膜鋼板の塗膜電位を測定した。塗膜構
成は、塗膜形成物質(バインダー)をアクリル系樹脂と
し、塗膜形成物質の重量1.0に対して重量比0.5相当の酸
化チタンの粉末を添加、混合し、浸漬塗布によりディッ
プコート厚さ60μmの塗膜を形成した。まず、太陽光非
照射時において、塗膜鋼板表面にスプレーを用いて海水
を散布し、SCEを用いて塗膜鋼板の電位を測定したとこ
ろ、20〜30mV vsSCEであった。この後、大気中に暴露し
太陽光を照射し、発生する電位を1時間毎に測定したと
ころ、図5に示されるような電位が観測され、特に正午
をはさんだ数時間内の電位は、−350mV〜450mV vs SCE
であった。この結果から、海水をスプレー散布しただけ
の極く薄い水の薄膜層が形成された塗膜にあっても光化
学反応が生じていることが確認された。このことから本
発明では、水の薄膜層が形成される場合には鋼板と塗膜
との間で電気的回路が形成されて電流が供給され、鋼板
が十分に電気防食されることが分かった。
Example 3 A resin coated steel sheet containing titanium oxide having photochemical reactivity (manufactured by Kanto Chemical Co., Ltd.) was formed on the surface of SUS 304 steel as a test piece, and the test piece was exposed to sunlight in the air. The coating film potential of the coated steel sheet was measured when exposed, using a coating film forming substance (binder) of an acrylic resin and a titanium oxide equivalent to a weight ratio of 0.5 to a weight of 1.0 of the film forming substance. Was added, mixed, and dip-coated to form a dip-coated film having a thickness of 60 μm.First, when no sunlight was applied, seawater was sprayed on the surface of the coated steel plate using a spray, and SCE was used. When the potential of the coated steel sheet was measured, it was 20 to 30 mV vs. SCE, and then exposed to the air and irradiated with sunlight, and the generated potential was measured every hour, as shown in FIG. Potential is observed, especially within a few hours after noon, 350mV~450mV vs SCE
Met. From this result, it was confirmed that a photochemical reaction occurred even in the coating film in which a thin film layer of extremely thin water just sprayed with seawater was formed. From this, in the present invention, it was found that when a thin film layer of water was formed, an electric circuit was formed between the steel sheet and the coating film, an electric current was supplied, and the steel sheet was sufficiently subjected to cathodic protection. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明方法を実施する場合の塗膜形成鋼板の断
面概略図である。
FIG. 1 is a schematic sectional view of a coated steel sheet when the method of the present invention is performed.

【図2】本発明方法における光化学反応の理論的説明図
である。
FIG. 2 is a theoretical explanatory diagram of a photochemical reaction in the method of the present invention.

【図3】本発明方法を実施する場合の太陽光照射による
電位測定概念説明図である。
FIG. 3 is a conceptual explanatory diagram of potential measurement by sunlight irradiation when the method of the present invention is performed.

【図4】本発明実施例における酸化チタン含有比を変え
た場合の酸化チタン含有比と光電位の関係図である。
FIG. 4 is a diagram showing the relationship between the titanium oxide content ratio and the photo potential when the titanium oxide content ratio is changed in the example of the present invention.

【図5】本発明実施例における海水スプレー散布した酸
化チタン塗膜ステンレス鋼板の光電位を1時間毎に測定
して示した関係図である。
FIG. 5 is a graph showing the relationship between the photopotential of the titanium oxide-coated stainless steel plate sprayed with seawater spray and measured every hour in the example of the present invention.

【符号の説明】[Explanation of symbols]

1 鋼板 2 樹脂塗膜 3 水膜 4 塩化銀電極 5 電位測定装置 Reference Signs List 1 steel sheet 2 resin coating 3 water film 4 silver chloride electrode 5 potential measuring device

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 海洋もしくは淡水液中またはこれら液に
より間歇的に被水して湿潤状態にあり、かつ400nm以下
の波長を有する人工光もしくは太陽光の光に曝されるか
照射される鋼材表面に、アナタース型酸化チタンを含ん
だ樹脂塗膜を形成し、該塗膜の光電気化学反応により鋼
材をカソード電気防食する鋼材の防食方法。
1. A steel surface exposed to or irradiated with artificial light or sunlight having a wavelength of 400 nm or less in an ocean or freshwater liquid or in an intermittently wetted state by these liquids and in a wet state. A method of forming a resin coating containing anatase-type titanium oxide, and cathodic cathodic protection of the steel by photoelectrochemical reaction of the coating.
【請求項2】 前記鋼材はステンレス鋼材である請求項
1記載の鋼材の防食方法。
2. The method according to claim 1, wherein the steel material is a stainless steel material.
【請求項3】 樹脂塗膜を形成するバインダーとしての
樹脂はアクリル系樹脂である請求項1記載の鋼材の防食
方法。
3. The method according to claim 1, wherein the resin as a binder forming the resin coating film is an acrylic resin.
【請求項4】 前記塗膜は、形成する塗膜形成樹脂の重
量1.0に対してアナタース型酸化チタン重量は0.1〜1.2
の比率とする請求項1〜3いずれかに記載の鋼材の防食
方法。
4. The coating film has a weight of anatase type titanium oxide of 0.1 to 1.2 with respect to a weight of 1.0 of a coating film forming resin to be formed.
The method for preventing corrosion of steel according to any one of claims 1 to 3, wherein
JP33648397A 1997-11-20 1997-11-20 Method for preventing corrosion of steel Pending JPH11158665A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33648397A JPH11158665A (en) 1997-11-20 1997-11-20 Method for preventing corrosion of steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33648397A JPH11158665A (en) 1997-11-20 1997-11-20 Method for preventing corrosion of steel

Publications (1)

Publication Number Publication Date
JPH11158665A true JPH11158665A (en) 1999-06-15

Family

ID=18299606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33648397A Pending JPH11158665A (en) 1997-11-20 1997-11-20 Method for preventing corrosion of steel

Country Status (1)

Country Link
JP (1) JPH11158665A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010082494A1 (en) * 2009-01-16 2010-07-22 藤森工業株式会社 Corrosion prevention method and corrosion prevention structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010082494A1 (en) * 2009-01-16 2010-07-22 藤森工業株式会社 Corrosion prevention method and corrosion prevention structure
JPWO2010082494A1 (en) * 2009-01-16 2012-07-05 藤森工業株式会社 Anticorrosion method and anticorrosion structure
JP5470276B2 (en) * 2009-01-16 2014-04-16 藤森工業株式会社 Anticorrosion method and anticorrosion structure

Similar Documents

Publication Publication Date Title
Battocchi et al. Comparison of testing solutions on the protection of Al-alloys using a Mg-rich primer
Wake et al. Development of an electrochemical antifouling system for seawater cooling pipelines of power plants using titanium
Kawiak et al. A search for conditions permitting model behavior of the Fe (CN) 3−/4− 6 system
Mehta et al. Evaluation of bio corrosion-resistant and antifouling properties of gold metallosurfactant monolayer on galvanised steel in simulated sea media inoculated with halophiles
Li et al. Sunlight induced photoelectrochemical anticorrosion effect of corrosion product layers on electrogalvanized steel in simulated seawater
Jerkiewicz et al. A new procedure of formation of multicolor passive films on titanium: compositional depth profile analysis
CN102543457A (en) Preparation method of zinc sulfide (ZnS)/cadmium telluride (CdTe) quantum dot sensitization titanium dioxide (TiO2) nano film
JPH11158665A (en) Method for preventing corrosion of steel
JPH10249357A (en) Antifouling method
CN106222692B (en) Anti-fouler and its implementation based on platform piling bar ring type electrolysis anti-soil electrode
Palanivel et al. Development of corrosion-resistant and hydrophobic coating on commercially pure titanium
JP3860632B2 (en) Surface-treated steel with excellent corrosion resistance
JPS58501089A (en) Method for manufacturing selective absorber of solar energy capture device and obtained selective absorber
JP2009144199A (en) Stainless steel having excellent anticorrosion property, method for producing the same, and marine steel structure using the same
JPH11303041A (en) Pollution preventing method for structure in contact with sea water
Naing et al. Morphology and corrosion behavior of ZnO passive films for galvanized steel applications: effects of anodizing parameters
JP3686472B2 (en) Surface-treated steel material excellent in corrosion resistance and its surface treatment method
JP3150427B2 (en) Light and corrosion resistant stainless steel
EP4353866A1 (en) Mixed metal oxide coatings for titanium alloys
Swain et al. The use of controlled copper dissolution as an anti-fouling system
Bunn et al. Testing and Accelerated Aging of Conductive Antifouling Paints for Marine Applications
JP4059457B2 (en) Antifouling and anticorrosion equipment for heat exchangers and seawater conduits
Shibli et al. RuO 2–TiO 2 mixed oxide composite coating for improvement of Al-alloy sacrificial anodes
JPS59145776A (en) Method for preventing corrosion and fouling of steel structure
JPH0978552A (en) Offshore structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061130

A131 Notification of reasons for refusal

Effective date: 20080129

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20080527

Free format text: JAPANESE INTERMEDIATE CODE: A02