JPH11157963A - Tabular composite and heat dissipating component using the same - Google Patents
Tabular composite and heat dissipating component using the sameInfo
- Publication number
- JPH11157963A JPH11157963A JP9324215A JP32421597A JPH11157963A JP H11157963 A JPH11157963 A JP H11157963A JP 9324215 A JP9324215 A JP 9324215A JP 32421597 A JP32421597 A JP 32421597A JP H11157963 A JPH11157963 A JP H11157963A
- Authority
- JP
- Japan
- Prior art keywords
- composite
- silicon carbide
- thermal expansion
- plate
- heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/45—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
- C04B41/50—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
- C04B41/51—Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
- C04B41/515—Other specific metals
- C04B41/5155—Aluminium
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/009—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/80—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
- C04B41/81—Coating or impregnation
- C04B41/85—Coating or impregnation with inorganic materials
- C04B41/88—Metals
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、熱伝導特性に優
れ、かつ軽量であり、セラミックス基板やICパッケー
ジなどの半導体部品のヒートシンクなどの放熱部品とし
て好適な高熱伝導性複合材料に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high heat conductive composite material having excellent heat conduction characteristics and light weight, and suitable as a heat radiating component such as a heat sink of a semiconductor component such as a ceramic substrate or an IC package.
【0002】[0002]
【従来の技術】従来から、セラミックス基板や樹脂基板
等の種々の基板を用いた、半導体素子を搭載するための
回路基板が知られている。近年、回路基板の小型化、高
密度化、また半導体素子の高集積化が進むに従い、回路
基板の放熱特性の一層の向上が望まれ、ベレリア(Be
O)を添加した炭化珪素(SiC)、窒化アルミニウム
(AlN)、窒化珪素(Si3N4)等のセラミックス基
板が注目されている。2. Description of the Related Art Conventionally, circuit boards for mounting semiconductor elements using various substrates such as ceramic substrates and resin substrates have been known. In recent years, as circuit boards have been reduced in size and density, and semiconductor elements have been highly integrated, it has been desired to further improve the heat radiation characteristics of circuit boards.
Attention has been focused on ceramic substrates such as silicon carbide (SiC), aluminum nitride (AlN), and silicon nitride (Si 3 N 4 ) to which O) is added.
【0003】セラミックス基板を回路基板やパッケージ
用基体等として用いる場合には、半導体素子からの発熱
を回路基板裏面等に設けられるヒートシンクと呼ばれる
放熱部品を介して外部に発散させ、半導体素子の動作特
性等を確保している。When a ceramic substrate is used as a circuit board, a package base, or the like, heat generated from the semiconductor element is radiated to the outside through a heat radiating component called a heat sink provided on the back surface of the circuit board or the like, and the operating characteristics of the semiconductor element are reduced. Etc. are secured.
【0004】この場合、ヒートシンクとして銅(Cu)
等を用いると、セラミックス基板とヒートシンクの熱膨
張率差に起因して、ヒートシンクとセラミックス基板と
の加熱接合時や、セラミックス回路基板製造時或いはそ
の実使用時の熱サイクルの付加等によりセラミックス基
板にクラックや割れ等が生じることがある。そこで、信
頼性が要求される分野にセラミックス基板を用いる場合
には、セラミックス基板と熱膨張率差の小さいMo、W
等をヒートシンクとして用いていた。In this case, copper (Cu) is used as a heat sink.
If a ceramic substrate and a heat sink are used, cracks may occur in the ceramic substrate due to the difference in the coefficient of thermal expansion between the ceramic substrate and the heat sink due to the heat bonding between the heat sink and the ceramic substrate, or the addition of a thermal cycle during the production or actual use of the ceramic circuit substrate. And cracks may occur. Therefore, when a ceramic substrate is used in a field where reliability is required, Mo, W having a small difference in thermal expansion coefficient from the ceramic substrate is used.
Was used as a heat sink.
【0005】MoやWを用いた放熱部品は、重金属であ
るMoやWに原因して重量が重く、放熱部品の軽量化が
望まれる用途には好ましくない。更に、MoやWを用い
たヒートシンクは高価であることから、近年、銅やアル
ミニウム(Al)或いはこれらの合金を無機質繊維また
は粒子で強化したMMC(Metal MatrixC
omposite)と略称される金属ーセラミックス複
合体(以下、複合体という)が注目されている。A heat dissipating component using Mo or W is heavy due to heavy metals such as Mo and W, and is not preferable for applications in which it is desired to reduce the weight of the heat dissipating component. Further, since a heat sink using Mo or W is expensive, MMC (Metal Matrix C) in which copper, aluminum (Al), or an alloy thereof is reinforced with inorganic fibers or particles has recently been used.
Attention has been focused on a metal-ceramic composite (hereinafter, referred to as a composite), which is abbreviated as “composite”.
【0006】前記複合体は、一般には、強化材である無
機質繊維あるいは粒子を、あらかじめ成形することでプ
リフォームを形成し、そのプリフォームの繊維間あるい
は粒子間に基材(マトリックス)である金属或いは合金
を含浸(溶浸ともいう)させた複合体である。強化材と
しては、アルミナ、炭化珪素、窒化アルミニウム、窒化
珪素、シリカ、炭素等のセラミックスが用いられてい
る。[0006] In general, the above-mentioned composite forms a preform by previously molding inorganic fibers or particles as a reinforcing material, and forms a base material (matrix) between fibers or particles of the preform. Alternatively, it is a composite impregnated (also called infiltration) with an alloy. Ceramics such as alumina, silicon carbide, aluminum nitride, silicon nitride, silica, and carbon are used as the reinforcing material.
【0007】しかし、複合体において熱伝導率を上げよ
うとする場合、強化材並びに金属或いは合金として熱伝
導率の高い物質を選択する必要があること、強化材であ
るセラミックスとマトリックスである金属或いは合金の
濡れ性や界面の反応層等も熱伝導率に大きく寄与するこ
と、マトリックスと強化材の結合が不十分であると熱伝
導率以外に複合体の強度低下をもたらすという制限があ
る。However, in order to increase the thermal conductivity of the composite, it is necessary to select a material having a high thermal conductivity as a reinforcing material and a metal or an alloy. There are limitations that the wettability of the alloy and the reaction layer at the interface greatly contribute to the thermal conductivity, and that if the bonding between the matrix and the reinforcing material is insufficient, the strength of the composite is reduced in addition to the thermal conductivity.
【0008】[0008]
【発明が解決しようとする課題】即ち、MoやW等の重
金属材料をヒートシンクに用いた場合、放熱部品の重量
が重くなると共に、放熱性に関しても必ずしも十分でな
いという問題があるし、比較的軽量で放熱性に優れるC
uやAl等をヒートシンクとして用いる場合にも、セラ
ミックス基板との熱膨張差が大きく、信頼性の高い構造
を得るためには、接合構造自体が非常に複雑になってし
まい、製造コストの増加や放熱部品としての熱抵抗の増
加等を招くといった問題があった。That is, when a heavy metal material such as Mo or W is used for the heat sink, the weight of the heat dissipating component becomes heavy, and the heat dissipating property is not always sufficient. With excellent heat dissipation
Even when u, Al, or the like is used as a heat sink, the difference in thermal expansion from the ceramic substrate is large, and in order to obtain a highly reliable structure, the bonding structure itself becomes very complicated, which increases the manufacturing cost and There is a problem that the thermal resistance as a heat dissipating component is increased.
【0009】更に、上記の課題を解決するため、金属−
セラミックス複合体が検討されているが、セラミックス
基板に近い熱膨張率を得ようとすると、熱膨張率の低い
強化材であるセラミックスの比率を上げる必要がある。
しかし、セラミックス成分の比率を上げるには、高い成
形圧でプリフォームを成形する必要があり、コストアッ
プに繋がると共に、その後の金属或いは合金の十分な含
浸が難しくなるという問題がある。このため、熱膨張率
がセラミックス基板に近く、高い熱伝導率を有する金属
−セラミックス複合体を安価に提供できる技術の開発が
課題となっている。Further, in order to solve the above-mentioned problems, a metal-
Although a ceramic composite is being studied, it is necessary to increase the ratio of ceramics, which is a reinforcing material having a low coefficient of thermal expansion, in order to obtain a coefficient of thermal expansion close to that of a ceramic substrate.
However, in order to increase the ratio of the ceramic component, it is necessary to mold the preform with a high molding pressure, which leads to an increase in cost and a problem that it is difficult to sufficiently impregnate the metal or alloy thereafter. For this reason, the development of a technology capable of providing a metal-ceramic composite having a high coefficient of thermal expansion close to that of a ceramic substrate and having a high thermal conductivity at low cost has been an issue.
【0010】一方、上述した複合体をヒートシンク等の
放熱部品として用いる場合、回路基板や放熱フィン等と
接合して用いるため、その接合部分の平滑度、言い換え
ると複合体の反りが非常に重要である。例えば、ヒート
シンクに適用させる場合、セラミックス基板等の回路基
板と半田等により接合するため、ヒートシンクに反りが
あると接合界面の厚さが不均一になり、使用時に接合部
(半田部分)より剥離等が起こるといった問題や、回路
基板に不均一な応力が発生し、回路基板におけるセラミ
ックス等の絶縁層の破壊といった問題が発生する。ま
た、室温で反りが小さく、回路基板との接合が可能な材
料であっても、使用下で加熱されて反りを発生する材料
の場合には、やはり、接合部からの剥離や回路基板の破
壊等の問題がある。On the other hand, when the above-described composite is used as a heat radiating component such as a heat sink, since the composite is used by bonding it to a circuit board or a radiating fin, the smoothness of the bonded portion, in other words, the warpage of the composite is very important. is there. For example, when applied to a heat sink, it is bonded to a circuit board such as a ceramic substrate by soldering or the like. Therefore, if the heat sink is warped, the thickness of the bonding interface becomes non-uniform. Occurs, and a non-uniform stress is generated on the circuit board, and a problem such as breakage of an insulating layer such as ceramics on the circuit board occurs. In addition, even if the material is small in warp at room temperature and can be bonded to a circuit board, if the material is heated during use and generates warp, peeling from the bonded portion or destruction of the circuit board is still required. There are problems such as.
【0011】更に、セラミックス回路基板等は、ヒート
シンク等の放熱部品を介して、通常放熱フィン等に接合
して用いるが、その場合、ヒートシンクに反りがあると
放熱フィン等との接合が不十分となり、半導体素子等か
ら発生した熱を十分に放熱することができず、部品の故
障原因となる。Further, the ceramic circuit board or the like is usually used by being joined to a radiating fin or the like via a radiating component such as a heat sink. In this case, if the heat sink is warped, the joining with the radiating fin or the like becomes insufficient. In addition, heat generated from a semiconductor element or the like cannot be sufficiently dissipated, which causes a failure of components.
【0012】本発明は、上記の事情に鑑みなされたもの
であって、高熱伝導性を有すると共に、比重が小さく、
且つ熱膨張率がセラミックス基板と同程度に小さく、加
えて加熱された際にも反りがない、寸法安定性に優れた
高熱伝導性複合体とそれを用いて放熱部品を安価に提供
することを目的とするものである。The present invention has been made in view of the above circumstances, and has high thermal conductivity, low specific gravity,
Also, to provide a highly thermally conductive composite having excellent thermal expansion coefficient, which is as small as a ceramic substrate, does not warp when heated, and has excellent dimensional stability, and a heat-dissipating component using the composite at a low cost. It is the purpose.
【0013】[0013]
【課題を解決するための手段】本発明者らは、上記目的
を達成するため鋭意研究した結果、複合体中の酸素量を
厳密に制御することにより、複合体の反りを防止できる
ことを見出し、本発明を完成するに至ったものである。Means for Solving the Problems The present inventors have conducted intensive studies to achieve the above object, and as a result, have found that the strict control of the amount of oxygen in the complex can prevent the warpage of the complex. The present invention has been completed.
【0014】即ち、本発明は、炭化珪素質多孔体にアル
ミニウムを主成分とする金属を含浸してなる板状複合体
であって、相対する主面の酸素量の差が0.5重量%以
下であることを特徴とする板状複合体である。That is, the present invention relates to a plate-like composite obtained by impregnating a silicon carbide-based porous body with a metal containing aluminum as a main component, wherein the difference in oxygen content between the opposite main surfaces is 0.5% by weight. It is a plate-shaped composite characterized by the following.
【0015】また、本発明は、室温(25℃)から30
0℃に加熱した際の反り量が、当該反りが最大となる方
向の長さ1mmに対して、5μm以下であることを特徴
とする前記の板状複合体である。Further, the present invention relates to a method for reducing the temperature from room temperature (25 ° C.) to 30 ° C.
The plate-shaped composite according to the above, wherein a warpage when heated to 0 ° C. is 5 μm or less with respect to a length of 1 mm in a direction in which the warp is maximum.
【0016】更に、本発明は、直径3mm長さ10mm
の試験片(A)と直径1.5mm長さ10mmの試験片
(B)を長さ方向が板状複合体の主面と平行となるよう
にそれぞれ採取し、それぞれの熱膨張率を押棒式熱膨張
計にて測定したときに、試験片(A)と試験片(B)の
それぞれの見掛の熱膨張率の差が1×10-6K-1以下で
あることを特徴とする前記の板状複合体である。Further, the present invention provides a method for manufacturing a semiconductor device having a diameter of 3 mm and a length of 10 mm.
(A) and a test piece (B) having a diameter of 1.5 mm and a length of 10 mm were sampled so that the length direction was parallel to the main surface of the plate-like composite, and the thermal expansion coefficients of the test pieces were determined by a push-rod method. Wherein the difference between the apparent thermal expansion coefficients of the test piece (A) and the test piece (B) is 1 × 10 −6 K −1 or less when measured with a thermal dilatometer. It is a plate-shaped composite.
【0017】加えて、本発明は、前記の板状複合体を用
いてなることを特徴とする放熱部品である。In addition, the present invention is a heat dissipating component characterized by using the above-mentioned plate-shaped composite.
【0018】[0018]
【発明の実施の形態】金属−セラミックス複合体の熱膨
張率は、通常、強化材であるセラミックスと基材である
金属の熱膨張率とそれらの配合比で決まる。セラミック
スの熱膨張率は金属の熱膨張率に比べかなり小さく、複
合体の熱膨張率を下げるには、セラミックスの比率を増
やすことが効果的である。一方、金属−セラミックス複
合体の熱伝導率も、基本的には、強化材であるセラミッ
クスと基材である金属の熱伝導率とそれらの配合比で決
まるが、熱伝導率に関しては、更に強化材と基材との界
面の結合状態も大きな寄与要因である。セラミックスと
金属では、一般に金属の方が熱伝導率が高いが、炭化珪
素(SiC)、窒化アルミニウム(AlN)、窒化硼素
(BN)等は、金属と同等以上(300W/(m・K)
以上)の理論熱伝導率を有し、熱伝導率向上の点から
は、強化材として非常に有望である。BEST MODE FOR CARRYING OUT THE INVENTION The coefficient of thermal expansion of a metal-ceramic composite is usually determined by the coefficients of thermal expansion of a ceramic serving as a reinforcing material and a metal serving as a base material, and their mixing ratio. The coefficient of thermal expansion of ceramics is considerably smaller than the coefficient of thermal expansion of metal, and it is effective to increase the ratio of ceramics to reduce the coefficient of thermal expansion of the composite. On the other hand, the thermal conductivity of a metal-ceramic composite is also basically determined by the thermal conductivity of the ceramic as the reinforcing material and the metal as the base material and their compounding ratio. The bonding state of the interface between the material and the substrate is also a major contributing factor. In general, metals have higher thermal conductivity among ceramics and metals, but silicon carbide (SiC), aluminum nitride (AlN), boron nitride (BN), and the like are equal to or more than metals (300 W / (m · K)).
It has the theoretical thermal conductivity described above and is very promising as a reinforcing material from the viewpoint of improving thermal conductivity.
【0019】本発明者らは、強化材について種々検討し
た結果、炭化珪素粉の成形体或いは炭化珪素を主成分と
するセラミックス構造体等の炭化珪素質多孔体を用いる
ときに、高熱伝導率と低熱膨張率を兼ね備えた金属−セ
ラミックス複合体を製造するのに適していることを見い
だし、本発明に至ったものである。As a result of various studies on the reinforcing material, the present inventors have found that when a silicon carbide-based porous body such as a molded body of silicon carbide powder or a ceramic structure containing silicon carbide as a main component is used, a high thermal conductivity is obtained. The present invention has been found to be suitable for producing a metal-ceramic composite having a low coefficient of thermal expansion, and has led to the present invention.
【0020】複合体を製造する場合、緻密な複合体を得
るためには、強化材と金属との濡れ性の良いことが重要
であり、それらの組み合わせが重要である。また、金属
−セラミックス複合体は、一般に、強化材であるセラミ
ックスを所定形状に成形したプリフォームに、基材であ
る金属を高温高圧下で含浸させる高圧鋳造法で緻密体を
製造している。含浸する金属の融点が高いと、含浸時の
温度が高くなり、セラミックスが酸化されたり、セラミ
ックスと金属が反応して特性的に好ましくない化合物を
形成することがある。更に、基材である金属の融点が高
いと、含浸温度が高くなることにより、型材等の材質が
限定され高価になってしまうと共に、鋳造コスト自体も
増加し、得られる複合体が高価になってしまう。In producing a composite, it is important that the reinforcing material and the metal have good wettability, and a combination thereof is important in order to obtain a dense composite. In addition, a metal-ceramic composite is generally manufactured by a high-pressure casting method in which a preform formed by molding a ceramic as a reinforcing material into a predetermined shape is impregnated with a metal as a base material at a high temperature and a high pressure. If the melting point of the metal to be impregnated is high, the temperature at the time of impregnation becomes high, and the ceramic may be oxidized or the ceramic and the metal may react to form a compound which is not characteristically favorable. Furthermore, when the melting point of the metal as the base material is high, the impregnation temperature is high, so that the materials such as the mold material are limited and expensive, and the casting cost itself increases, and the obtained composite becomes expensive. Would.
【0021】本発明者らは、基材である金属について種
々検討した結果、アルミニウムを主成分とする合金を用
いることにより、良好な複合体を製造できることを見い
だした。すなわち、本発明の複合体は、炭化珪素質多孔
体にアルミニウムを主成分とする金属を含浸してなるも
のである。As a result of various studies on the metal as the base material, the present inventors have found that a good composite can be manufactured by using an alloy containing aluminum as a main component. That is, the composite of the present invention is obtained by impregnating a silicon carbide-based porous body with a metal containing aluminum as a main component.
【0022】また、本発明の複合体中の炭化珪素質多孔
体の含有量は、50〜80体積%であることが好まし
く、更に好ましくは60〜70体積%である。炭化珪素
質多孔体の含有量が50体積%未満では、複合体の熱膨
張率が高くなり、本発明が目的とする信頼性の高い放熱
部品が得られないことがある。また、炭化珪素質多孔体
の含有量を高くすることは、複合体の高熱伝導率、低熱
膨張率といった点では有効であるが、嵩密度が80%を
越える多孔体を製造するには、プリフォーム製作過程に
おいて非常に高い成形圧力を必要とする等の問題があ
り、得られる複合体のコストが極端に高くなってしま
う。また、複合体中の炭化珪素質多孔体の含有量が80
体積%を越え極端に高くなりすぎると、強度、破壊靱性
等の機械的特性が低下するとともに高温での熱伝導率が
低下するという問題もある。Further, the content of the silicon carbide based porous material in the composite of the present invention is preferably 50 to 80% by volume, more preferably 60 to 70% by volume. When the content of the silicon carbide-based porous body is less than 50% by volume, the thermal expansion coefficient of the composite becomes high, and the highly reliable heat radiation component aimed at by the present invention may not be obtained. Increasing the content of the silicon carbide-based porous body is effective in terms of high thermal conductivity and low coefficient of thermal expansion of the composite. However, in order to produce a porous body having a bulk density exceeding 80%, it is necessary to increase the content. There are problems such as the necessity of a very high molding pressure in the reforming process, and the cost of the resulting composite becomes extremely high. Further, the content of the silicon carbide based porous material in the composite is 80%.
If the content exceeds the volume% and becomes extremely high, there are problems that mechanical properties such as strength and fracture toughness are reduced and thermal conductivity at high temperatures is reduced.
【0023】一方、本発明の炭化珪素質複合体中の金属
は、アルミニウムを主成分とする合金であり、好ましく
はシリコンを20重量%以下、又はマグネシウムを5重
量%以下含有する。合金中のアルミニウム以外の成分を
調整することにより、合金自体の熱伝導率や熱膨張率を
変えることができ、その結果得られる複合体の熱膨張率
や熱伝導率も調整できる。アルミニウムにシリコンやマ
グネシウムを添加し合金化することにより、合金の融点
低下や高温での溶融金属の粘性低下があり、高温鋳造法
等で緻密な複合体が得やすくなる。更に、アルミニウム
金属を合金化することにより、金属自体の硬度増加があ
り、その結果、得られる複合体の強度等の機械的特性が
向上する。合金中のアルミニウム、シリコン、マグネシ
ウム以外の金属成分に関しては、極端に合金の特性が変
化しない範囲であれば銅等も含有することができる。On the other hand, the metal in the silicon carbide composite of the present invention is an alloy containing aluminum as a main component, and preferably contains 20% by weight or less of silicon or 5% by weight or less of magnesium. By adjusting the components other than aluminum in the alloy, the thermal conductivity and thermal expansion coefficient of the alloy itself can be changed, and the thermal expansion coefficient and thermal conductivity of the resulting composite can also be adjusted. By adding silicon or magnesium to aluminum to form an alloy, the melting point of the alloy is reduced and the viscosity of the molten metal is reduced at a high temperature, so that a dense composite can be easily obtained by a high-temperature casting method or the like. Furthermore, by alloying aluminum metal, the hardness of the metal itself is increased, and as a result, mechanical properties such as strength of the obtained composite are improved. Regarding metal components other than aluminum, silicon and magnesium in the alloy, copper and the like can be contained as long as the properties of the alloy do not change extremely.
【0024】本発明の複合体は、板状であり、しかも相
対する主面の酸素量の差が0.5重量%以下である。複
合体の熱膨張率は、炭化珪素質多孔体を形成するに必要
な炭化珪素とそれを結合するに用いる酸化物、更に金属
或いは合金の熱膨張率とそれら含有量により強く支配さ
れているが、本発明者らは、前記酸素量の差が0.5重
量%を越えると、複合体の相対する主面の熱膨張率の差
が大きくなり、複合体に反りが発生し、ヒートシンク等
の放熱部品として用いる場合に、回路基板や放熱フィン
等と十分に接合することができなくなることを見出し、
本発明に至ったものである。また、板の厚さとしては、
例えばヒートシンクに用いる場合に2〜10mmであ
る。The composite of the present invention is plate-shaped, and the difference between the amounts of oxygen on the opposite main surfaces is 0.5% by weight or less. The coefficient of thermal expansion of the composite is strongly governed by the coefficient of thermal expansion of the silicon carbide necessary for forming the silicon carbide-based porous body and the oxide used to bond it, and furthermore, the metal or alloy and their content. When the difference in the amount of oxygen exceeds 0.5% by weight, the present inventors have found that the difference in the coefficient of thermal expansion between the opposite main surfaces of the composite becomes large, the composite is warped, and the heat sink and the like are generated. When it is used as a heat radiating component, it has been found that it cannot be sufficiently bonded to a circuit board or a heat radiating fin,
This has led to the present invention. Also, as the thickness of the board,
For example, it is 2 to 10 mm when used for a heat sink.
【0025】本発明の炭化珪素質複合体は、室温(25
℃)から300℃に加熱した際の反り量が、当該反りが
最大となる方向の長さ1mmに対して、5μm以下、好
ましくは2μm以下である。一般に、ヒートシンク等の
放熱部品は、回路基板や放熱フィン等と接合して用いら
れるため、室温においては、顕著な反りがないものを用
いる。しかし、加熱時に反りが発生すると前述したよう
な回路基板の剥離や絶縁層の破壊といった問題が発生す
る。The silicon carbide composite of the present invention can be used at room temperature (25
° C) to 300 ° C, the amount of warpage is 5 µm or less, and preferably 2 µm or less, with respect to 1 mm in the length in the direction in which the warp is maximum. In general, a heat radiating component such as a heat sink is used by being joined to a circuit board, a heat radiating fin, or the like. However, if warpage occurs at the time of heating, problems such as peeling of the circuit board and destruction of the insulating layer as described above occur.
【0026】室温(25℃)から300℃に加熱した際
の反り量が、当該反りが最大となる方向の長さ1mmに
対して、5μmを越えると、回路基板や放熱フィン等と
接合する際には、室温では接合状態が均一であっても、
実使用下においては、熱サイクル等が付加された場合、
回路基板の破壊や放熱特性の低下による半導体素子の故
障を引き起こす。If the amount of warpage when heated from room temperature (25 ° C.) to 300 ° C. exceeds 5 μm with respect to the length of 1 mm in the direction in which the warp becomes the maximum, it may be difficult to join the circuit board and the radiation fins. At room temperature, even if the bonding condition is uniform at room temperature,
Under actual use, when a heat cycle is added,
The semiconductor element may be damaged due to the destruction of the circuit board or the deterioration of the heat radiation characteristics.
【0027】また、本発明の複合体は、直径3mm長さ
10mmの試験片(A)と直径1.5mm長さ10mm
の試験片(B)を、それぞれ長さ方向が板状複合体の主
面と平行となるように採取し、それぞれの熱膨張率を押
棒式熱膨張計にて測定したときに、試験片(A)と試験
片(B)のそれぞれの見掛の熱膨張率の差が1×10 -6
K-1以下、好ましくは0.5×10-6K-1以下である。
前記見掛の熱膨張率の差が1×10-6K-1を越える場
合、複合体の反りが大きく、放熱部品等として用いる場
合に問題を生じることがある。The composite of the present invention has a diameter of 3 mm and a length of 3 mm.
10mm test piece (A) and 1.5mm diameter 10mm length
Each of the test pieces (B) was placed in the longitudinal direction of the plate-shaped composite.
Samples are taken in parallel with the surface, and the coefficient of thermal expansion of each is
When measured with a bar type thermal dilatometer, the test piece (A)
The difference between the apparent thermal expansion coefficients of the pieces (B) is 1 × 10 -6
K-1Below, preferably 0.5 × 10-6K-1It is as follows.
The apparent thermal expansion coefficient difference is 1 × 10-6K-1A place to cross
If the composite is very warped,
May cause problems.
【0028】本発明の複合体は、熱伝導率が150W/
(m・K)以上であり、室温の熱膨張率が1×10-5K
-1以下であることが好ましい。The composite of the present invention has a thermal conductivity of 150 W /
(M · K) or more and the coefficient of thermal expansion at room temperature is 1 × 10 −5 K
It is preferably -1 or less.
【0029】また、本発明の複合体は、密度が3g/c
m3程度と銅等の金属に比べ軽く、放熱部品等として用
いる場合、部品の軽量化に有効である。加えて、本発明
の炭化珪素質複合体は、曲げ強度が300MPa以上と
高く、放熱部品等として用いるに十分な機械的特性を有
している。The composite of the present invention has a density of 3 g / c.
m 3 degree and the metal lighter compared with such as copper, is used as a heat-dissipating component such as is effective in weight reduction of the parts. In addition, the silicon carbide composite of the present invention has a high flexural strength of 300 MPa or more, and has sufficient mechanical properties to be used as a heat dissipation component or the like.
【0030】本発明の複合体は、熱伝導特性に優れ、十
分な機械的特性を有し、しかもセラミックス基板と同程
度に小さな熱膨張率を有しており、セラミックス回路基
板用などのヒートシンクを初めとする放熱部品に用いて
好適である。また、本発明の複合体は、密度が3g/c
m3程度と軽量であり、移動用機器に用いる放熱部品と
して好適である。The composite of the present invention is excellent in heat conduction characteristics, has sufficient mechanical characteristics, and has a coefficient of thermal expansion as small as a ceramic substrate. It is suitable for use as the first heat radiation component. The composite of the present invention has a density of 3 g / c.
It is as light as about m 3 and is suitable as a heat dissipating component for mobile equipment.
【0031】本発明の複合体は、熱伝導特性に優れ、熱
膨張率が1×10-5K-1以下と低いので、ヒートシンク
等の放熱部品として用いるとき、従来の銅等を用いた場
合に比べてセラミックス基板との熱膨張率差が小さくな
り、セラミックス基板がその上に搭載される半導体素子
の作動時に発生する熱サイクル等によりクラックや割れ
等を発生する現象を防止できるので、高い信頼性が要求
される電気、自動車等の移動用機器に用いる放熱部品と
して好適である。そして、本発明の複合体を用いてなる
放熱部品は、温度変化があっても反りが非常に少ないの
で、回路基板や放熱フィンと十分に接合することがで
き、高い放熱特性を安定して有することができるという
効果を有する。The composite of the present invention has excellent thermal conductivity and a low coefficient of thermal expansion of 1 × 10 −5 K −1 or less. The thermal expansion difference between the ceramic substrate and the ceramic substrate is smaller than that of the ceramic substrate. It is suitable as a heat dissipating component for use in mobile devices such as electric vehicles and automobiles that require high performance. The heat radiating component using the composite of the present invention has a very small warpage even when there is a temperature change, so that it can be sufficiently bonded to a circuit board or a heat radiating fin, and has a high heat radiation characteristic stably. It has the effect of being able to.
【0032】本発明の複合体を得る方法としては、以下
の方法があげられる。炭化珪素粉末に結合剤としてシリ
カゾルやアルミナゾル等を所定量添加混合し、所望の形
状に成形する。成形方法は、プレス成形、押し出し成
形、鋳込み成形等を用いることができ、必要に応じて保
形用バインダーを添加してもよい。また、炭化珪素粉末
に関しては、1種類の粉末を用いても、また、複数の粉
末を粒度配合して用いてもよい。次に、得られた成形体
を、大気中又は窒素等の雰囲気中、温度700〜160
0℃で仮焼して炭化珪素質多孔体を製造する。また、炭
化珪素粉末に結合材としてシリコン粉末を添加混合し
て、同様の方法で製造することもできる。更に、炭化珪
素質多孔体の他の製造方法に関しては、炭化珪素粉末や
シリコン粉末と炭素粉末の混合粉末を、不活性ガス雰囲
気中、温度1600〜2200℃で焼成して製造するこ
ともできる。The method for obtaining the complex of the present invention includes the following methods. A predetermined amount of silica sol, alumina sol, or the like is added to silicon carbide powder as a binder and mixed to form a desired shape. As a molding method, press molding, extrusion molding, cast molding, or the like can be used, and a binder for shape retention may be added as necessary. In addition, as for the silicon carbide powder, one kind of powder may be used, or a plurality of powders may be used by blending the particle size. Next, the obtained molded body is heated at a temperature of 700 to 160 in the atmosphere or in an atmosphere such as nitrogen.
Calcination is performed at 0 ° C. to produce a silicon carbide porous body. Alternatively, silicon carbide powder can be added to and mixed with silicon powder as a binder, and can be manufactured in the same manner. Further, with respect to another method for producing a silicon carbide-based porous body, it can be produced by firing silicon carbide powder or a mixed powder of silicon powder and carbon powder at a temperature of 1600 to 2200 ° C. in an inert gas atmosphere.
【0033】得られた炭化珪素質多孔体は、熱衝撃によ
る割れ等を防止するために加熱し、融点以上の温度に加
熱したアルミニウムを主成分とする金属溶湯を高圧で含
浸させて炭化珪素質複合体とする。金属成分の含浸方法
に関しては、特に限定はなく、高圧鋳造法、ダイキャス
ト法等が利用できる。The obtained silicon carbide porous body is heated to prevent cracking due to thermal shock, and impregnated at a high pressure with a molten metal mainly composed of aluminum heated to a temperature not lower than the melting point. Make a complex. The method for impregnating the metal component is not particularly limited, and a high pressure casting method, a die casting method, or the like can be used.
【0034】尚、本発明の複合体中の相対する主面の酸
素量の分析方法に関しては、複合体を研削加工して、上
面及び下面より板厚の1/3以下、しかも表面から0.
1〜0.5mmの部分を採取し、乳鉢等で粉砕して粉末
状試料を得て、酸素/窒素同時分析計(LECO社製;
TC−436)で測定することができる。The method for analyzing the amount of oxygen on the opposite main surface in the composite according to the present invention is as follows.
A portion of 1 to 0.5 mm is collected and pulverized in a mortar or the like to obtain a powdery sample, and an oxygen / nitrogen simultaneous analyzer (LECO;
TC-436).
【0035】[0035]
【実施例】以下、実施例をあげて、本発明を更に詳細に
説明する。The present invention will be described in more detail with reference to the following examples.
【0036】[実施例1〜4]炭化珪素粉末a(太平洋
ランダム社製:NG−220、平均粒径:60μm)7
5g、炭化珪素粉末b(屋久島電工社製:GC−100
0F、平均粒径:10μm)75g及びシリカゾル(日
産化学社製:スノーテックス)を固形分量で4.5g配
合し、攪拌混合機で30分間混合した後、120mm×
120mm×5mmの形状に10MPaの圧力でプレス
し成形体とした。得られた成形体は、大気雰囲気中、温
度1000℃で2時間加熱して、炭化珪素質多孔体を作
製した。得られた炭化珪素質多孔体は、その寸法と質量
より相対密度を算出した結果、64%であった。[Examples 1 to 4] Silicon carbide powder a (manufactured by Taiheiyo Random Corporation: NG-220, average particle size: 60 μm) 7
5 g, silicon carbide powder b (manufactured by Yakushima Denko Corporation: GC-100
0F, average particle diameter: 10 μm) and 4.5 g of silica sol (Nissan Chemical Co., Ltd .: Snowtex) in a solid content amount, and after mixing for 30 minutes with a stirring mixer, 120 mm ×
It was pressed into a shape of 120 mm × 5 mm at a pressure of 10 MPa to obtain a molded body. The obtained molded body was heated at a temperature of 1000 ° C. for 2 hours in an air atmosphere to produce a silicon carbide porous body. The relative density of the obtained porous silicon carbide body was calculated from its size and mass, and as a result, it was 64%.
【0037】次に、得られた炭化珪素質多孔体を電気炉
で、温度800℃に予備加熱し、予め加熱しておいた内
径200mmφのプレス型内に載置した後、温度850
℃に加熱した表1に示す合金の溶湯を流し込み、100
MPaの圧力で2分間プレスして、炭化珪素質多孔体に
合金を含浸させた。室温まで冷却したのち、ダイヤモン
ド加工治具で炭化珪素質複合体を削り出した。得られた
炭化珪素質複合体は、ダイヤモンド加工治具を用いて、
熱膨張率測定用試験体A(3mmφ×10mm)、試験
体B(1.5mmφ×10mm)、室温の熱伝導率測定
用試験体(10mmφ×3mm)、三点曲げ強さ評価用
試験体(3mm×4mm×40mm)、反り測定用試験
体(100mm×50mm×3mm)に研削加工した。
また、得られた複合体の相対する主面の上面より試験体
C(20mmφ×0.4mm)、下面より試験体D(2
0mmφ×0.4mm)をそれぞれ研削加工して作製し
た。Next, the obtained silicon carbide-based porous body was preheated to a temperature of 800 ° C. in an electric furnace, and placed in a preheated press die having an inner diameter of 200 mmφ.
Of the alloy shown in Table 1 heated to
Pressing was performed at a pressure of MPa for 2 minutes to impregnate the silicon carbide porous body with the alloy. After cooling to room temperature, the silicon carbide composite was cut out with a diamond processing jig. The obtained silicon carbide composite was obtained using a diamond processing jig.
Specimen A for measuring thermal expansion coefficient (3 mmφ × 10 mm), specimen B (1.5 mmφ × 10 mm), specimen for measuring thermal conductivity at room temperature (10 mmφ × 3 mm), specimen for evaluating three-point bending strength ( 3 mm × 4 mm × 40 mm) and a test piece for warpage measurement (100 mm × 50 mm × 3 mm).
The specimen C (20 mmφ × 0.4 mm) was observed from the upper surface of the opposite main surface of the obtained composite, and the specimen D (2 mm) was observed from the lower surface.
0 mmφ × 0.4 mm) by grinding.
【0038】[0038]
【表1】 [Table 1]
【0039】次に、それぞれの試験体を用いて、熱膨張
計(セイコー電子社製:TMA−300)により室温か
ら250℃の熱膨張率、レーザーフラッシュ法による室
温の熱伝導率(真空理工社製;TC−7000)及び曲
げ試験機(島津製作所社製;オートグラフ)による三点
曲げ強さを測定した。得られた結果を表2に示す。ま
た、試験体C、Dを乳鉢で粉砕し、酸素/窒素同時分析
計(LECO社製;TC−436)で酸素量を測定し
た。更に、反り量に関しては、試験体を電気炉中に設置
し、温度25℃から300℃に加熱し、マクロメータで
その際の寸法変化を測定し、反り量を算出した。得られ
た結果を表2に示す。Next, the thermal expansion coefficient from room temperature to 250 ° C. using a thermal dilatometer (manufactured by Seiko Electronics: TMA-300) and the thermal conductivity at room temperature using a laser flash method (Vacuum Riko Co., Ltd.) (TC-7000) and a bending tester (Shimazu Seisakusho; Autograph) to measure the three-point bending strength. Table 2 shows the obtained results. Further, the test pieces C and D were pulverized in a mortar, and the oxygen content was measured with an oxygen / nitrogen simultaneous analyzer (LECO; TC-436). Further, with respect to the amount of warpage, the test piece was placed in an electric furnace, heated from a temperature of 25 ° C. to 300 ° C., and a dimensional change at that time was measured with a macrometer to calculate the amount of warpage. Table 2 shows the obtained results.
【0040】[0040]
【表2】 [Table 2]
【0041】[実施例5、比較例1、2]炭化珪素粉末
a75g、炭化珪素粉末b75g、シリカゾルを固形分
量で6g及び純水50gを配合し、攪拌混合機で30分
間混合した後、120mm×120mm×5mmの形状
の石膏型に流し込み、温度40℃で24時間乾燥して成
形体を作製した。尚、比較例1では、添加する純水の量
を100gとし、比較例2では、混合時間を30秒とし
た。得られた成形体は、大気雰囲気中、温度1000℃
で2時間加熱して、炭化珪素質多孔体を作製した。得ら
れた炭化珪素質多孔体は、20mmφ×5mmの形状に
加して、その寸法と質量より相対密度を算出した。実施
例5の相対密度は69%であり、比較例1の相対密度は
64%、比較例2の相対密度は62%であった。Example 5, Comparative Examples 1 and 2 75 g of silicon carbide powder a, 75 g of silicon carbide powder b, 6 g of silica sol in solid content and 50 g of pure water were mixed, mixed with a stirring mixer for 30 minutes, and then mixed with 120 mm × The mixture was poured into a gypsum mold having a shape of 120 mm × 5 mm and dried at a temperature of 40 ° C. for 24 hours to produce a molded body. In Comparative Example 1, the amount of pure water to be added was 100 g, and in Comparative Example 2, the mixing time was 30 seconds. The obtained molded body was heated at a temperature of 1000 ° C. in an air atmosphere.
For 2 hours to produce a silicon carbide-based porous body. The obtained silicon carbide porous body was added to a shape of 20 mmφ × 5 mm, and the relative density was calculated from the size and mass. The relative density of Example 5 was 69%, the relative density of Comparative Example 1 was 64%, and the relative density of Comparative Example 2 was 62%.
【0042】次に、この炭化珪素質多孔体を、実施例1
と同じ方法によりアルミニウム合金を含浸させて炭化珪
素質複合体を作製した。得られた複合体は、実施例1と
同じ方法により評価を行った。得られた結果を表3に示
す。Next, this silicon carbide-based porous material was used in Example 1
An aluminum alloy was impregnated in the same manner as described above to produce a silicon carbide composite. The obtained composite was evaluated in the same manner as in Example 1. Table 3 shows the obtained results.
【0043】[0043]
【表3】 [Table 3]
【0044】[実施例6]実施例5の成形体を、1MP
aの窒素加圧雰囲気中、温度1500℃で3時間加熱し
て、炭化珪素質多孔体を作製した。得られた炭化珪素質
多孔体は、実施例1と同じ方法によりアルミニウム合金
を含浸させて炭化珪素質複合体を作製した。得られた複
合体は、実施例1と同じ方法により評価を行った。得ら
れた結果を表4に示す。Example 6 The molded product of Example 5 was subjected to 1MP
In a nitrogen pressurized atmosphere of a, heating was performed at a temperature of 1500 ° C. for 3 hours to produce a silicon carbide-based porous body. The obtained silicon carbide-based porous body was impregnated with an aluminum alloy in the same manner as in Example 1 to produce a silicon carbide-based composite. The obtained composite was evaluated in the same manner as in Example 1. Table 4 shows the obtained results.
【0045】[0045]
【表4】 [Table 4]
【0046】[実施例7、8、比較例2]実施例5で作
製した、炭化珪素質複合体を研削加工して、90mm×
90mm×3mmの形状とし、無電解ニッケル(Ni)
メッキ処理を行い、複合体表面に10μm厚のメッキ層
を形成した。メッキ処理した複合体表面に50μm厚の
半田ペーストをスクリーン印刷し、実施例7では、その
上に市販の窒化アルミニウム基板を搭載し、実施例8で
は、市販の窒化珪素基板を搭載し、それぞれ温度300
℃のリフロー炉で5分間加熱処理してセラミックス基板
を接合させた。尚、比較例2は、銅板を用いて実施例7
と同様の手法で、メッキ処理後、窒化アルミニウム基板
を接合した。Examples 7 and 8 and Comparative Example 2 The silicon carbide composite produced in Example 5 was ground to 90 mm ×
90mm x 3mm, electroless nickel (Ni)
A plating process was performed to form a 10 μm-thick plating layer on the surface of the composite. A 50 μm-thick solder paste was screen-printed on the surface of the plated composite. In Example 7, a commercially available aluminum nitride substrate was mounted thereon, and in Example 8, a commercially available silicon nitride substrate was mounted. 300
Heat treatment was performed for 5 minutes in a reflow furnace at ℃ to bond the ceramic substrates. Note that Comparative Example 2 was performed using the copper plate in Example 7
After the plating treatment, the aluminum nitride substrate was joined in the same manner as described above.
【0047】次に、これらのセラミックス基板を接合し
た複合体を用いて、−40℃〜150℃の温度幅で30
00回のヒートサイクル試験を行った。実施例8及び実
施例9は、ヒートサイクル試験後もセラミックス基板の
回路間のクラック発生や回路の剥離等の異常は認められ
なかった。一方、比較例2においては、ヒートサイクル
30回でセラミックス基板の回路間の部分にクラックが
発生した。Next, using a composite obtained by bonding these ceramic substrates, a temperature range of -40 ° C. to 150 ° C. is used.
00 heat cycle tests were performed. In Examples 8 and 9, even after the heat cycle test, abnormalities such as generation of cracks between circuits on the ceramic substrate and peeling of circuits were not observed. On the other hand, in Comparative Example 2, cracks occurred between the circuits on the ceramic substrate after 30 heat cycles.
【0048】[0048]
【発明の効果】本発明の複合体は、強化材である炭化珪
素質多孔体の含有量及びその分布状態を調整され、その
結果、熱伝導率が高く、熱膨張率がセラミックス基板と
同程度に小さく、しかも、温度変化を受けても反りが非
常に小さいという特徴を有するので、半導体搭載用セラ
ミックス基板と接合して用いるヒートシンクを初めとす
る放熱部品に好適である。更に、本発明の放熱部品は、
前記特徴に加え、高強度で、しかも軽量であることか
ら、電気、自動車等の移動機器等に好適な放熱部品とし
て好適である。According to the composite of the present invention, the content and distribution of the silicon carbide porous body as a reinforcing material are adjusted, and as a result, the thermal conductivity is high and the thermal expansion coefficient is almost the same as that of the ceramic substrate. It is suitable for heat radiating components such as a heat sink which is used in connection with a ceramic substrate for mounting a semiconductor, because it has a characteristic of being extremely small and having a very small warpage even when subjected to a temperature change. Furthermore, the heat radiating component of the present invention
In addition to the above features, it is high in strength and lightweight, and thus is suitable as a heat dissipating component suitable for mobile devices such as electric vehicles and automobiles.
Claims (4)
分とする金属を含浸してなる板状複合体であって、相対
する主面の酸素量の差が0.5重量%以下であることを
特徴とする板状複合体。1. A plate-shaped composite body in which a silicon carbide porous body is impregnated with a metal containing aluminum as a main component, wherein the difference in oxygen amount between the opposite main surfaces is 0.5% by weight or less. A plate-like composite characterized by the above-mentioned.
の反り量が、当該反りが最大となる方向の長さ1mmに
対して、5μm以下であることを特徴とする請求項1記
載の板状複合体。2. The method according to claim 1, wherein the amount of warpage when heated from room temperature (25 ° C.) to 300 ° C. is 5 μm or less for a length of 1 mm in a direction in which the warp is maximum. Plate composite.
と直径1.5mm長さ10mmの試験片(B)を長さ方
向が板状複合体の主面と平行となるようにそれぞれ採取
し、それぞれの熱膨張率を押棒式熱膨張計にて測定した
ときに、試験片(A)と試験片(B)のそれぞれの見掛
の熱膨張率の差が1×10-6K-1以下であることを特徴
とする請求項1記載の板状複合体。3. A test piece (A) having a diameter of 3 mm and a length of 10 mm.
And a test piece (B) having a diameter of 1.5 mm and a length of 10 mm were sampled so that the length direction was parallel to the main surface of the plate-like composite, and the respective coefficients of thermal expansion were measured with a push-rod type thermal dilatometer. 2. The plate-like plate according to claim 1, wherein the difference between the apparent thermal expansion coefficients of the test piece (A) and the test piece (B) is 1 × 10 −6 K −1 or less. Complex.
板状複合体を用いてなることを特徴とする放熱部品。4. A heat-dissipating component using the plate-shaped composite according to claim 1, 2 or 3.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9324215A JPH11157963A (en) | 1997-11-26 | 1997-11-26 | Tabular composite and heat dissipating component using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9324215A JPH11157963A (en) | 1997-11-26 | 1997-11-26 | Tabular composite and heat dissipating component using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11157963A true JPH11157963A (en) | 1999-06-15 |
Family
ID=18163338
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9324215A Pending JPH11157963A (en) | 1997-11-26 | 1997-11-26 | Tabular composite and heat dissipating component using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11157963A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009149455A (en) * | 2007-12-19 | 2009-07-09 | Denki Kagaku Kogyo Kk | Aluminum-ceramic composite, and method for producing the same |
-
1997
- 1997-11-26 JP JP9324215A patent/JPH11157963A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009149455A (en) * | 2007-12-19 | 2009-07-09 | Denki Kagaku Kogyo Kk | Aluminum-ceramic composite, and method for producing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3468358B2 (en) | Silicon carbide composite, method for producing the same, and heat radiation component using the same | |
JP4080030B2 (en) | Semiconductor substrate material, semiconductor substrate, semiconductor device, and manufacturing method thereof | |
TWI357788B (en) | ||
JP3351778B2 (en) | Carbon-based metal composite material plate-shaped body and manufacturing method | |
TWI796503B (en) | Metal-silicon carbide composite body, and method for manufacturing metal-silicon carbide composite body | |
WO2000076940A1 (en) | Composite material and semiconductor device using the same | |
WO2015115649A1 (en) | Silicon carbide complex, method for manufacturing same, and heat dissipation component using same | |
JP3496816B2 (en) | Metal-ceramic composites and heat dissipating parts using them | |
JP6595740B1 (en) | Metal-silicon carbide composite and method for producing the same | |
JP3449683B2 (en) | Ceramic circuit board and method of manufacturing the same | |
JP4404602B2 (en) | Ceramics-metal composite and high heat conduction heat dissipation substrate using the same | |
JP2010278171A (en) | Power semiconductor and manufacturing method of the same | |
JPH11157964A (en) | Tabular composite and heat dissipating component using the same | |
JPH11116361A (en) | Silicon carbide-based composite and heat radiating part using the same | |
JP3948797B2 (en) | Method for producing silicon carbide composite | |
JP4233133B2 (en) | Silicon carbide composite and heat dissipation component using the same | |
JPH11157963A (en) | Tabular composite and heat dissipating component using the same | |
JP3913130B2 (en) | Aluminum-silicon carbide plate composite | |
JP4305986B2 (en) | Method for producing silicon carbide composite material | |
JP3737072B2 (en) | Aluminum-silicon carbide composite and method for producing the same | |
JP4407858B2 (en) | Module structure | |
JP4127379B2 (en) | Method for producing aluminum-silicon carbide composite | |
JP2001217364A (en) | Al-SiC COMPOSITE | |
JP2001284509A (en) | Al-SiC COMPOSITE BODY | |
JPH11171673A (en) | Composite and heat sink using the same, and their production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040802 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050517 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050525 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060307 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060310 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20060905 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060920 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20061201 |
|
A912 | Removal of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20061228 |