JPH11157962A - Highly abrasion-resistant alumina-based sintered compact and its production - Google Patents

Highly abrasion-resistant alumina-based sintered compact and its production

Info

Publication number
JPH11157962A
JPH11157962A JP9328447A JP32844797A JPH11157962A JP H11157962 A JPH11157962 A JP H11157962A JP 9328447 A JP9328447 A JP 9328447A JP 32844797 A JP32844797 A JP 32844797A JP H11157962 A JPH11157962 A JP H11157962A
Authority
JP
Japan
Prior art keywords
alumina
sintered body
crystal
metal
based sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9328447A
Other languages
Japanese (ja)
Other versions
JP3777031B2 (en
Inventor
Usou Ou
雨叢 王
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP32844797A priority Critical patent/JP3777031B2/en
Publication of JPH11157962A publication Critical patent/JPH11157962A/en
Application granted granted Critical
Publication of JP3777031B2 publication Critical patent/JP3777031B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5025Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
    • C04B41/5027Oxide ceramics in general; Specific oxide ceramics not covered by C04B41/5029 - C04B41/5051

Abstract

PROBLEM TO BE SOLVED: To obtain an alumina-based sintered compact with high abrasion resistance owing to the high hardness and high toughness of its surface, and to provide a method for producing the above sintered compact. SOLUTION: This highly abrasion-resistant alumina-based sintered compact bearing a surface-hardened layer dispersed with metal oxide crystal grains other than alumina each <=0.2 μm in average size in the grains and grain boundaries of the main crystal phase in the region ranging from the surface to a depth of >=0.01 mm of this sintered compact with alumina as the main crystal phase containing >=20 vol.% of plate alumina crystal >=4 in aspect ratio, is obtained by heat treatment of a molded form made from a mixture prepared by incorporating alumina powder with metal (e.g. Ti, Mg, Fe) compound(s) capable of forming solid solution in alumina crystal in such an atmosphere that the metal (s) is capable of forming solid solution in the alumina crystal, followed by treatment in such an atmosphere that the metal (s) can be deposited as the corresponding oxide (s).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、特に耐摩部品、エ
ンジン部品等に使用される構造材料、切削工具として好
適に使用される表面に耐摩耗性に優れた表面硬化層を具
備するアルミナ質焼結体とその製造方法に関するもので
ある。
The present invention relates to an alumina-based sintering material having a surface-hardened layer having excellent wear resistance on a surface suitably used as a structural material used particularly for wear-resistant parts and engine parts and a cutting tool. The present invention relates to a binder and a method for producing the same.

【0002】[0002]

【従来の技術】従来から、アルミナ質焼結体は、高硬
度、耐高温、耐環境性などの優れた特性を有し、工具、
ポンプライナーに代表される耐摩耗材料として注目され
てきた。しかし、さらに苛酷な条件下で使用される場合
の高い耐摩耗性要求に対しては、その表面硬度が十分で
ない。また、焼結体の耐摩耗性を高める上では、硬度の
みならず、靱性を高めることも必要な条件である。
2. Description of the Related Art Conventionally, alumina-based sintered bodies have excellent properties such as high hardness, high temperature resistance, and environmental resistance.
It has attracted attention as a wear-resistant material represented by a pump liner. However, the surface hardness is not sufficient for high wear resistance requirements when used under more severe conditions. In order to enhance the wear resistance of the sintered body, it is necessary to increase not only the hardness but also the toughness.

【0003】アルミナ質焼結体の硬度を向上させるの
に、従来よりアルミナ主結晶を微細化したり、SiCや
ZrO2 などを添加して複合化することが特開昭61−
122164号、特開昭63−139044号にて提案
されている。
[0003] In order to improve the hardness of the alumina-based sintered body, it has been conventionally known to refine the alumina main crystal or to add SiC or ZrO 2 to form a composite.
122164 and JP-A-63-139044.

【0004】また、靱性を高めるために、アルミナに対
して、SiCウイスカーを添加したり、La含有系β−
Al2 3 を分散することも特開昭63−30378
号、特開昭63−134551号にて提案されている。
また、アルミナ主結晶の板状に成長させて高靱性化を図
ることも提案されている。
In order to improve toughness, SiC whiskers are added to alumina or La-containing β-
Dispersing Al 2 O 3 is also disclosed in JP-A-63-30378.
And JP-A-63-134551.
It has also been proposed to increase the toughness by growing a plate of alumina main crystal.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上述の
アルミナ質焼結体の硬度を改善する手法は、靱性に及ぼ
す影響がほとんどないために耐摩耗性向上の効果が小さ
い。また、β−Al2 3 の分散や、板状アルミナの形
成は、靱性向上効果はあっても、焼結体の硬度を低下さ
せてしまうために、むしろ耐摩耗性を低下させてしまう
傾向にある。SiCウイスカーの添加は、焼結体の硬度
と靱性を改善し、耐摩耗性を向上することができるが、
原料が高価である上に、製造コストが高いのと、高温酸
化雰囲気で使用される場合は化学的安定性に欠けるとい
う問題があった。
However, the above-described technique for improving the hardness of the alumina-based sintered body has little effect on toughness, and thus has little effect on improving wear resistance. Further, the dispersion of β-Al 2 O 3 and the formation of plate-like alumina have the effect of improving the toughness, but lower the hardness of the sintered body, and thus tend to lower the wear resistance. It is in. The addition of SiC whiskers can improve the hardness and toughness of the sintered body and improve the wear resistance.
There are problems in that the raw materials are expensive, the production cost is high, and when used in a high-temperature oxidizing atmosphere, the chemical stability is lacking.

【0006】従って、本発明は、焼結体表面が高硬度お
よび高靱性を有することにより耐摩耗性に優れたアルミ
ナ質焼結体とその製造方法を提供することを目的とする
ものである。
Accordingly, an object of the present invention is to provide an alumina-based sintered body having excellent wear resistance due to the surface of the sintered body having high hardness and high toughness, and a method for producing the same.

【0007】[0007]

【課題を解決するための手段】本発明者は、アルミナの
高温での安定性を損なうことなく、硬度と靭性を同時に
改善して耐摩耗性を向上するための方法について検討を
重ねた結果、アスペクト比が高い板状アルミナ結晶組織
を形成するとともに、焼結体表面にアルミナ結晶粒内、
あるいは粒界にアルミナ以外の微細な金属酸化物結晶が
析出した層を形成することにより、上記目的が達成でき
ることを見いだした。
Means for Solving the Problems The present inventor has repeatedly studied methods for simultaneously improving hardness and toughness and improving wear resistance without impairing the stability of alumina at high temperatures. Along with forming a plate-like alumina crystal structure with a high aspect ratio, the surface of the sintered body contains alumina crystal grains,
Alternatively, it has been found that the above object can be achieved by forming a layer in which fine metal oxide crystals other than alumina are precipitated at the grain boundaries.

【0008】即ち、本発明の高耐摩耗性アルミナ質焼結
体は、アスペクト比が4以上の板状アルミナ結晶を20
体積%以上含有するアルミナを主結晶相とする焼結体の
表面から0.01mm以上の深さまでの領域に、前記主
結晶相の粒内および粒界に、平均粒径0.2μm以下の
アルミナ以外の金属酸化物結晶粒子が分散した表面硬化
層を具備することを特徴するものであり、前記第2酸化
物結晶粒子は、Ti、MgおよびFeから選ばれる少な
くとも1種の金属を含むことが望ましい。また、焼結体
中心部においては、前記金属酸化物が主結晶相中に固溶
していることを特徴とするものである。
That is, the high wear-resistant alumina-based sintered body of the present invention comprises 20 plate-like alumina crystals having an aspect ratio of 4 or more.
Alumina having an average particle size of 0.2 μm or less is formed in a region from the surface of a sintered body containing alumina containing not less than 10% by volume or more to a depth of 0.01 mm or more within the grains of the main crystal phase and at grain boundaries. Characterized by comprising a surface hardened layer in which metal oxide crystal particles other than the above are dispersed, wherein the second oxide crystal particles contain at least one metal selected from Ti, Mg and Fe. desirable. In the central part of the sintered body, the metal oxide is dissolved in a main crystal phase.

【0009】本発明の高耐摩耗性アルミナ質焼結体の製
造方法は、アルミナ粉末に対して、アルミナ結晶中に固
溶可能な金属化合物を添加した混合物からなる成形体
を、前記金属がアルミナ結晶中に固溶可能な雰囲気中で
熱処理した後、前記金属が酸化物として析出可能な雰囲
気中で処理して、焼結体表面に、平均粒径0.2μm以
下のアルミナ以外の金属酸化物結晶粒子がアルミナ結晶
の粒内および粒界に分散した表面硬化層を形成したこと
を特徴とするものである。
The method for producing a highly wear-resistant alumina-based sintered body according to the present invention comprises the steps of: forming a compact comprising a mixture of alumina powder and a metal compound capable of forming a solid solution in alumina crystals; After a heat treatment in an atmosphere capable of forming a solid solution in the crystal, a treatment is performed in an atmosphere in which the metal can be precipitated as an oxide, and a metal oxide other than alumina having an average particle size of 0.2 μm or less is formed on the surface of the sintered body. The present invention is characterized in that a crystallized particle forms a surface hardened layer dispersed in the grains of the alumina crystal and at the grain boundaries.

【0010】具体的には、前記金属化合物としてTi化
合物を添加混合した成形体を、還元雰囲気中で熱処理し
てTiをアルミナ結晶中に固溶させた後、酸化雰囲気中
で熱処理してTi含有酸化物をアルミナ結晶の粒内およ
び粒界に析出させたこと、前記金属化合物としてTi化
合物およびMg化合物、あるいはそれらの複合化合物を
添加混合した成形体を、酸化雰囲気中で熱処理してアル
ミナ結晶中にTiおよびMgを固溶させた後、還元雰囲
気中で熱処理してMg含有酸化物をアルミナ結晶の粒内
および粒界に析出させたこと、前記金属化合物としてF
e化合物を添加混合した成形体を、酸化雰囲気中で熱処
理してアルミナ結晶中にFeを固溶させた後、還元雰囲
気中で熱処理してFe含有酸化物をアルミナ結晶の粒内
および粒界に析出させたことを特徴とするものである。
[0010] Specifically, a molded body obtained by adding and mixing a Ti compound as the metal compound is heat-treated in a reducing atmosphere to dissolve Ti in the alumina crystal, and then heat-treated in an oxidizing atmosphere to contain Ti. The oxide was precipitated in the grains and at the grain boundaries of the alumina crystal, and a compact formed by adding and mixing a Ti compound and a Mg compound as the metal compound, or a composite compound thereof, was subjected to a heat treatment in an oxidizing atmosphere to form a mixture in the alumina crystal. Was dissolved in Ti and Mg, and then heat-treated in a reducing atmosphere to precipitate Mg-containing oxides in the grains and at the grain boundaries of the alumina crystal.
e, heat-treating the compact in which the compound is added and mixed in an oxidizing atmosphere to dissolve Fe in the alumina crystal, and then heat-treating in a reducing atmosphere to reduce the Fe-containing oxide to the inside of the alumina crystal and at the grain boundary. It is characterized by being deposited.

【0011】[0011]

【発明の実施の形態】本発明の高耐摩耗性アルミナ質焼
結体は、アスペクト比が4以上の板状結晶が焼結体中に
20体積%以上含まれるものである。上記板状アルミナ
結晶の分散は、焼結体の靱性改善に有効である。板状結
晶の体積分率が小さいと、靱性改善効果は小さいため、
アスペクト比が4以上の結晶は20体積%以上、特に3
0体積%以上であることは望ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The high wear-resistant alumina-based sintered body of the present invention has a sintered body containing 20% by volume or more of plate-like crystals having an aspect ratio of 4 or more. The dispersion of the plate-like alumina crystals is effective for improving the toughness of the sintered body. When the volume fraction of the plate crystal is small, the effect of improving the toughness is small.
A crystal having an aspect ratio of 4 or more is 20% by volume or more, particularly 3% by volume.
It is desirable that the content be 0% by volume or more.

【0012】また、本発明の高耐摩耗性アルミナ質焼結
体は、その表面より0.01mm以上の深さ範囲内にお
いて、アルミナ以外の金属酸化物からなる平均粒径が
0.2μm以下の微細な結晶粒子がアルミナ主結晶の粒
内および粒界に分散された表面硬化層を具備することが
重要である。
The high wear-resistant alumina-based sintered body of the present invention has a mean particle size of a metal oxide other than alumina of 0.2 μm or less within a depth range of 0.01 mm or more from the surface. It is important to provide a surface hardened layer in which fine crystal grains are dispersed in the grains and the grain boundaries of the alumina main crystal.

【0013】このような焼結体表面において、金属酸化
物の微細な結晶が析出した表面硬化層を形成することに
より、アルミナ主結晶の板状結晶による相互作用によっ
て、焼結体表面の高硬度化とともに高靱性化を図ること
ができる結果、焼結体の耐摩耗性を大幅に向上すること
ができる。
By forming a surface hardened layer in which fine crystals of metal oxide are deposited on the surface of such a sintered body, the interaction of the alumina main crystals with the plate-like crystals causes the surface of the sintered body to have a high hardness. As a result, the wear resistance of the sintered body can be greatly improved.

【0014】上記焼結体の表面硬化層に分散する金属酸
化物の粒径が大きいと、分散による高硬度化効果が著し
く低下するため、本発明によれば、金属酸化物の平均結
晶粒径を0.2μm以下に限定するものであり、特に
0.1μm以下であることが望ましい。
If the particle size of the metal oxide dispersed in the surface hardened layer of the sintered body is large, the effect of increasing the hardness by the dispersion is significantly reduced. Is limited to 0.2 μm or less, and particularly preferably 0.1 μm or less.

【0015】また、上記金属酸化物が析出した表面硬化
層の厚さが小さければ、高硬度化への寄与が小さいこと
からその厚みを0.01mm以上とするものであるが、
表面硬化層を厚くするために、析出処理温度を上げた
り、処理時間を延長したりすることは、アルミナ主結晶
の粒成長および析出した一部の金属酸化物粒子の粗大化
の原因となり、かえって表面の硬度を低下させてしまう
可能性がある。良好な耐摩耗性を実現する為には、上記
表面硬化層の厚さが0.5mm以下、特に0.02〜
0.4mmであることが望ましい。なお、金属酸化物が
析出した表面硬化層のさらに内側の中心部においては、
表面において析出する金属酸化物は、アルミナ主結晶中
に固溶してなるものである。
Further, if the thickness of the surface hardened layer on which the metal oxide is deposited is small, the contribution to high hardness is small, so that the thickness is set to 0.01 mm or more.
Increasing the precipitation temperature or extending the treatment time to increase the thickness of the surface hardened layer causes grain growth of alumina main crystals and coarsening of some deposited metal oxide particles. There is a possibility that the hardness of the surface is reduced. In order to realize good wear resistance, the thickness of the surface hardened layer is 0.5 mm or less, particularly 0.02
Desirably, it is 0.4 mm. In the central part further inside the surface hardened layer where the metal oxide was deposited,
The metal oxide precipitated on the surface is formed as a solid solution in the alumina main crystal.

【0016】本発明によれば、上記アルミナ主結晶粒内
及び粒界に析出するアルミナ以外の金属酸化物として
は、Ti、MgおよびFeのから選ばれた少なくとも1
種の元素が含まれることが重要である。具体的な析出酸
化物結晶相としては、TiO2、MgAl2 4 、Fe
Al2 4 のうちの少なくとも1種がアルミナ結晶粒内
に分散する場合に、母相(アルミナ結晶相)との間に結
晶的整合性を持ちやすく、母相に大きなひずみを生じさ
せることにより転位の移動を抑制し、硬度向上の効果が
特に大きい。
According to the present invention, the metal oxide other than alumina precipitated in the alumina main crystal grains and at the grain boundaries is at least one selected from the group consisting of Ti, Mg and Fe.
It is important that species elements are included. Specific precipitated oxide crystal phases include TiO 2 , MgAl 2 O 4 , Fe
When at least one of Al 2 O 4 is dispersed in the alumina crystal grains, it is easy to have a crystalline consistency with a parent phase (alumina crystal phase), and a large strain is generated in the parent phase. The effect of suppressing dislocation movement and improving hardness is particularly large.

【0017】なお、上記金属元素の含有量が少なけれ
ば、上記酸化物結晶相の析出量が少なくなる結果、硬度
向上効果も小さく、また、その含有量が著しく超える
と、粒界に分散する粗大な酸化物結晶が生成され、強度
や硬度が逆に低下する場合がある。従って、これらの金
属酸化物、特に、TiのTiO2 換算量、MgのMgO
換算量、FeのFe2 3 換算量の合計が0.5〜5モ
ル%、特に1〜3モル%であることが望ましい。
If the content of the metal element is small, the precipitation amount of the oxide crystal phase is reduced. As a result, the effect of improving the hardness is small. Oxide crystals are generated, and strength and hardness may be reduced. Therefore, these metal oxides, in particular, the amount of Ti in terms of TiO 2 ,
It is desirable that the total of the reduced amount and the converted amount of Fe in terms of Fe 2 O 3 be 0.5 to 5 mol%, particularly 1 to 3 mol%.

【0018】本発明の高耐摩耗性アルミナ質焼結体を製
造するには、先ず、平均粒径が0.1〜1μmのアルミ
ナ粉末に、Ti含有化合物、Mg含有化合物あるいはF
e含有化合物をTiO2 、MgO、Fe2 3 換算によ
る合量で0.5〜5モル%添加し、混合する。化合物と
しては、酸化物粉末、金属粉末、有機塩類、無機塩類お
よびその溶液のいずれでもよい。
In order to produce the highly wear-resistant alumina-based sintered body of the present invention, first, a Ti-containing compound, a Mg-containing compound or F-containing compound is added to alumina powder having an average particle size of 0.1 to 1 μm.
The e-containing compound is added in an amount of 0.5 to 5 mol% in terms of TiO 2 , MgO, and Fe 2 O 3 , and mixed. The compound may be any of oxide powder, metal powder, organic salts, inorganic salts and a solution thereof.

【0019】上記の混合物を、所望の成形手段、例え
ば、金型プレス、冷間静水圧プレス、鋳込成形、射出成
形、押出し成形等により任意の形状に成形する。
The above mixture is formed into an arbitrary shape by a desired forming means, for example, a die press, a cold isostatic press, a cast molding, an injection molding, an extrusion molding and the like.

【0020】次に、この成形体を公知の焼結法、例え
ば、ホットプレス法、常圧焼成法、ガス加圧焼成法、マ
イクロ波加熱焼成法、さらにこれらの焼成後に熱間静水
圧処理(HIP)処理、およびガラスシール後(HI
P)処理する等、種々の焼結手法によって焼結する。
Next, the molded body is subjected to a known sintering method, for example, a hot pressing method, a normal pressure sintering method, a gas pressure sintering method, a microwave heating sintering method, and a hot isostatic pressure treatment after sintering. HIP) treatment and after glass sealing (HI
P) Sintering by various sintering methods such as treatment.

【0021】本発明によれば、焼成にあたり、まず、T
i、Mg、Feなどの金属化合物における各金属元素が
アルミナ結晶中に固溶可能な雰囲気中で熱処理した後、
これらの固溶体から、前記各金属元素が酸化物として析
出可能な雰囲気で熱処理する工程を具備することが重要
である。
According to the present invention, when firing, first, T
After heat treatment in an atmosphere in which each metal element in a metal compound such as i, Mg, Fe, etc. can be dissolved in alumina crystals,
It is important to include a step of performing a heat treatment in an atmosphere in which each of the metal elements can be precipitated as an oxide from these solid solutions.

【0022】上記の金属元素あるいはこれらの金属元素
を含む化合物をアルミナ粉末に添加し、焼成するだけで
は、それらの金属酸化物は、アルミナ結晶の粒界のみに
分散し、しかも大きく成長してしまう。そこで、本発明
によれば、それらの金属のアルミナ結晶への溶解度が大
きくなる条件下で熱処理して均一組成の固溶体を一旦形
成した後、アルミナ結晶への溶解度が小さくなる条件下
で熱処理を施すことにより、前記金属を酸化物として、
アルミナ結晶の粒内および粒界に微細な結晶粒子として
析出、分散させることができる。
By simply adding the above-mentioned metal element or a compound containing these metal elements to alumina powder and firing, the metal oxide is dispersed only at the grain boundaries of the alumina crystal and grows greatly. . Therefore, according to the present invention, after a solid solution having a uniform composition is once formed by heat treatment under the condition that the solubility of the metal in the alumina crystal increases, heat treatment is performed under the condition that the solubility in the alumina crystal decreases. Thereby, the metal as an oxide,
It can be precipitated and dispersed as fine crystal particles within the grains of the alumina crystal and at the grain boundaries.

【0023】また、上記の固溶処理工程においては、固
溶度が高いイオンはアルミナ結晶の(001)方向の成
長を抑制する効果が大きいために、アルミナ結晶の板状
化によりアスペクト比(長径/短径)の高い結晶を生成
することができる。板状結晶成長をさらに促進するため
に、焼成条件の調整によっても可能であるが、CaO、
SiO2 などを1重量%以下の割合で添加することが望
ましい。また、アルミナ結晶の粗大化を抑制するために
は、例えばY2 3 、La2 3 、Yb2 3、Lu2
3 などの希土類元素酸化物や、酸化ジルコニウム等
を、板状結晶の生成を阻害しない程度で添加することも
可能である。
In the above-mentioned solid solution treatment step, ions having a high solid solubility have a large effect of suppressing the growth of the alumina crystal in the (001) direction. (Short diameter) can be generated. In order to further promote the plate-like crystal growth, it is possible to adjust the firing conditions.
It is desirable to add SiO 2 or the like at a ratio of 1% by weight or less. In order to suppress the coarsening of the alumina crystal, for example, Y 2 O 3 , La 2 O 3 , Yb 2 O 3 , Lu 2
It is also possible to add a rare earth element oxide such as O 3 , zirconium oxide, or the like to such an extent that the formation of plate crystals is not hindered.

【0024】金属化合物としてTi化合物を用いる場
合、Tiは還元性雰囲気で熱処理すると、Tiのイオン
価数が3+となりアルミナ結晶に対する溶解度が高くな
り、固溶体を形成する。そして、この固溶体を酸化性雰
囲気で処理することによりTiのイオン価数が4+に戻
り、アルミナ結晶への溶解度が低下する結果、Tiは、
TiO2 、Al2 TiO5 として析出させることができ
る。
When a Ti compound is used as a metal compound, when the Ti is heat-treated in a reducing atmosphere, the ionic valence of Ti becomes 3+, the solubility in alumina crystals increases, and a solid solution is formed. By treating this solid solution in an oxidizing atmosphere, the ionic valence of Ti returns to 4+, and the solubility in alumina crystals decreases. As a result, Ti becomes
It can be deposited as TiO 2 , Al 2 TiO 5 .

【0025】また、金属化合物として、Ti:Mg=
1:1で同時に配合すると、TiとMgは、酸化性雰囲
気で処理すると、同モル比でアルミナ結晶中に同時に固
溶できる。そして、この固溶体を還元雰囲気で処理する
ことによりTiのイオン価数が3+となり、単独で優先
にアルミナ中に溶解する。Mgは単独でアルミナに溶解
できないため、MgAl2 4 の形で析出させることが
できる。
As the metal compound, Ti: Mg =
When mixed at a ratio of 1: 1, Ti and Mg can be simultaneously dissolved in alumina crystals at the same molar ratio when treated in an oxidizing atmosphere. Then, by treating this solid solution in a reducing atmosphere, the ionic valence of Ti becomes 3+, and the Ti alone is preferentially dissolved in alumina. Since Mg alone cannot be dissolved in alumina, it can be precipitated in the form of MgAl 2 O 4 .

【0026】さらに、金属酸化物としてFe化合物を用
いた場合には、酸化性雰囲気中で処理すると、Feはイ
オン価数が3+となり、アルミナ結晶中に固溶できる。
そして、この固溶体を還元雰囲気で処理することにより
Feのイオン価数が2+となり、アルミナ結晶中での溶
解度が低下し、FeAl2 4 の形で析出させることが
できる。
Further, when an Fe compound is used as the metal oxide, when the metal oxide is treated in an oxidizing atmosphere, Fe has an ionic valence of 3+ and can form a solid solution in alumina crystals.
By treating the solid solution in a reducing atmosphere, the ionic valence of Fe becomes 2+, the solubility in the alumina crystal is reduced, and the solid solution can be precipitated in the form of FeAl 2 O 4 .

【0027】上記の還元性雰囲気とは、水素含有雰囲
気、不活性ガス雰囲気、高真空など酸素分圧が10-6
tm以下の雰囲気でよい。また、酸化性雰囲気中の処理
は大気中で行えば良い。なお、上記固溶、あるいは析出
処理時の温度が低ければ目的の組織を形成することがで
きず、温度が高ければ、アルミナ結晶粒および析出粒子
の粗大化を発生させてしまう。かかる見地から、固溶、
析出時の温度は、1100〜1500℃の範囲が好適で
ある。
The reducing atmosphere is a hydrogen-containing atmosphere, an inert gas atmosphere, a high vacuum or the like, and an oxygen partial pressure of 10 −6 a.
tm or less. The treatment in an oxidizing atmosphere may be performed in the air. In addition, if the temperature at the time of the solid solution or the precipitation treatment is low, the target structure cannot be formed, and if the temperature is high, the alumina crystal grains and the precipitated particles are coarsened. From such a viewpoint, solid solution,
The temperature at the time of precipitation is preferably in the range of 1100 to 1500 ° C.

【0028】また、金属酸化物が析出した表面硬化層の
厚さは、析出工程時の温度および処理時間によって任意
に調整できる。表面硬化層の厚さを前述した理由から、
0.01〜0.5mmの範囲に調整するには、処理時間
を1〜20時間とするのが好適である。
The thickness of the surface hardened layer on which the metal oxide has been deposited can be arbitrarily adjusted depending on the temperature and the processing time during the deposition step. For the reason mentioned above for the thickness of the surface hardened layer,
In order to adjust it to the range of 0.01 to 0.5 mm, the processing time is preferably set to 1 to 20 hours.

【0029】[0029]

【実施例】平均粒径0.5μmのアルミナ粉末に、平均
粒径0.7μmの酸化チタン(TiO2 )粉末、平均粒
径が0.6μmの水酸化マグネシウム(Mg(O
H)2 )粉末、平均粒径0.7μmのFe2 3 粉末、
平均粒径0.5μmのSiO2 粉末を用い、表1に示す
組成になるように秤量混合して混合粉末を得た。そし
て、この混合粉末を1t/cm2 の圧力で金型成形し、
さらに3t/cm2 の圧力で静水圧処理を加えて成形体
を作製した後、1500℃で表1に示す各種雰囲気中で
2時間焼成して固溶体を形成した。そして表1に示す温
度、時間および雰囲気で析出処理を行った。
EXAMPLE Titanium oxide (TiO 2 ) powder having an average particle diameter of 0.7 μm and magnesium hydroxide (Mg (O 2 ) having an average particle diameter of 0.6 μm were added to alumina powder having an average particle diameter of 0.5 μm.
H) 2 ) powder, Fe 2 O 3 powder having an average particle size of 0.7 μm,
Using SiO 2 powder having an average particle diameter of 0.5 μm, the powders were weighed and mixed so as to have the composition shown in Table 1 to obtain a mixed powder. Then, the mixed powder is molded by a pressure of 1 t / cm 2 ,
Further, a molded body was produced by applying a hydrostatic pressure treatment at a pressure of 3 t / cm 2 , and then calcined at 1500 ° C. in various atmospheres shown in Table 1 for 2 hours to form a solid solution. Then, the deposition treatment was performed at the temperature, time and atmosphere shown in Table 1.

【0030】得られた各焼結体に対して、焼結体表面の
X線回折測定を行い結晶相の同定を行い、結果を表2に
示した。また、焼結体断面を鏡面加工し、エッチング後
の走査型電子顕微鏡写真に対して画像解析を行い、観察
されるアルミナ結晶のうち、アスペクト比4以上のアル
ミナ結晶の面積比率を求め、これを体積比率とした。さ
らに、析出相が存在する表面層の厚さおよび析出粒子の
粒径を透過型電子顕微鏡写真より求めた。これらの結果
を表2に示す。また、機械的特性として、焼結体鏡面の
ビッカース硬度(荷重1kg)を測定し、また圧痕法
(IF法)により破壊靭性を算出した。さらに、ピン−
オン−ディスク法(荷重1kg、速度5m/s、5mi
n間)により摩耗速度を測定した。
For each of the obtained sintered bodies, X-ray diffraction measurement of the surface of the sintered body was performed to identify the crystal phase, and the results are shown in Table 2. In addition, the cross section of the sintered body was mirror-finished, image analysis was performed on a scanning electron micrograph after etching, and the area ratio of alumina crystals having an aspect ratio of 4 or more among the observed alumina crystals was determined. The volume ratio was used. Further, the thickness of the surface layer where the precipitated phase exists and the particle size of the precipitated particles were determined from a transmission electron micrograph. Table 2 shows the results. Further, as mechanical properties, the Vickers hardness (load: 1 kg) of the mirror surface of the sintered body was measured, and the fracture toughness was calculated by an indentation method (IF method). In addition,
On-disk method (load 1kg, speed 5m / s, 5mi
n)).

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【表2】 [Table 2]

【0033】表1、2より本発明に基づいて得られた焼
結体は、表面のビッカース硬度が18GPa以上、破壊
靱性が4.5MPa・m1/2 以上、摩耗速度が100×
10-6mm3 /kg・m以下の優れた耐摩耗特性を示し
た。
From Tables 1 and 2, the sintered body obtained according to the present invention has a surface Vickers hardness of 18 GPa or more, a fracture toughness of 4.5 MPa · m 1/2 or more, and a wear rate of 100 ×
Excellent abrasion resistance of 10 −6 mm 3 / kg · m or less was exhibited.

【0034】これに対して、従来のアルミナ材料の試料
No.1、アスペクト比が4以上の結晶比率が小さい試料
No.2、表面硬化層を持たない試料No.3および硬化層
が0.01mm以下の試料No.4、9、析出した金属酸
化物結晶粒子の平均粒径が0.2μm以上の試料No.8
は、いずれも摩耗速度が200×10-6mm3 /kg・
m以上と耐摩耗特性が低いものであった。
On the other hand, a sample No. 1 of the conventional alumina material, a sample No. 2 having an aspect ratio of 4 or more and a small crystal ratio, a sample No. 3 having no surface hardened layer, and a hardened layer having a thickness of 0.01 mm Samples Nos. 4 and 9 below and Sample No. 8 in which the average particle size of the precipitated metal oxide crystal particles was 0.2 μm or more.
Have a wear rate of 200 × 10 −6 mm 3 / kg ·
m or more, the wear resistance was low.

【0035】[0035]

【発明の効果】以上詳述した通り、本発明は、板状のア
ルミナ結晶を主体とするアルミナ質焼結体の表面に、ア
ルミナ以外の微細な酸化物結晶粒子がアルミナ結晶粒内
及び粒界に分散させることにより高い耐摩耗性を有する
アルミナ質焼結体を提供することができる。
As described above in detail, according to the present invention, fine oxide crystal particles other than alumina are formed on the surface of an alumina sintered body mainly composed of plate-like alumina crystals within the alumina crystal grains and at the grain boundaries. The alumina-based sintered body having high wear resistance can be provided by dispersing the alumina-based sintered body.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】アスペクト比が4以上の板状アルミナ結晶
を20体積%以上含有するアルミナを主結晶相とする焼
結体の表面から0.01mm以上の深さまでの領域に、
前記主結晶相の粒内および粒界に、平均粒径0.2μm
以下のアルミナ以外の金属酸化物結晶粒子が分散した表
面硬化層を具備することを特徴する高耐摩耗性アルミナ
質焼結体。
The present invention relates to a sintered body having a main crystal phase of alumina containing 20% by volume or more of plate-like alumina crystals having an aspect ratio of 4 or more, in a region from the surface to a depth of 0.01 mm or more.
The average grain size of 0.2 μm
A highly wear-resistant alumina-based sintered body comprising a surface hardened layer in which the following metal oxide crystal particles other than alumina are dispersed.
【請求項2】前記金属酸化物結晶粒子が、Ti、Mgお
よびFeから選ばれる少なくとも1種の金属を含むこと
を特徴とする請求項1記載の高耐摩耗性アルミナ質焼結
体。
2. A highly wear-resistant alumina sintered body according to claim 1, wherein said metal oxide crystal particles contain at least one metal selected from Ti, Mg and Fe.
【請求項3】焼結体中心部において、前記金属酸化物が
主結晶相中に固溶していることを特徴とする請求項2記
載の高耐摩耗性アルミナ質焼結体。
3. The highly wear-resistant alumina-based sintered body according to claim 2, wherein said metal oxide is dissolved in a main crystal phase in a central portion of the sintered body.
【請求項4】アルミナ粉末に対して、アルミナ結晶中に
固溶可能な金属化合物を添加した混合物からなる成形体
を、前記金属がアルミナ結晶中に固溶可能な雰囲気中で
熱処理した後、前記金属が酸化物として析出可能な雰囲
気中で処理して、焼結体表面に、平均粒径0.2μm以
下のアルミナ以外の金属酸化物結晶粒子がアルミナ結晶
の粒内および粒界に分散した表面硬化層を形成したこと
を特徴とする高耐摩耗性アルミナ質焼結体の製造方法。
4. A molded body comprising a mixture of an alumina powder and a metal compound capable of forming a solid solution in alumina crystals is heat-treated in an atmosphere in which the metal forms a solid solution in alumina crystals. A surface in which metal oxide crystal particles other than alumina having an average particle size of 0.2 μm or less are dispersed in and within the alumina crystal grains by treating in an atmosphere in which the metal can be precipitated as an oxide. A method for producing a highly wear-resistant alumina-based sintered body, wherein a hardened layer is formed.
【請求項5】前記金属化合物としてTi化合物を添加混
合した成形体を、還元雰囲気中で熱処理してTiをアル
ミナ結晶中に固溶させた後、酸化雰囲気中で熱処理して
Ti含有酸化物をアルミナ結晶の粒内および粒界に析出
させたことを特徴とする請求項4記載の高耐摩耗性アル
ミナ質焼結体の製造方法。
5. A molded body to which a Ti compound has been added and mixed as a metal compound is heat-treated in a reducing atmosphere to form a solid solution of Ti in alumina crystals, and then heat-treated in an oxidizing atmosphere to form a Ti-containing oxide. The method for producing a highly wear-resistant alumina-based sintered body according to claim 4, wherein the alumina-based sintered body is precipitated in the grains and at the grain boundaries of the alumina crystal.
【請求項6】前記金属化合物としてTi化合物およびM
g化合物、あるいはそれらの複合化合物を添加混合した
成形体を、酸化雰囲気中で熱処理してアルミナ結晶中に
TiおよびMgを固溶させた後、還元雰囲気中で熱処理
してMg含有酸化物をアルミナ結晶の粒内および粒界に
析出させたことを特徴とする請求項4記載の高耐摩耗性
アルミナ質焼結体の製造方法。
6. A metal compound comprising a Ti compound and M
g compound or a composite body containing a composite compound thereof is heat-treated in an oxidizing atmosphere to dissolve Ti and Mg in alumina crystals, and then heat-treated in a reducing atmosphere to reduce the Mg-containing oxide to alumina. 5. The method for producing a highly wear-resistant alumina-based sintered body according to claim 4, wherein the sintered body is precipitated in the grains of the crystal and at the grain boundaries.
【請求項7】前記金属化合物としてFe化合物を添加混
合した成形体を、酸化雰囲気中で熱処理してアルミナ結
晶中にFeを固溶させた後、還元雰囲気中で熱処理して
Fe含有酸化物をアルミナ結晶の粒内および粒界に析出
させたことを特徴とする請求項4記載の高耐摩耗性アル
ミナ質焼結体の製造方法。
7. A molded body to which an Fe compound is added and mixed as the metal compound is heat-treated in an oxidizing atmosphere to dissolve Fe in alumina crystals, and then heat-treated in a reducing atmosphere to reduce the Fe-containing oxide. The method for producing a highly wear-resistant alumina-based sintered body according to claim 4, wherein the alumina-based sintered body is precipitated in the grains and at the grain boundaries of the alumina crystal.
JP32844797A 1997-11-28 1997-11-28 High wear-resistant alumina sintered body and manufacturing method thereof Expired - Fee Related JP3777031B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32844797A JP3777031B2 (en) 1997-11-28 1997-11-28 High wear-resistant alumina sintered body and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32844797A JP3777031B2 (en) 1997-11-28 1997-11-28 High wear-resistant alumina sintered body and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH11157962A true JPH11157962A (en) 1999-06-15
JP3777031B2 JP3777031B2 (en) 2006-05-24

Family

ID=18210382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32844797A Expired - Fee Related JP3777031B2 (en) 1997-11-28 1997-11-28 High wear-resistant alumina sintered body and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3777031B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012060212A1 (en) 2010-11-01 2012-05-10 昭和電工株式会社 Alumina sintered body, abrasive grains, and grindstone
WO2012060211A1 (en) 2010-11-01 2012-05-10 昭和電工株式会社 Alumina sintered body, abrasive grains, and grindstone
WO2012060213A1 (en) 2010-11-01 2012-05-10 昭和電工株式会社 Method for producing alumina sintered body, alumina sintered body, abrasive grains, and grindstone
JP2014001116A (en) * 2012-06-20 2014-01-09 Taiheiyo Cement Corp Alumina sintered body and method for manufacturing the same
KR20140044963A (en) * 2012-09-07 2014-04-16 타이헤이요 세멘트 가부시키가이샤 Alumina-based sintered body and the preparation method thereof
CN109415616A (en) * 2016-06-28 2019-03-01 昭和电工株式会社 Fused alumina particle, the production method of fused alumina particle, grinding stone and emery cloth
TWI697465B (en) * 2017-12-25 2020-07-01 日商昭和電工股份有限公司 Alumina sintered body, abrasive grain, and grinding wheel

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012060212A1 (en) 2010-11-01 2012-05-10 昭和電工株式会社 Alumina sintered body, abrasive grains, and grindstone
WO2012060211A1 (en) 2010-11-01 2012-05-10 昭和電工株式会社 Alumina sintered body, abrasive grains, and grindstone
WO2012060213A1 (en) 2010-11-01 2012-05-10 昭和電工株式会社 Method for producing alumina sintered body, alumina sintered body, abrasive grains, and grindstone
US8882871B2 (en) 2010-11-01 2014-11-11 Showa Denko K.K. Alumina sintered body, abrasive grains, and grindstone
US8894730B2 (en) 2010-11-01 2014-11-25 Showa Denko K.K. Alumina sintered body, abrasive grains, and grindstone
US8900337B2 (en) 2010-11-01 2014-12-02 Showa Denko K.K. Method for producing alumina sintered body, alumina sintered body, abrasive grains, and grindstone
JP2014001116A (en) * 2012-06-20 2014-01-09 Taiheiyo Cement Corp Alumina sintered body and method for manufacturing the same
KR20140044963A (en) * 2012-09-07 2014-04-16 타이헤이요 세멘트 가부시키가이샤 Alumina-based sintered body and the preparation method thereof
CN109415616A (en) * 2016-06-28 2019-03-01 昭和电工株式会社 Fused alumina particle, the production method of fused alumina particle, grinding stone and emery cloth
TWI697465B (en) * 2017-12-25 2020-07-01 日商昭和電工股份有限公司 Alumina sintered body, abrasive grain, and grinding wheel

Also Published As

Publication number Publication date
JP3777031B2 (en) 2006-05-24

Similar Documents

Publication Publication Date Title
US5312788A (en) High toughness, high strength sintered silicon nitride
JP2001521874A (en) Platelet reinforced sintered compact
CN113563074B (en) Two-phase calcium tantalate ceramic and preparation method thereof
JP2829229B2 (en) Silicon nitride ceramic sintered body
JP2507479B2 (en) SiC-Al Lower 2 O Lower 3 Composite Sintered Body and Manufacturing Method Thereof
JP3777031B2 (en) High wear-resistant alumina sintered body and manufacturing method thereof
JPH10182224A (en) Production of ceramic article
JP3559413B2 (en) Alumina sintered body and method for producing the same
JP3145470B2 (en) Tungsten carbide-alumina sintered body and method for producing the same
JP3488350B2 (en) Alumina sintered body and method for producing the same
JP3145597B2 (en) Alumina sintered body and method for producing the same
JP3311915B2 (en) Alumina sintered body
JPH0987009A (en) Alumina-mullite combined sintered compact and its production
JPH0797256A (en) Sintered body of aluminum oxide base and its production
JP3121996B2 (en) Alumina sintered body
JP3340025B2 (en) Alumina sintered body and method for producing the same
JP3965466B2 (en) Alumina sintered body and manufacturing method thereof
JP3101972B2 (en) Alumina sintered body and method for producing the same
JP2699104B2 (en) A1 Lower 2 O Lower 3-TiC ceramic material
JP2742620B2 (en) Boride-aluminum oxide sintered body and method for producing the same
WO2000078690A1 (en) Method for preparing structural ceramic nanocomposites of alumina and silicon carbide, and nanocomposites prepared by the method
JP3618036B2 (en) Alumina sintered body manufacturing method
JP3715775B2 (en) High speed cutting tool
JP2759290B2 (en) Manufacturing method of aluminum oxide sintered body
JP3207065B2 (en) Silicon nitride sintered body

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060224

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090303

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100303

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110303

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110303

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120303

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees