JPH11156374A - Method and apparatus for controlling injection of hydrogen sulfide removing agent - Google Patents

Method and apparatus for controlling injection of hydrogen sulfide removing agent

Info

Publication number
JPH11156374A
JPH11156374A JP9326091A JP32609197A JPH11156374A JP H11156374 A JPH11156374 A JP H11156374A JP 9326091 A JP9326091 A JP 9326091A JP 32609197 A JP32609197 A JP 32609197A JP H11156374 A JPH11156374 A JP H11156374A
Authority
JP
Japan
Prior art keywords
sewage
nitrate
hydrogen sulfide
water temperature
calculated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9326091A
Other languages
Japanese (ja)
Inventor
Seiichiro Okamoto
誠一郎 岡本
Shuji Tanaka
修司 田中
Mitsuo Kitagawa
三夫 北川
Nobuyoshi Maejima
伸美 前島
Mitsuhiro Masuko
光博 益子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minister for Public Works for State of New South Wales
Kurita Water Industries Ltd
National Research and Development Agency Public Works Research Institute
Original Assignee
Minister for Public Works for State of New South Wales
Kurita Water Industries Ltd
Public Works Research Institute Ministry of Construction
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minister for Public Works for State of New South Wales, Kurita Water Industries Ltd, Public Works Research Institute Ministry of Construction filed Critical Minister for Public Works for State of New South Wales
Priority to JP9326091A priority Critical patent/JPH11156374A/en
Publication of JPH11156374A publication Critical patent/JPH11156374A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To properly control the injection amt. of nitrate added to sewage as a hydrogen sulfide removing agent in order to prevent the generation of hydrogen sulfide in a sewage pressure feed pipe. SOLUTION: The addition amt. of nitrate is controlled on the basis of a value C calculated by C= A×(0.1+0.9×100/D)×1.07<(t-15)> ×T}<2> /4 [wherein A is a consumption speed constant (mg-N/hr) of nitrate at a water temp. of 15 deg.C; (t) is water temp. ( deg.C); T is the stagnagtion time (hr) of sewage in a pressure feed pipe; D is the inner diameter (mm) of the pressure feed pipe; and C is a nitrate addition ratio (mg-N/L-sewage)]. By this constitution, by measuring sewage flow velocity or flow rate for calculating the water temp. (t) and the stagnation time T and calculating C from the other constants A, D, chemical injection control can be easily and properly performed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、下水圧送管におけ
る硫化水素の発生を防止するために硫化水素除去剤とし
て下水に添加する硝酸塩の薬注量を適正に制御するため
の薬注制御方法及び薬注制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a chemical injection control method for properly controlling the amount of nitrate to be added to sewage as a hydrogen sulfide removing agent in order to prevent the generation of hydrogen sulfide in a sewage pressure pipe. The present invention relates to a medicine injection control device.

【0002】[0002]

【従来の技術】下水の圧送方式は、建設費低減や工期短
縮といった長所を持つ送水方法であるが、この方式は、
このような長所を有する反面、硫化水素の生成による圧
送管出口付近における周辺施設の腐食や臭気の発生が問
題となっている。
2. Description of the Related Art The sewage pumping method has the advantages of reducing construction costs and shortening the construction period.
On the other hand, while having such advantages, there is a problem in that corrosion of peripheral facilities and generation of odor near the outlet of the pressure feed pipe due to generation of hydrogen sulfide.

【0003】従来、硫化水素によるこのような腐食及び
臭気を防止するために、下水圧送管入口、例えば、ポン
プ場のポンプ井において、下水に硝酸塩を添加する方法
が採用されている。硝酸塩は硫化水素を速い速度で硫酸
イオンにまで酸化することができる上に、硫化水素の生
成を防止することもでき、硫化水素による腐食及び臭気
の問題を効果的に解決することができる。
Conventionally, in order to prevent such corrosion and odor due to hydrogen sulfide, a method of adding nitrate to sewage has been adopted at an inlet of a sewage pressure pipe, for example, at a pump well of a pumping station. Nitrate can oxidize hydrogen sulfide to sulfate ions at a high rate, can also prevent the generation of hydrogen sulfide, and can effectively solve the problems of corrosion and odor due to hydrogen sulfide.

【0004】しかしながら、この場合、硝酸塩の添加量
が不十分であると硫化水素の発生を防止し得ず、過剰に
添加すると薬剤コストが高くつくことから、硝酸塩を過
不足なく、必要かつ十分な量となるように添加すること
が望まれる。
However, in this case, the generation of hydrogen sulfide cannot be prevented if the amount of addition of the nitrate is insufficient, and the cost of chemicals increases if the amount is excessively high. It is desired to add it in an amount.

【0005】一方で、硝酸塩の必要添加量は、下水の水
質や水温等の諸条件によって変動する。特に、季節によ
る変動は大きい。
On the other hand, the required amount of nitrate varies depending on various conditions such as sewage water quality and water temperature. In particular, seasonal fluctuations are large.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、従来、
硝酸塩の必要添加量を推定する方法は提案されておら
ず、硝酸塩の添加量は、実機試験による試行錯誤を繰り
返し、この結果から適当な添加量を推定して設定してい
るのが現状である。このため、毎年各季節毎に実機によ
る試験を行って、薬注ポンプの吐出量を変える作業が行
われている。
However, conventionally,
No method for estimating the required amount of nitrate has been proposed, and the amount of nitrate added is set by estimating an appropriate amount from the results of trial and error based on actual machine tests. . For this reason, a test using an actual machine is performed every season every year to change the discharge amount of the chemical injection pump.

【0007】また、従来において、硝酸塩の自動薬注制
御装置は提供されておらず、薬注量の設定とこれに基い
た薬注量の変更に多大な労力が必要とされている。
Conventionally, no automatic control system for nitrate injection has been provided, and a great deal of labor is required for setting the injection amount and changing the injection amount based on this.

【0008】本発明は上記従来の問題点を解決し、硝酸
塩の薬注量を容易かつ適正に自動制御することができる
硫化水素除去剤の薬注制御方法及び薬注制御装置を提供
することを目的とする。
The present invention has been made to solve the above-mentioned conventional problems and to provide a chemical injection control method and a chemical injection control device for a hydrogen sulfide remover which can easily and properly automatically control the amount of nitrate injected. Aim.

【0009】[0009]

【課題を解決するための手段】本発明の硫化水素除去剤
の薬注制御方法は、下水に硫化水素除去剤として硝酸塩
を下記(I) 式により算出される値Cに基いて添加するこ
とを特徴とする。
The method for controlling chemical injection of a hydrogen sulfide removing agent according to the present invention comprises adding nitrate to sewage as a hydrogen sulfide removing agent based on a value C calculated by the following formula (I). Features.

【0010】 C={A×(0.1 +0.9 ×100/D)×1.07(t-15)×T}2 /4 …(I) (ただし、上記(I) 式中、Aは水温15℃における硝酸
塩の消費速度定数(mg−N/hr)、tは水温
(℃)、Tは下水の圧送管内滞留時間(hr)、Dは圧
送管内径(mm)、Cは硝酸塩添加率(mg−N/L−
下水))また、本発明の硫化水素除去剤の薬注制御装置
は、下水に硫化水素除去剤として硝酸塩を添加する薬注
手段と、上記(I) 式により算出される値Cに基いて該薬
注手段の硝酸塩添加量を制御する制御手段とを備えてな
ることを特徴とする。
[0010] C = {A × (0.1 +0.9 × 100 / D) × 1.07 (t-15) × T} 2/4 ... (I) ( where in the formula (I), A is a water temperature 15 ℃ , T is the water temperature (° C.), T is the residence time in the sewage pumping pipe (hr), D is the inner diameter of the pumping pipe (mm), and C is the nitrate addition rate (mg-N / hr). N / L-
Sewage)) The hydrogen sulfide remover chemical injection control device of the present invention further comprises a chemical injection means for adding nitrate as a hydrogen sulfide remover to sewage, and a chemical injection control method based on the value C calculated by the above formula (I). Control means for controlling the amount of nitrate added to the chemical dosing means.

【0011】上記(I) 式により算出される値Cに基いて
薬注制御することにより、硝酸塩を過不足なく添加し
て、硫化水素の発生を確実に防止することができる。
By controlling the chemical injection based on the value C calculated by the above formula (I), the nitrate can be added without excess and deficiency, and the generation of hydrogen sulfide can be reliably prevented.

【0012】上記(I) 式以下でCを算出するための各項
目のうち、水温15℃における硝酸塩の消費速度定数A
(mg−N/hr)は、処理する下水系や圧送管により
異なる値であり、各下水圧送管毎に予め実機試験を行っ
て求めておけば良い。この実機試験は任意の季節に行う
ことができ、硝酸塩消費量、水温、滞留時間を(I)式
に代入すれば、水温15℃におけるAを算出できるた
め、一度実機試験を行っておけば、以降の実機試験は必
要としない。
Among the items for calculating C using the above equation (I), the nitrate consumption rate constant A at a water temperature of 15 ° C.
(Mg-N / hr) is a value that differs depending on the sewage system to be treated and the pumping pipe, and may be obtained by performing an actual machine test in advance for each sewage pumping pipe. This actual machine test can be performed in any season, and by substituting the nitrate consumption, water temperature and residence time into the equation (I), A at a water temperature of 15 ° C. can be calculated. Subsequent actual machine tests are not required.

【0013】また、圧送管内径D(mm)は、圧送管毎
に予め調べておけば良い。
The inner diameter D (mm) of the pumping tube may be checked in advance for each pumping tube.

【0014】下水の水温t(℃)は、温度センサ等で容
易に測定可能である。
The temperature t (° C.) of the sewage can be easily measured by a temperature sensor or the like.

【0015】下水の圧送管内滞留時間T(hr)は、下
水が圧送管内部にとどまっている時間であり、圧送管内
全下水量(m3 )を下水流量(以下、「F(m3 /h
r)」と称す。)で除して得られる値、或いは、圧送管
の総延長(以下「L(m)」とする。)を流速(以下
「S(m/hr)」と称す。)で除して得られる値であ
る。ここで、圧送管の総延長L(m)は、送水ポンプ
(圧送管入口)から圧送管終点(圧送管出口)までの距
離である。また、圧送管内全下水量は、この圧送管総延
長Lと圧送管内径とから算出できる。従って、滞留時間
T(hr)は予め調べておいた圧送管総延長L(m)或
いは更に圧送管内径D(mm)と流速S(m/hr)又
は流量F(m3 /hr)の測定値から容易に算出でき
る。
The sewage residence time T (hr) in the sewage pipe is the time during which the sewage remains in the sewage pipe, and the total amount of sewage (m 3 ) in the sewage pipe is determined by the sewage flow rate (hereinafter referred to as “F (m 3 / h)
r) ". ) Or the total length of the pumping pipe (hereinafter referred to as “L (m)”) divided by the flow rate (hereinafter referred to as “S (m / hr)”). Value. Here, the total length L (m) of the pumping pipe is the distance from the water pump (the inlet of the pumping pipe) to the end point of the pumping pipe (the outlet of the pumping pipe). The total amount of sewage in the pumping pipe can be calculated from the total length L of the pumping pipe and the inner diameter of the pumping pipe. Therefore, the residence time T (hr) is a measurement of the total length L (m) of the pumping tube or the inner diameter D (mm) of the pumping tube and the flow rate S (m / hr) or the flow rate F (m 3 / hr) which have been checked in advance. It can be easily calculated from the values.

【0016】従って、硝酸塩添加率C(mg−N/L−
下水)は、下水の水温t(℃)を温度センサ等で測定す
ると共に、下水流量F(m3 /hr)又は流速S(m/
hr)を流量計等で測定して求め、これらの値と、予め
求めておいた硝酸塩の消費速度定数A,圧送管内径D
(mm),圧送管総延長L(m)とから、容易に算出す
ることができる。
Accordingly, the nitrate addition rate C (mg-N / L-
The sewage is measured by measuring the temperature t (° C.) of the sewage with a temperature sensor or the like, and the flow rate F (m 3 / hr) or the flow rate S (m /
hr) by measuring with a flow meter or the like, and these values are compared with the nitrate consumption rate constant A and the pumping pipe inner diameter D which have been determined in advance.
(Mm) and the total length L (m) of the pumping pipe can be easily calculated.

【0017】[0017]

【発明の実施の形態】以下に図面を参照して本発明の実
施の形態を詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0018】図1は本発明の実施の形態を示す系統図で
ある。
FIG. 1 is a system diagram showing an embodiment of the present invention.

【0019】この形態においては、下水貯留タンク1内
の下水を送水ポンプ3で圧送管2により圧送するに当
り、薬品貯槽4から薬注ポンプ5により硝酸塩を添加し
て、硫化水素の発生を防止する。下水貯留タンク1には
温度センサ6が設けられ、また、圧送管2には流量計7
が設けられ、下水の水温t℃と流量Fm3 /hrが測定
される。この測定値は制御手段8に入力され、予め入力
されている定数から前記(I) 式により硝酸塩の添加率C
を算出し、この計算結果に基いて制御手段8より薬注ポ
ンプ5の制御信号を出力する。
In this embodiment, when sewage in the sewage storage tank 1 is pumped by the water supply pump 3 by the pressure feed pipe 2, nitrate is added from the chemical storage tank 4 by the chemical injection pump 5 to prevent generation of hydrogen sulfide. I do. The sewage storage tank 1 is provided with a temperature sensor 6, and the pressure feed pipe 2 is provided with a flow meter 7.
Is provided, and the sewage water temperature t ° C. and the flow rate Fm 3 / hr are measured. This measured value is inputted to the control means 8, and the nitrate addition rate C is calculated from the previously inputted constant according to the above formula (I).
Is calculated, and a control signal of the chemical injection pump 5 is output from the control means 8 based on the calculation result.

【0020】制御手段8は、水温t及び流量Fの入力部
と、硝酸塩の消費速度A(mg−N/hr),圧送管の
内径D(mm)及び総延長L(送水ポンプ3の位置2A
から出口(終点)2Bまでの長さ)(m)の記憶部と、
これらの値から滞留時間T(hr)を算出し、更に前記
(I) により硝酸塩の添加率Cを算出する演算部と、演算
結果を出力する出力部とを備え、まず、滞留時間Tは次
のようにして算出される。
The control means 8 includes an input part for the water temperature t and a flow rate F, a consumption rate A (mg-N / hr) of the nitrate, an inner diameter D (mm) of the pressure feed pipe, and a total length L (position 2A of the water feed pump 3).
(M) from the exit to the end (end point) 2B)
The residence time T (hr) was calculated from these values, and
A calculation unit for calculating the nitrate addition rate C according to (I) and an output unit for outputting the calculation result are provided. First, the residence time T is calculated as follows.

【0021】即ち、圧送管内全下水量(m3 )は下記式
より算出されることから、これを流量で除して次のよう
に計算される。なお、dは圧送管の半径(m)であり、
d=D/(2×103 )である。
That is, since the total amount of sewage (m 3 ) in the pressure feed pipe is calculated by the following equation, it is calculated as follows by dividing this by the flow rate. Note that d is the radius (m) of the pumping pipe,
d = D / (2 × 10 3 ).

【0022】 圧送管内全下水量(m3 )=d2 ×3.14×L 滞留時間T(hr)=d2 ×3.14×L÷F なお、流量F(m3 /hr)ではなく、流速S(m/h
r)を測定した場合には、滞留時間は圧送管の総延長L
(m)を流速S(m/hr)で除して次のようにして求
められる。
The total amount of sewage in the pressure feed pipe (m 3 ) = d 2 × 3.14 × L Residence time T (hr) = d 2 × 3.14 × L ÷ F Note that not the flow rate F (m 3 / hr) , Flow rate S (m / h
When measuring r), the residence time is the total extension L of the pumping pipe.
(M) is divided by the flow velocity S (m / hr), and is obtained as follows.

【0023】滞留時間T(hr)=L÷S このようにして算出した滞留時間T(hr)と、水温の
測定値t(℃),硝酸塩の消費速度A(mg−N/h
r)及び圧送管の内径D(mm)から前記(I) 式より硝
酸塩添加率C(mg−N/L−下水)を算出し、このよ
うな硝酸塩添加率Cとなるように、薬注ポンプ5の制御
信号を出力する。
Residence time T (hr) = L ÷ S Residence time T (hr) calculated in this manner, measured value of water temperature t (° C.), consumption rate of nitrate A (mg-N / h)
r) and the inner diameter D (mm) of the pumping pipe, the nitrate addition rate C (mg-N / L-sewage) is calculated from the above formula (I), and the chemical injection pump is adjusted so that the nitrate addition rate C becomes such. 5 is output.

【0024】なお、水温15℃における硝酸塩の消費速
度A(mg−N/hr)は、前述の如く、実機試験によ
り例えば、次のようにして求められる。
The nitrate consumption rate A (mg-N / hr) at a water temperature of 15 ° C. can be determined by the actual machine test as follows, for example, as described above.

【0025】即ち、処理対象の圧送管に、下水を送水し
た状態で硝酸塩を2〜30mg−N/L−下水濃度に均
等に注入し、そのときの圧送管出口での残留硝酸塩の濃
度の経時変化を1〜24時間程度調べ、平均的な硝酸塩
の減少濃度を求める。
That is, nitrate is evenly injected to a concentration of 2 to 30 mg-N / L-sewage in a state in which sewage is supplied to the pressure-feeding pipe to be treated, and the concentration of residual nitrate at the outlet of the pressure-feeding pipe at that time is measured with time. The change is examined for about 1 to 24 hours to determine the average nitrate reduction concentration.

【0026】この減少濃度(mg−N/L)を必要添加
量Cとして(I)式に代入し、水温15℃におけるAを
求める。この硝酸塩の消費速度Aは、水温等により影響
を受けるものの、(I)式中で水温による影響を考慮し
ており、下水と圧送管とが決まれば、ほぼ同等の値とみ
なすことができる。従って、薬注処理対象系について季
節を問わず1回試験を行えば、下水の水質に大きな変動
がない限り、長期間その値を用いて薬注制御を行える。
The reduced concentration (mg-N / L) is substituted into the formula (I) as a required addition amount C, and A at a water temperature of 15 ° C. is obtained. Although the consumption rate A of the nitrate is affected by the water temperature and the like, the effect of the water temperature is taken into account in the formula (I), and if the sewage and the pressure feed pipe are determined, they can be regarded as substantially equal values. Therefore, once a test is performed on the chemical injection treatment target system regardless of the season, chemical injection control can be performed using the value for a long period of time as long as there is no large change in the sewage water quality.

【0027】本発明における薬注制御は、前記(I) 式で
算出された硝酸塩の添加率Cとなるように、或いは、こ
の値Cの±10%の範囲の添加率となるように実施され
る。
The chemical injection control in the present invention is performed so that the nitrate addition rate C calculated by the above formula (I) or the addition rate in the range of ± 10% of this value C may be attained. You.

【0028】本発明において、硝酸塩は、通常の場合、
下水貯槽1又は圧送管2の入口部等に添加するが、圧送
管2の途中部分に硝酸塩を添加しても良い。
In the present invention, the nitrate is usually
The nitrate is added to the sewage storage tank 1 or the inlet of the pumping pipe 2, but a nitrate may be added to an intermediate portion of the pumping pipe 2.

【0029】なお、硝酸塩としては、硝酸カルシウム、
硝酸ナトリウム等の10〜80重量%濃度の水溶液を用
いることができる。
As the nitrate, calcium nitrate,
An aqueous solution having a concentration of 10 to 80% by weight such as sodium nitrate can be used.

【0030】また、下水の流量は流量計による測定の
他、定流量ポンプのオンオフ信号から求めることもでき
る。
Further, the flow rate of the sewage can be obtained from an on / off signal of a constant flow rate pump in addition to the measurement by the flow meter.

【0031】[0031]

【実施例】以下に実施例を挙げて本発明をより具体的に
説明する。
The present invention will be described more specifically with reference to the following examples.

【0032】実施例1 図1に示す如く、下水貯槽タンク1内の下記水質の下水
(下水処理場沈砂池を通過した後の下水)を、送水ポン
プ3により圧送管(内径D=100mm,d=0.05
m),総延長=900mのダクタイル鋳鉄管)2で流速
0.6m/sec(2160m/hr)で連続的に圧送
している系において、温度センサ6で下水の水温t
(℃)を測定すると共に、流量計7で流量F(m3 /h
r)を測定し、この測定値t,Fと予め制御手段8に入
力された圧送管の内径D(mm),圧送管の総延長L
(m),水温15℃における硝酸塩の消費速度定数A
(mg−N/hr)とから硝酸塩の添加率C(mg−N
/L−下水)を算出し、この値に基いて薬注ポンプ5を
制御して硝酸塩(50重量%硝酸カルシウム水溶液)を
下水貯留タンク1に添加した。
Example 1 As shown in FIG. 1, sewage having the following water quality (sewage after passing through a sedimentation basin in a sewage treatment plant) in a sewage storage tank 1 is pressure-pumped by a water supply pump 3 (inner diameter D = 100 mm, d). = 0.05
m), a system in which continuous feeding is performed at a flow rate of 0.6 m / sec (2160 m / hr) at a flow rate of 0.6 m / sec (2160 m / hr) in a ductile cast iron pipe with a total length of 900 m).
(° C.) and the flow meter 7 measures the flow rate F (m 3 / h).
r), the measured values t and F, the inner diameter D (mm) of the pumping tube, and the total length L of the pumping tube input to the control means 8 in advance.
(M), nitrate consumption rate constant A at a water temperature of 15 ° C.
(Mg-N / hr) and the nitrate addition rate C (mg-N / hr).
/ L-sewage) was calculated, and based on this value, the chemical injection pump 5 was controlled to add nitrate (50% by weight calcium nitrate aqueous solution) to the sewage storage tank 1.

【0033】下水水質 溶解性COD:80〜166mg/L pH:7.1〜7.3 SS:142〜232mg/l 試験は、冬期(1月:下水水温t=16℃),夏期(7
月:下水水温t=25℃)及び秋期(11月:下水水温
t=21℃)にそれぞれ15日間行った。
Sewage water solubility COD: 80 to 166 mg / L pH: 7.1 to 7.3 SS: 142 to 232 mg / l The tests were conducted in winter (January: sewage temperature t = 16 ° C.) and summer (7
Month: sewage water temperature t = 25 ° C.) and fall (November: sewage water temperature t = 21 ° C.) for 15 days.

【0034】なお、水温15℃における硝酸塩の消費速
度定数A(mg−N/hr)は次のようにして求めた。
まず、上記圧送管内に上記下水を送水し50重量%硝酸
カルシウム水溶液を15mg−N/L下水となるように
添加し、比色計によりN濃度を測定してその経時変化を
調べた。そして、入口と出口のN濃度の減少量から、水
温15℃における硝酸塩消費速度定数A(mg−N/h
r)を求めたところ、水温15℃における硝酸塩消費速
度定数A=9mg−N/hrであった。なお、この試験
時の水温は26℃であった。
The nitrate consumption rate constant A (mg-N / hr) at a water temperature of 15 ° C. was determined as follows.
First, the sewage was fed into the pressure feed pipe, a 50% by weight aqueous solution of calcium nitrate was added to the sewage to a concentration of 15 mg-N / L, and the N concentration was measured with a colorimeter to examine the change with time. Then, the nitrate consumption rate constant A (mg-N / h) at a water temperature of 15 ° C. was determined from the decrease in the N concentration at the inlet and outlet.
When r) was determined, the nitrate consumption rate constant A at a water temperature of 15 ° C. was A = 9 mg-N / hr. The water temperature during this test was 26 ° C.

【0035】また、流量F(m3 /hr)は、流速0.
6m/sec(S=2160m/hr)と圧送管の内径
d(m)及び総延長L(m)から求められる流量(21
60×0.05×0.05×3.14=17m3 /h
r)とほぼ同等であり、従って、滞留時間T(hr)は
0.42(=圧送管の総延長L÷流速S=900÷21
60)hrであった。
The flow rate F (m 3 / hr) is set at a flow rate of 0.
6 m / sec (S = 2160 m / hr), the flow rate (21) determined from the inner diameter d (m) of the pumping pipe and the total length L (m)
60 × 0.05 × 0.05 × 3.14 = 17 m 3 / h
r), so that the residence time T (hr) is 0.42 (= the total length of the pumping pipe L ÷ flow rate S = 900 ÷ 21).
60) hr.

【0036】従って、例えば、t=16℃のときの硝酸
塩添加率C16は、下記値を前記(I)式に代入して、次の
ようにして求められる。
Accordingly, for example, the nitrate addition rate C 16 at t = 16 ° C. can be obtained as follows by substituting the following value into the above equation (I).

【0037】A=9mg−N/hr t=16℃ L=900m D=100mm T=0.42hr C16={9×(0.1 +0.9 ×100/100)×1.07(16-15) ×0.42}2 /4 =(9×1.07×0.42)2/4 =4.09(mg−N/L−下水) また、t=25℃又は21℃のときの硝酸塩添加率
25,C21は同様に次のようにして求められる。
A = 9 mg-N / hr t = 16 ° C. L = 900 m D = 100 mm T = 0.42 hr C 16 = {9 × (0.1 + 0.9 × 100/100) × 1.07 (16-15) × 0.42 } 2/4 = (9 × 1.07 × 0.42) 2/4 = 4.09 (mg-N / L- sewage) Further, t = 25 ° C. or 21 ° C. nitrate addition rate C 25 when the, C 21 is similarly obtained as follows.

【0038】 C25={9×(0.1 +0.9 ×100/100)×1.07(25-15) ×0.42}2 /4 =(9×1.0710×0.42)2/4 =13.82(mg−N/L−下水) C21={9×(0.1 +0.9 ×100/100)×1.07(21-15) ×0.42}2 /4 =(9×1.076 ×0.42)2/4 =8.05(mg−N/L−下水) このようにして算出された硝酸塩添加量に基いて硝酸塩
の薬注制御を行い、圧送管出口での硫化水素濃度を測定
したところ、試験中、いずれの季節においても水中硫化
水素濃度を0.01mg/L以下に維持することができ
た。
[0038] C 25 = {9 × (0.1 +0.9 × 100/100) × 1.07 (25-15) × 0.42} 2/4 = (9 × 1.07 10 × 0.42) 2/4 = 13 .82 (mg-N / L- sewage) C 21 = {9 × ( 0.1 +0.9 × 100/100) × 1.07 (21-15) × 0.42} 2/4 = (9 × 1.07 6 × 0 .42) 2/4 = 8.05 ( mg-N / L- sewage) performs dosing control of nitrate based on the nitrate added amounts calculated in this way, measures the concentration of hydrogen sulfide in the pumping tube exit As a result, during the test, the hydrogen sulfide concentration in water could be maintained at 0.01 mg / L or less in any season.

【0039】また、同一の下水圧送条件において、硝酸
塩添加量を変えて試験を行い、圧送管出口での水中硫化
水素濃度を0.02mg/L以下にするための硝酸塩の
最小添加率を求めたところ、表1に示す結果が得られ
た。
Further, under the same sewage pumping conditions, a test was carried out by changing the amount of nitrate added, and the minimum addition rate of nitrate to make the concentration of hydrogen sulfide in water at the outlet of the pumping pipe 0.02 mg / L or less was determined. However, the results shown in Table 1 were obtained.

【0040】表1に示す如く、この実測値は、計算値と
よく一致しており、本発明によれば、硝酸塩をほぼ必要
最小添加率で薬注制御できることが明らかである。
As shown in Table 1, the measured values are in good agreement with the calculated values, and it is clear that according to the present invention, it is possible to control the injection of nitrate with a substantially required minimum addition rate.

【0041】[0041]

【表1】 [Table 1]

【0042】[0042]

【発明の効果】以上詳述した通り、本発明の硫化水素除
去剤の薬注制御方法及び薬注制御装置によれば、硝酸塩
を過不足なく適正な添加量となるように自動制御にて薬
注することができ、薬剤コストを抑えた上で、硫化水素
の発生を確実に防止することができる。
As described above in detail, according to the chemical injection control method and the chemical injection control device for a hydrogen sulfide removing agent of the present invention, the chemical amount is automatically controlled so that the amount of nitrate is properly and appropriately added. In addition, it is possible to reliably prevent the generation of hydrogen sulfide while suppressing the chemical cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態を示す系統図である。FIG. 1 is a system diagram showing an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 下水貯留タンク 2 圧送管 3 送水ポンプ 4 薬品貯槽 5 薬注ポンプ 6 温度センサ 7 流量計 8 制御手段 Reference Signs List 1 sewage storage tank 2 pressure feed pipe 3 water supply pump 4 chemical storage tank 5 chemical injection pump 6 temperature sensor 7 flow meter 8 control means

───────────────────────────────────────────────────── フロントページの続き (72)発明者 北川 三夫 福井県福井市和田2−1905 日本下水道事 業団 福井工事事務所内 (72)発明者 前島 伸美 東京都新宿区西新宿3丁目4番7号 栗田 工業株式会社内 (72)発明者 益子 光博 東京都新宿区西新宿3丁目4番7号 栗田 工業株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Mitsuo Kitagawa 2-1905 Wada, Fukui-shi, Fukui Japan Sewerage Corporation Fukui Construction Office (72) Inventor Nobumi Maejima 3- 4-7 Nishishinjuku, Shinjuku-ku, Tokyo No. Kurita Kogyo Co., Ltd. (72) Inventor Mitsuhiro Mashiko 3-4-7 Nishi Shinjuku, Shinjuku-ku, Tokyo Kurita Kogyo Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 下水に硫化水素除去剤として硝酸塩を下
記(I) 式により算出される値Cに基いて添加することを
特徴とする硫化水素除去剤の薬注制御方法。 C={A×(0.1 +0.9 ×100/D)×1.07(t-15)×T}2 /4 …(I) (ただし、上記(I) 式中、Aは水温15℃における硝酸
塩の消費速度定数(mg−N/hr)、tは水温
(℃)、Tは下水の圧送管内滞留時間(hr)、Dは圧
送管内径(mm)、Cは硝酸塩添加率(mg−N/L−
下水))
1. A method for controlling injection of hydrogen sulfide remover, comprising adding nitrate as a hydrogen sulfide remover to sewage based on a value C calculated by the following formula (I). C = {A × (0.1 +0.9 × 100 / D) × 1.07 (t-15) × T} 2/4 ... (I) ( where in the formula (I), A is a nitrate in water temperature 15 ℃ Consumption rate constant (mg-N / hr), t is water temperature (° C), T is residence time in sewage pumping pipe (hr), D is pumping pipe inner diameter (mm), C is nitrate addition rate (mg-N / L) −
sewage))
【請求項2】 下水に硫化水素除去剤として硝酸塩を添
加する薬注手段と、下記(I)式により算出される値C
に基いて該薬注手段の硝酸塩添加量を制御する制御手段
とを備えてなることを特徴とする硫化水素除去剤の薬注
制御装置。 C={A×(0.1 +0.9 ×100/D)×1.07(t-15)×T}2 /4 …(I) (ただし、上記(I) 式中、Aは水温15℃における硝酸
塩の消費速度定数(mg−N/hr)、tは水温
(℃)、Tは下水の圧送管内滞留時間(hr)、Dは圧
送管内径(mm)、Cは硝酸塩添加率(mg−N/L−
下水))
2. A chemical injection means for adding nitrate as a hydrogen sulfide removing agent to sewage, and a value C calculated by the following formula (I):
A control means for controlling the amount of nitrate added to said chemical dosing means based on the control of the hydrogen sulfide removing agent. C = {A × (0.1 +0.9 × 100 / D) × 1.07 (t-15) × T} 2/4 ... (I) ( where in the formula (I), A is a nitrate in water temperature 15 ℃ Consumption rate constant (mg-N / hr), t is water temperature (° C), T is residence time in sewage pumping pipe (hr), D is pumping pipe inner diameter (mm), C is nitrate addition rate (mg-N / L) −
sewage))
JP9326091A 1997-11-27 1997-11-27 Method and apparatus for controlling injection of hydrogen sulfide removing agent Pending JPH11156374A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9326091A JPH11156374A (en) 1997-11-27 1997-11-27 Method and apparatus for controlling injection of hydrogen sulfide removing agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9326091A JPH11156374A (en) 1997-11-27 1997-11-27 Method and apparatus for controlling injection of hydrogen sulfide removing agent

Publications (1)

Publication Number Publication Date
JPH11156374A true JPH11156374A (en) 1999-06-15

Family

ID=18184009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9326091A Pending JPH11156374A (en) 1997-11-27 1997-11-27 Method and apparatus for controlling injection of hydrogen sulfide removing agent

Country Status (1)

Country Link
JP (1) JPH11156374A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004078661A1 (en) * 2003-03-05 2004-09-16 Usfilter Corporation Methods and apparatus for reducing nitrate demands in the reduction of dissolved and/or atmospheric sulfides in wastewater
US7326340B2 (en) 2003-03-05 2008-02-05 Siemens Water Technologies Holding Corp. System for controlling sulfide generation
US7553420B2 (en) 2003-12-02 2009-06-30 Siemens Water Technologies Corp. Systems and methods for wastewater odor control
US8430112B2 (en) 2010-07-13 2013-04-30 Siemens Industry, Inc. Slurry feed system and method
US8968646B2 (en) 2011-02-18 2015-03-03 Evoqua Water Technologies Llc Synergistic methods for odor control
JP2019005712A (en) * 2017-06-26 2019-01-17 栗田工業株式会社 Method and device for control of deodorant injection into sludge

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004078661A1 (en) * 2003-03-05 2004-09-16 Usfilter Corporation Methods and apparatus for reducing nitrate demands in the reduction of dissolved and/or atmospheric sulfides in wastewater
US7326340B2 (en) 2003-03-05 2008-02-05 Siemens Water Technologies Holding Corp. System for controlling sulfide generation
AU2004218043B2 (en) * 2003-03-05 2009-07-30 Evoqua Water Technologies Llc Methods and apparatus for reducing nitrate demands in the reduction of dissolved and/or atmospheric sulfides in wastewater
US7553420B2 (en) 2003-12-02 2009-06-30 Siemens Water Technologies Corp. Systems and methods for wastewater odor control
US8430112B2 (en) 2010-07-13 2013-04-30 Siemens Industry, Inc. Slurry feed system and method
US8968646B2 (en) 2011-02-18 2015-03-03 Evoqua Water Technologies Llc Synergistic methods for odor control
JP2019005712A (en) * 2017-06-26 2019-01-17 栗田工業株式会社 Method and device for control of deodorant injection into sludge

Similar Documents

Publication Publication Date Title
JP3525006B2 (en) Sewage treatment plant water quality control equipment
JP2017006894A (en) Method for controlling the amount of aeration in activated sludge
JPH11156374A (en) Method and apparatus for controlling injection of hydrogen sulfide removing agent
JP4229999B2 (en) Biological nitrogen removal equipment
JP4008694B2 (en) Sewage treatment plant water quality controller
JP3257450B2 (en) Chemical injection control method and chemical injection control device for hydrogen sulfide remover
JP2006315004A (en) Water quality control unit for sewage disposal plant
JP2002126779A (en) Sludge treatment method and apparatus used therefor
JP6818951B1 (en) Water treatment equipment and water treatment method
JP3707526B2 (en) Waste water nitrification method and apparatus
JP2000325991A (en) Control device of biological water treatment apparatus
JPH0780494A (en) Controlling method for operation of activated sludge circulation modification method
JP2001219183A (en) Water quality control apparatus of sewerage equipment
JP5801506B1 (en) Operation method of biological denitrification equipment
JPH08323393A (en) Water quality simulator for circulation type nitrification and denitirification method
JP3708752B2 (en) Nitrate nitrogen biological treatment method and apparatus
JPH0691294A (en) Operation control method of batch type active sludge treatment
JP2002307094A (en) Sewage treatment system
JPH0362480B2 (en)
JPH05253597A (en) Nitrification reaction control device in activated sludge treatment
JPH04502275A (en) Continuous monitoring of effluent
JPH08164398A (en) Method for controlling intermittent aeration type activated sludge method
JPS646839B2 (en)
JPS5888091A (en) Method for controlling injection of chlorine in water purification plant
DeWitt et al. Real Time Control of Caustic Dosing Through Online Ammonia Sensors

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080707

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20080707

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090707

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090707

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20100707