JPH11153765A - Optical scanner - Google Patents

Optical scanner

Info

Publication number
JPH11153765A
JPH11153765A JP32084597A JP32084597A JPH11153765A JP H11153765 A JPH11153765 A JP H11153765A JP 32084597 A JP32084597 A JP 32084597A JP 32084597 A JP32084597 A JP 32084597A JP H11153765 A JPH11153765 A JP H11153765A
Authority
JP
Japan
Prior art keywords
optical system
scanning
correction optical
scanned
light beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32084597A
Other languages
Japanese (ja)
Other versions
JP3844161B2 (en
Inventor
Tatsuya Ito
達也 伊藤
Tomohiro Nakajima
智宏 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP32084597A priority Critical patent/JP3844161B2/en
Publication of JPH11153765A publication Critical patent/JPH11153765A/en
Application granted granted Critical
Publication of JP3844161B2 publication Critical patent/JP3844161B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Mechanical Optical Scanning Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the quality of an image formed by optical scanning by correcting the bending and inclination of scanning line on the surface to be scanned. SOLUTION: This optical scanner is provided with a laser light source 1, a deflector 2 for deflecting a light flux emitted from this laser light source 1 in the direction of main scanning, an optical scanning system 3 for making the light flux deflected by this deflector 2 scan the surface 10 to be scanned at a constant speed while converging the light flux, and an optical correcting system 4 arranged between the surface 10 and the optical scanning system 3 for converging the light flux on the scanned surface in a way of geometrical optics. In the scanner, a 1st reflecting mirror 5 is arranged between the optical scanning system 3 and the optical correcting system 4, and it 5 is supported to be freely turned around the center of turning and to be freely fixed at an arbitrary position.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、レーザプリンタや
デジタル複写機などで用いられる光走査装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical scanning device used in a laser printer, a digital copying machine, and the like.

【0002】[0002]

【従来の技術】従来、レーザ光源から出射された光束を
偏向器で偏向させ、被走査面を走査させる光走査装置と
しては様々な構造のものがある。その一例として特開平
9−133888号公報に記載された光走査装置があ
り、半導体レーザとこの半導体レーザの発散光を平行光
に変換するコリメータレンズとからなるレーザ光源、レ
ーザ光源から出射された光束を主走査方向に偏向させる
偏向器、偏向された光束を収束させつつ被走査面上を等
速度で走査させる走査光学系、走査光学系と被走査面と
の間に設けられて偏向器の面倒れの影響を補正する補正
光学系等により構成されている。
2. Description of the Related Art Conventionally, there are various structures of an optical scanning device which deflects a light beam emitted from a laser light source by a deflector to scan a surface to be scanned. As an example, there is an optical scanning device described in Japanese Patent Application Laid-Open No. 9-133888, in which a laser light source including a semiconductor laser and a collimator lens for converting divergent light of the semiconductor laser into parallel light, a light beam emitted from the laser light source Deflector that deflects light in the main scanning direction, a scanning optical system that scans the surface to be scanned at a constant speed while converging the deflected light beam, and a troublesome deflector provided between the scanning optical system and the surface to be scanned. It is composed of a correction optical system and the like for correcting the influence.

【0003】[0003]

【発明が解決しようとする課題】しかし、補正光学系を
設置する際の偏心により、補正光学系を通過する光束が
この補正光学系の主走査方向に沿った中心線位置から偏
心すると、結像位置が直線上とならず湾曲するという走
査線曲がりが発生する。
However, when the light beam passing through the correction optical system is decentered from the center line position of the correction optical system along the main scanning direction due to the eccentricity when the correction optical system is installed, an image is formed. Scanning line bending occurs in which the position is not straight but curved.

【0004】また、上記構造の光走査装置では、補正光
学系やその他の光学素子の配置誤差により、補正光学系
を通過する光束がこの補正光学系の主走査方向に沿った
中心線に対して傾くと、被走査面上の走査線が傾くとい
う走査線傾きが発生する。
Further, in the optical scanning device having the above-described structure, a light beam passing through the correction optical system is moved with respect to a center line along the main scanning direction of the correction optical system due to an arrangement error of the correction optical system and other optical elements. When tilted, a scanning line tilt occurs in which the scanning line on the scanned surface tilts.

【0005】そして、上述した走査線曲がりや走査線傾
きが発生すると、複数の光走査装置を配列してカラー画
像を形成する場合においては、色ズレの原因となる。
[0005] When the scanning line bending or the scanning line inclination described above occurs, a color shift occurs when a plurality of optical scanning devices are arranged to form a color image.

【0006】そこで本発明は、走査線曲がりと走査線傾
きとを補正することができる光走査装置を提供すること
を目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide an optical scanning device capable of correcting a scanning line bending and a scanning line inclination.

【0007】[0007]

【課題を解決するための手段】請求項1記載の発明は、
レーザ光源と、このレーザ光源から出射された光束を主
走査方向に偏向させる偏向器と、この偏向器により偏向
された光束を収束させつつ被走査面上を等速度で走査さ
せる走査光学系と、前記被走査面と前記走査光学系との
間に設置されて光束を被走査面上に幾何光学的に収束さ
せる補正光学系とを備えた光走査装置において、前記走
査光学系と前記補正光学系との間に第一反射ミラーを配
置し、この第一反射ミラーを主走査方向に沿った回動中
心の周りに回動自在及び任意位置固定自在に支持した。
従って、補正光学系を設置する際の偏心により、補正光
学系を通過する光束がこの補正光学系の主走査方向に沿
った中心線位置から偏心して走査線曲がりが発生した場
合には、第一反射ミラーを回動中心の周りに回動させ、
光束が補正光学系の主走査方向に沿った中心線位置を通
過するように調節し、これにより、走査線曲がりを補正
する。
According to the first aspect of the present invention,
A laser light source, a deflector that deflects a light beam emitted from the laser light source in the main scanning direction, and a scanning optical system that scans the surface to be scanned at a constant speed while converging the light beam deflected by the deflector, An optical scanning device comprising a correction optical system provided between the scanned surface and the scanning optical system for geometrically converging a light beam on the scanned surface, wherein the scanning optical system and the correction optical system A first reflection mirror is disposed between the first and second mirrors, and the first reflection mirror is supported so as to be rotatable around a rotation center along the main scanning direction and to be freely fixed at an arbitrary position.
Therefore, if the light beam passing through the correction optical system is decentered from the center line position along the main scanning direction of the correction optical system due to the eccentricity when the correction optical system is installed and the scanning line is bent, the first Rotate the reflection mirror around the rotation center,
The light beam is adjusted so as to pass through the center line position of the correction optical system along the main scanning direction, thereby correcting the scanning line bending.

【0008】請求項2記載の発明は、請求項1記載の発
明の光走査装置において、補正光学系と被走査面との間
に第二反射ミラーを配置し、この第二反射ミラーを主走
査方向に沿った回動中心の周りに回動自在及び任意位置
固定自在に支持した。従って、第一反射ミラーを回動さ
せて走査線曲がりを補正したときに、被走査面上の走査
線の位置が副走査方向にズレた場合には、第二反射ミラ
ーを回動中心の周りに回動させることによりそのズレを
補正する。
According to a second aspect of the present invention, in the optical scanning device of the first aspect, a second reflection mirror is disposed between the correction optical system and the surface to be scanned, and the second reflection mirror is used for main scanning. It is supported so as to be rotatable around the center of rotation along the direction and to be freely fixed at an arbitrary position. Therefore, when the first reflection mirror is rotated to correct the scanning line bending, and the position of the scanning line on the surface to be scanned is shifted in the sub-scanning direction, the second reflection mirror is moved around the rotation center. , The deviation is corrected.

【0009】請求項3記載の発明は、レーザ光源と、こ
のレーザ光源から出射された光束を主走査方向に偏向さ
せる偏向器と、この偏向器により偏向された光束を収束
させつつ被走査面上を等速度で走査させる走査光学系
と、前記被走査面と前記走査光学系との間に設置されて
光束を被走査面上に幾何光学的に収束させる補正光学系
とを備えた光走査装置において、前記補正光学系を光軸
方向と平行な回動中心の周りに回動自在及び任意位置固
定自在に支持した。従って、補正光学系やその他の光学
素子の配置誤差により、補正光学系を通過する光束がこ
の補正光学系の主走査方向に沿った中心線に対して傾い
て走査線傾きが発生した場合には、補正光学系を回動中
心の周りに回動させ、光束が補正光学系の主走査方向に
沿った位置を通過するように調節し、これにより、走査
線傾きを補正する。
According to a third aspect of the present invention, a laser light source, a deflector for deflecting a light beam emitted from the laser light source in the main scanning direction, and a light beam deflected by the deflector are converged on the surface to be scanned. An optical scanning device comprising: a scanning optical system that scans light at a constant speed; and a correction optical system that is provided between the surface to be scanned and the scanning optical system and geometrically converges a light beam on the surface to be scanned. , The correction optical system is supported so as to be rotatable around a rotation center parallel to the optical axis direction and to be freely fixed at an arbitrary position. Therefore, when the light beam passing through the correction optical system is inclined with respect to the center line of the correction optical system along the main scanning direction due to an arrangement error of the correction optical system and other optical elements, and a scanning line tilt occurs. The correction optical system is rotated around the center of rotation, and the light beam is adjusted so as to pass through the position along the main scanning direction of the correction optical system, thereby correcting the scanning line inclination.

【0010】請求項4記載の発明は、請求項3記載の発
明の光走査装置において、補正光学系の主走査方向の両
端部にこの補正光学系の回動方向と平行な支持面を持つ
支持部を設け、光軸方向と垂直であって前記支持面と面
接触して前記支持部を摺動自在に支持する基準面をハウ
ジング部に設けた。従って、補正光学系を回動させて走
査線傾きを補正したときに、補正光学系が光軸方向に移
動することが防止される。
According to a fourth aspect of the present invention, in the optical scanning device according to the third aspect of the present invention, there is provided a support having a support surface parallel to the rotational direction of the correction optical system at both ends of the correction optical system in the main scanning direction. A reference surface perpendicular to the optical axis direction and slidably supporting the support in surface contact with the support surface is provided in the housing. Accordingly, when the correction optical system is rotated to correct the scanning line inclination, the correction optical system is prevented from moving in the optical axis direction.

【0011】請求項5記載の発明は、請求項3記載の発
明の光走査装置において、補正光学系にこの補正光学系
の主走査方向を位置決めする位置決め手段を設け、前記
位置決め手段と係合する係合部をハウジング部に設け
た。従って、補正光学系を回動させて走査線傾きを補正
したときに、補正光学系が主走査方向に移動することが
防止される。
According to a fifth aspect of the present invention, in the optical scanning device according to the third aspect of the present invention, the correction optical system is provided with positioning means for positioning the correction optical system in the main scanning direction, and is engaged with the positioning means. The engagement part was provided in the housing part. Therefore, when the correction optical system is rotated to correct the scanning line inclination, the correction optical system is prevented from moving in the main scanning direction.

【0012】[0012]

【発明の実施の形態】本発明の第一の実施の形態を図1
ないし図13に基づいて説明する。図1は、光走査装置
の概略構造を示す斜視図である。この光走査装置は、レ
ーザ光源1、偏向器であるポリゴンミラー2、複数枚の
レンズからなる走査光学系3、補正光学系4、第一反射
ミラー5を備えている。
FIG. 1 shows a first embodiment of the present invention.
This will be described with reference to FIG. FIG. 1 is a perspective view showing a schematic structure of the optical scanning device. This optical scanning device includes a laser light source 1, a polygon mirror 2 as a deflector, a scanning optical system 3 including a plurality of lenses, a correction optical system 4, and a first reflection mirror 5.

【0013】前記レーザ光源1は、半導体レーザ6とコ
リメータレンズ7とからなり、半導体レーザ6から出射
された発散性光束であるレーザ光が、コリメータレンズ
7を通過することにより平行光束となる。さらに、コリ
メータレンズ7を通過したレーザ光は、アパーチャ8を
介してシリンダレンズ9に入射される。このシリンダレ
ンズ9は、前記レーザ光源1からの平行光束を主走査方
向に長い線像として結像させるものであり、このシリン
ダレンズ9の結像位置近傍に複数の偏向反射面2aを有
して回転駆動される前記ポリゴンミラー2が配置されて
いる。ポリゴンミラー2へ入射された光束は、ポリゴン
ミラー2の高速回転に伴い主走査方向に偏向される。こ
のポリゴンミラー2と被走査面である感光体10との間
に、前記走査光学系3と第一反射ミラー5と補正光学系
4とが配置されている。
The laser light source 1 comprises a semiconductor laser 6 and a collimator lens 7, and a laser beam, which is a divergent light beam emitted from the semiconductor laser 6, passes through the collimator lens 7 to become a parallel light beam. Further, the laser light that has passed through the collimator lens 7 enters the cylinder lens 9 via the aperture 8. The cylinder lens 9 forms a parallel light beam from the laser light source 1 as a long linear image in the main scanning direction, and has a plurality of deflecting / reflecting surfaces 2a near the imaging position of the cylinder lens 9. The polygon mirror 2 that is driven to rotate is disposed. The light beam incident on the polygon mirror 2 is deflected in the main scanning direction as the polygon mirror 2 rotates at a high speed. The scanning optical system 3, the first reflection mirror 5, and the correction optical system 4 are arranged between the polygon mirror 2 and the photosensitive member 10 which is the surface to be scanned.

【0014】前記走査光学系3は複数枚のレンズからな
り、ポリゴンミラー2で偏向された光束を収束させつつ
感光体10上を等速的に走査させる。前記補正光学系4
は、感光体10上に結像される像の副走査方向の像面湾
曲を補正する。また、補正光学系4は、この補正光学系
4を通過する光束の進行方向(光軸方向)と平行な回動
中心の周りに回動自在及び任意位置固定自在に支持さ
れ、回動中心の周りに回動することにより走査線傾きを
補正する。前記第一反射ミラー5は、前記走査光学系3
と前記補正光学系4との間に配置され、ポリゴンミラー
2で偏向された光束の主走査方向に沿った回動中心の周
りに回動自在及び任意位置固定自在に支持され、回動中
心の周りに回動することにより走査線曲がりを補正す
る。
The scanning optical system 3 includes a plurality of lenses, and scans the photosensitive member 10 at a constant speed while converging the light beam deflected by the polygon mirror 2. The correction optical system 4
Corrects the field curvature of the image formed on the photoconductor 10 in the sub-scanning direction. The correction optical system 4 is supported so as to be freely rotatable around a rotation center parallel to the traveling direction (optical axis direction) of the light beam passing through the correction optical system 4 and to be freely fixed at an arbitrary position. By rotating around, the inclination of the scanning line is corrected. The first reflection mirror 5 includes the scanning optical system 3.
And the correction optical system 4, supported so as to be freely rotatable around a rotation center along the main scanning direction of the light beam deflected by the polygon mirror 2 and to be freely fixed at an arbitrary position. By rotating around, the scanning line bending is corrected.

【0015】ここで、第一反射ミラー5を回動中心の周
りに回動操作して走査線曲がりを補正する原理を、図2
ないし図4に基づいて説明する。なお、座標系を、光束
が進む進方向をX、主走査方向をY、副走査方向をZと
定め、それぞの回動方向をγ、β、αとする。
Here, the principle of correcting the scanning line bending by rotating the first reflecting mirror 5 about the center of rotation will be described with reference to FIG.
A description will be given with reference to FIG. The coordinate system is defined as X, the main scanning direction is defined as Y, the sub-scanning direction is defined as Z, and the rotation direction is defined as γ, β, α.

【0016】図2において、第一反射ミラー5をβ方向
に回動させると、感光体10上の走査線は、副走査方向
(Z方向)にA,B,Cのように移動する。走査線B
は、補正光学系4を通過する光束がこの補正光学系4の
主走査方向に沿った中心線位置を通過した場合の走査線
である。走査線A,Cは、補正光学系4を通過する光束
がこの補正光学系4の主走査方向に沿った中心線位置か
ら偏心した場合の走査線である。
In FIG. 2, when the first reflecting mirror 5 is rotated in the β direction, the scanning lines on the photoreceptor 10 move in the sub-scanning direction (Z direction) as A, B, and C. Scan line B
Is a scanning line when the light beam passing through the correction optical system 4 passes through the center line position of the correction optical system 4 along the main scanning direction. The scanning lines A and C are scanning lines when the light beam passing through the correction optical system 4 is decentered from the center line position of the correction optical system 4 along the main scanning direction.

【0017】補正光学系4を通過する光束がこの補正光
学系4の主走査方向に沿った中心線位置から偏心した場
合には、補正光学系4の特性により感光体10上の走査
線は、図4に示すように湾曲する。走査線の主走査方向
における両端を結んだ直線と主走査方向の中心部とのズ
レを走査線曲がり量として定義すると、走査線Cの走査
線曲がり量dwと、走査線Aの走査線曲がり量dw′と
は、方向が逆向きの量となる。また、走査線曲がり量
は、走査線Bから離れるにつれて大きくなる。即ち、走
査線曲がりは、第一反射ミラー5をβ方向に回動させる
ことにより、その湾曲する方向と大きさとを自在に変化
させることが可能である。
When the light beam passing through the correction optical system 4 is decentered from the center line position of the correction optical system 4 along the main scanning direction, the scanning line on the photoconductor 10 is It curves as shown in FIG. If the deviation between the straight line connecting both ends of the scanning line in the main scanning direction and the center in the main scanning direction is defined as the scanning line bending amount, the scanning line bending amount dw of the scanning line C and the scanning line bending amount of the scanning line A The dw 'is an amount in which the direction is opposite. Further, the scanning line bending amount increases as the distance from the scanning line B increases. That is, the bending of the scanning line can be freely changed in the bending direction and the size by rotating the first reflection mirror 5 in the β direction.

【0018】つぎに、補正光学系4を回動中心の周りに
回動操作して走査線傾きを補正する原理を、図5及び図
6に基づいて説明する。
Next, the principle of correcting the scanning line inclination by rotating the correction optical system 4 about the center of rotation will be described with reference to FIGS.

【0019】図5において、補正光学系4の主走査方向
に沿った一端側Pを支点として他端側Qをγ方向に回動
させると、感光体10上の走査線は、補正光学系4の特
性によりγ方向にイ,ロ,ハの方向へ回動する。走査線
ロは、補正光学系4を通過する光束がこの補正光学系4
の主走査方向に沿った中心線位置を通過した場合の走査
線である。走査線イ,ハは、補正光学系4を通過する光
束がこの補正光学系4の主走査方向に沿った中心線に対
して傾いた場合の走査線である。
In FIG. 5, when the other end Q is rotated in the γ direction with the one end P of the correction optical system 4 along the main scanning direction as a fulcrum, the scanning line on the photoreceptor 10 Due to the characteristic of (1), it turns in the directions of (a), (b) and (c) in the γ direction. The scanning line B is a light beam passing through the correction optical system 4.
Is a scanning line when passing through the center line position along the main scanning direction. The scanning lines A and C are scanning lines when the light beam passing through the correction optical system 4 is inclined with respect to the center line of the correction optical system 4 along the main scanning direction.

【0020】図6は、補正光学系4を通過する光束がこ
の補正光学系4の主走査方向に沿った中心線に対して傾
いた場合の走査線の傾き状態を示す。走査線イ,ハは、
傾きの方向が反対である。また、走査線の傾きdkは、
走査線ロから離れるにつれて大きくなる。即ち、走査線
の傾きは、補正光学系4をγ方向に回動させることによ
り、その傾きの方向と大きさとを自在に変化させること
ができる。
FIG. 6 shows the state of the scanning line when the light beam passing through the correction optical system 4 is inclined with respect to the center line of the correction optical system 4 along the main scanning direction. The scanning lines a and c are
The direction of the inclination is opposite. Also, the inclination dk of the scanning line is
The distance increases from the scanning line B. In other words, the tilt and direction of the scanning line can be freely changed by rotating the correction optical system 4 in the γ direction.

【0021】つぎに、第一反射ミラー5を主走査方向に
沿った回動中心の周りに回動自在及び任意位置固定自在
に支持する構造を図7及び図8に基づいて説明する。図
7は、第一反射ミラー5の取付構造を示す分解斜視図で
ある。第一反射ミラー5を含む光走査装置が設置される
ハウジング部11(図11参照)には、第一反射ミラー
5の主走査方向の両端部を支持する一対の取付部12,
13が固定されている。一方の取付部12には、三角柱
形の突起12aと、ネジ穴12bと、ネジ穴12cとが
形成されている。ネジ穴12bには、板バネ14を取り
付ける取付ネジ15が螺合されている。ネジ穴12cに
は、第一反射ミラー5を回動調節する調節ネジ16が螺
合されている。この調節ネジ16は矢印R方向に回動自
在であり、調節ネジ16を矢印R方向に回動操作するこ
とによりこの調節ネジ16は矢印S方向へ進退する。他
方の取付部13には、三角柱形の突起13aと、ネジ穴
13bとが形成されている。ネジ穴13bには、板バネ
17を取り付ける取付ネジ18が螺合されている。
Next, a structure for supporting the first reflection mirror 5 so as to be rotatable around a rotation center along the main scanning direction and to be freely fixed at an arbitrary position will be described with reference to FIGS. 7 and 8. FIG. FIG. 7 is an exploded perspective view showing the mounting structure of the first reflecting mirror 5. A housing portion 11 (see FIG. 11) in which the optical scanning device including the first reflection mirror 5 is installed has a pair of mounting portions 12 that support both ends of the first reflection mirror 5 in the main scanning direction.
13 is fixed. On one of the mounting portions 12, a triangular prism-shaped projection 12a, a screw hole 12b, and a screw hole 12c are formed. A mounting screw 15 for attaching the leaf spring 14 is screwed into the screw hole 12b. An adjusting screw 16 for rotatingly adjusting the first reflecting mirror 5 is screwed into the screw hole 12c. The adjusting screw 16 is rotatable in the direction of arrow R. By rotating the adjusting screw 16 in the direction of arrow R, the adjusting screw 16 moves forward and backward in the direction of arrow S. The other mounting portion 13 has a triangular prism-shaped projection 13a and a screw hole 13b. A mounting screw 18 for attaching a leaf spring 17 is screwed into the screw hole 13b.

【0022】図8は、第一反射ミラー5を主走査方向に
沿った回動中心の周りに回動自在及び任意位置固定自在
に支持した状態である。第一反射ミラー5の反射面に
は、突起12a,13aの先端部と調節ネジ16の先端
部との3点が当接されている。そして、第一反射ミラー
5の反射面は、板バネ14,17の付勢力によって突起
12a,13aの先端部と調節ネジ16の先端部との3
点に押し付けられている。
FIG. 8 shows a state in which the first reflecting mirror 5 is supported so as to be rotatable around a center of rotation along the main scanning direction and to be freely fixed at an arbitrary position. The reflecting surface of the first reflecting mirror 5 is in contact with three points, the tip of the projections 12a and 13a and the tip of the adjusting screw 16. Then, the reflecting surface of the first reflecting mirror 5 is formed by the urging force of the leaf springs 14 and 17 between the distal ends of the protrusions 12a and 13a and the distal end of the adjusting screw 16.
Pressed against a point.

【0023】つぎに、補正光学系4の詳細な構造を図9
に示し、この補正光学系4を光軸方向と平行な回動中心
の周りに回動自在及び任意位置固定自在に支持する構造
を図10ないし図13に基づいて説明する。
Next, the detailed structure of the correction optical system 4 is shown in FIG.
A structure for supporting the correction optical system 4 so as to be rotatable around a rotation center parallel to the optical axis direction and to be freely fixed at an arbitrary position will be described with reference to FIGS.

【0024】図9に示すように、補正光学系4は、レン
ズ部4aとこのレンズ部4aを囲むように配されている
リブ部4bとを樹脂により一体成形した構造になってい
る。補正光学系4の主走査方向の両端部には、この補正
光学系4を回動中心の周りに回動させる回動方向と平行
な支持面4c,4dを持つ支持部4e,4fが形成され
ている。さらに、補正光学系4のリブ部4bにおける主
走査方向に沿った中央部には、この補正光学系4の主走
査方向を位置決めする位置決め手段である位置決め突起
4gが光軸方向に突出して形成されている。位置決め突
起4aの光軸方向と直交する向きの断面は、円形又は長
方形の角を丸めた形状に形成されている。
As shown in FIG. 9, the correction optical system 4 has a structure in which a lens portion 4a and a rib portion 4b disposed so as to surround the lens portion 4a are integrally formed of resin. At both ends of the correction optical system 4 in the main scanning direction, support portions 4e and 4f having support surfaces 4c and 4d parallel to the rotation direction for rotating the correction optical system 4 around the rotation center are formed. ing. Further, a positioning projection 4g, which is positioning means for positioning the correction optical system 4 in the main scanning direction, is formed at a central portion of the rib portion 4b of the correction optical system 4 along the main scanning direction so as to protrude in the optical axis direction. ing. The cross section of the positioning projection 4a in a direction orthogonal to the optical axis direction is formed in a shape in which a round or rectangular corner is rounded.

【0025】図10は、補正光学系4の取付構造を示す
分解斜視図である。補正光学系4を含む光走査装置が設
置される前記ハウジング部11には、補正光学系4の主
走査方向の両端部を支持する一対の取付部19,20が
固定されている。これらの取付部19,20には、光軸
方向と垂直であって前記支持面4c,4dと面接触して
前記支持部4e,4fを摺動自在に支持する基準面19
a,20aが形成されている。
FIG. 10 is an exploded perspective view showing the mounting structure of the correction optical system 4. A pair of mounting portions 19 and 20 for supporting both ends of the correction optical system 4 in the main scanning direction are fixed to the housing portion 11 where the optical scanning device including the correction optical system 4 is installed. A reference surface 19, which is perpendicular to the optical axis direction and is in surface contact with the support surfaces 4c, 4d, slidably supports the support portions 4e, 4f.
a, 20a are formed.

【0026】前記ハウジング部11には、前記取付部1
9,20に近接した位置に固定部21,22が固定され
ている。一方の固定部21には、光軸方向に延出した半
円筒部23が形成されている。他方の固定部22には、
補正光学系4を回動調節する調節ネジ24が取り付けら
れている。この調節ネジ24は、矢印J方向に回動自在
であり、調節ネジ24を矢印J方向に回動操作すること
によりこの調節ネジ24は矢印K方向へ進退する。
The housing portion 11 includes the mounting portion 1
Fixed portions 21 and 22 are fixed at positions close to 9 and 20. On one fixing portion 21, a semi-cylindrical portion 23 extending in the optical axis direction is formed. On the other fixed part 22,
An adjustment screw 24 for rotating and adjusting the correction optical system 4 is attached. The adjusting screw 24 is rotatable in the direction of arrow J. By rotating the adjusting screw 24 in the direction of arrow J, the adjusting screw 24 moves forward and backward in the direction of arrow K.

【0027】また、前記ハウジング部11には、前記取
付部19,20に近接した位置において取付ネジ25に
より一対の板バネ26が取り付けられている。これらの
板バネ26は長短一対のバネ部26a,26bを有す
る。
A pair of leaf springs 26 are attached to the housing portion 11 by attaching screws 25 at positions near the attaching portions 19 and 20. These leaf springs 26 have a pair of long and short spring portions 26a and 26b.

【0028】さらに、前記ハウジング部11には、前記
位置決め突起4gが係合する係合部である係合溝27が
形成されている。
Further, the housing portion 11 is formed with an engagement groove 27 which is an engagement portion with which the positioning projection 4g is engaged.

【0029】図11は、補正光学系4を光軸方向と平行
な回動中心の周りに回動自在及び任意位置固定自在に支
持した状態の側面図、図12はその平面図、図13はそ
の一部を示す正面図である。補正光学系4の支持面4
c,4dと取付部19,20の基準面19a,20aと
が面接触されている。補正光学系4の一端側のリブ部4
bの側面に半円筒部23が当接され、他端側のリブ部4
bの側面に調節ネジ24の先端部が当接されている。ま
た、板バネ26の長尺のバネ部26aが支持部4e,4
fの上面部に当接され、板バネ26の短尺のバネ部26
bがリブ部4bの側面に当接されている。さらに、位置
決め突起4gが係合溝27に係合されている。
FIG. 11 is a side view showing a state in which the correction optical system 4 is supported so as to be freely rotatable around a center of rotation parallel to the optical axis direction and freely fixed at an arbitrary position. FIG. 12 is a plan view thereof, and FIG. It is a front view which shows a part. Support surface 4 of correction optical system 4
c, 4d and the reference surfaces 19a, 20a of the mounting portions 19, 20 are in surface contact. Rib 4 at one end of correction optical system 4
b, the semi-cylindrical part 23 is in contact with the side face, and the rib part 4
The distal end of the adjusting screw 24 is in contact with the side surface of b. Further, the long spring portion 26a of the leaf spring 26 is supported by the support portions 4e, 4e.
f, the short spring portion 26 of the leaf spring 26
b is in contact with the side surface of the rib portion 4b. Further, the positioning projection 4g is engaged with the engagement groove 27.

【0030】このような構成において、第一反射ミラー
5を図8に示すように支持した後に、調整ネジ16を矢
印R方向へ回動操作する。すると、調整ネジ16が矢印
S方向へ進退し、第一反射ミラー5が矢印β方向へ回動
する。そして、第一反射ミラー5が矢印β方向へ回動す
ることにより、図2ないし図4で説明したように、走査
光学系3を通過する光束をこの補正光学系4の主走査方
向に沿った中心線位置を通過させることができる。従っ
て、補正光学系4を設置する際の偏心により、補正光学
系4を通過する光束がこの補正光学系4の主走査方向に
沿った中心線位置から偏心しても、第一反射ミラー5を
回動操作することにより、この補正光学系4を通過する
光束を補正光学系4の主走査方向に沿った中心線位置を
通過させることができ、これにより、感光体10上での
走査線曲がりの発生を防止することができる。
In such a configuration, after the first reflecting mirror 5 is supported as shown in FIG. 8, the adjusting screw 16 is turned in the direction of arrow R. Then, the adjustment screw 16 advances and retreats in the direction of arrow S, and the first reflection mirror 5 rotates in the direction of arrow β. Then, when the first reflecting mirror 5 rotates in the direction of the arrow β, as described with reference to FIGS. 2 to 4, the light beam passing through the scanning optical system 3 travels along the main scanning direction of the correction optical system 4. The center line position can be passed. Therefore, even if the luminous flux passing through the correction optical system 4 is decentered from the center line position of the correction optical system 4 along the main scanning direction due to the eccentricity when the correction optical system 4 is installed, the first reflection mirror 5 rotates. By moving the correction optical system 4, the light beam passing through the correction optical system 4 can pass through the center line position of the correction optical system 4 along the main scanning direction. Generation can be prevented.

【0031】このため、複数の光走査装置を配列してカ
ラー画像を形成する場合においては、走査線曲がりが原
因となる色ズレの発生を防止することができる。
For this reason, when a color image is formed by arranging a plurality of optical scanning devices, it is possible to prevent the occurrence of color misregistration caused by scanning line bending.

【0032】つぎに、補正光学系4を図11及び図12
に示すように支持した後に、調整ネジ24を矢印J方向
へ回動する。すると、調整ネジ24が矢印K方向へ進退
し、補正光学系4の一端側が矢印γ方向へ回動する。そ
して、補正光学系4が矢印γ方向へ回動することによ
り、図5及び図6で説明したように、補正光学系4を通
過する光束をこの補正光学系4の主走査方向に沿った中
心線に沿って通過させることができる。従って、補正光
学系4やその他の光学素子の配置誤差により、補正光学
系4を通過する光束が、この補正光学系4の主走査方向
に沿った中心線に対して傾いても、補正光学系4を回動
操作することにより、この補正光学系4を通過する光束
を補正光学系4の主走査方向に沿った中心線に沿って通
過させることができ、これにより、感光体10上での走
査線傾きを補正することができる。
Next, the correction optical system 4 will be described with reference to FIGS.
After the support as shown in (1), the adjusting screw 24 is rotated in the direction of arrow J. Then, the adjusting screw 24 advances and retreats in the direction of arrow K, and one end of the correction optical system 4 rotates in the direction of arrow γ. When the correction optical system 4 rotates in the direction of the arrow γ, the light beam passing through the correction optical system 4 is moved to the center of the correction optical system 4 along the main scanning direction, as described with reference to FIGS. It can be passed along a line. Therefore, even if the light beam passing through the correction optical system 4 is inclined with respect to the center line of the correction optical system 4 along the main scanning direction due to an arrangement error of the correction optical system 4 and other optical elements, the correction optical system 4 By rotating the rotation of the correction optical system 4, the light beam passing through the correction optical system 4 can be passed along the center line of the correction optical system 4 along the main scanning direction. Scan line inclination can be corrected.

【0033】このため、複数の光走査装置を配列してカ
ラー画像を形成する場合においては、走査線傾きが原因
となる色ズレの発生を防止することができる。
Therefore, when a color image is formed by arranging a plurality of optical scanning devices, it is possible to prevent the occurrence of color shift caused by the inclination of the scanning line.

【0034】また、補正光学系4を矢印γ方向に回動さ
せたとき、支持面4c,4dと基準面19a,20aと
が面接触して摺動するため、この回動に伴って補正光学
系4が光軸方向に移動することが防止される。このた
め、補正光学系4を回動させて走査線傾きを補正した場
合でも、感光体10上における光束のスポット径が一定
となり、画像品質が安定する。
When the correction optical system 4 is rotated in the direction of the arrow γ, the support surfaces 4c and 4d and the reference surfaces 19a and 20a are brought into surface contact with each other and slide. The system 4 is prevented from moving in the optical axis direction. For this reason, even when the correction optical system 4 is rotated to correct the scanning line inclination, the spot diameter of the light beam on the photoconductor 10 becomes constant, and the image quality is stabilized.

【0035】さらに、補正光学系4を矢印γ方向に回動
させたとき、位置決め突起4gが係合溝27に係合して
いるため、この回動に伴って補正光学系4が主走査方向
に移動することが防止される。このため、補正光学系4
を回動させて走査線傾きを補正した場合でも、走査線の
主走査方向に沿った位置ズレの発生が防止され、画像品
質が安定する。
Further, when the correction optical system 4 is rotated in the direction of the arrow γ, the positioning projection 4g is engaged with the engagement groove 27, so that the correction optical system 4 is moved in the main scanning direction with this rotation. Is prevented from moving. Therefore, the correction optical system 4
Is rotated to correct the inclination of the scanning line, the occurrence of positional deviation of the scanning line in the main scanning direction is prevented, and the image quality is stabilized.

【0036】つぎに、本発明の第二の実施の形態を図1
4に基づいて説明する。なお、図1ないし図13におい
て説明した部分と同じ部分は同じ符号で示し、説明も省
略する。本実施の形態の光走査装置は、第一の実施の形
態の光走査装置に対して、補正光学系4と感光体10と
の間に第二反射ミラー28を配置し、この第二反射ミラ
ー28を主走査方向に沿った回動中心の周りに回動自在
及び任意位置固定自在に支持したものである。この支持
構造としては、図7及び図8に示した構造と同じであ
る。
Next, a second embodiment of the present invention will be described with reference to FIG.
4 will be described. 1 to 13 are denoted by the same reference numerals, and description thereof will be omitted. The optical scanning device according to the present embodiment differs from the optical scanning device according to the first embodiment in that a second reflection mirror 28 is disposed between the correction optical system 4 and the photoconductor 10, and the second reflection mirror 28 is supported so as to be rotatable around a rotation center along the main scanning direction and to be freely fixed at an arbitrary position. This support structure is the same as the structure shown in FIGS.

【0037】このような構成において、第一反射ミラー
5を回動させて走査線曲がりを補正したときに、感光体
10上の走査線の位置が副走査方向にズレる場合があ
る。このような場合に、第二反射ミラー28を回動操作
することによりそのズレを補正することができる。
In such a configuration, when the scanning line bend is corrected by rotating the first reflection mirror 5, the position of the scanning line on the photosensitive member 10 may be shifted in the sub-scanning direction. In such a case, the deviation can be corrected by rotating the second reflection mirror 28.

【0038】このため、複数の光走査装置を配列してカ
ラー画像を形成する場合においては、各色に関して副走
査方向に色ズレすることを防止できる。
For this reason, when a color image is formed by arranging a plurality of optical scanning devices, it is possible to prevent each color from being shifted in the sub-scanning direction.

【0039】[0039]

【発明の効果】請求項1記載の発明の光走査装置によれ
ば、走査光学系と補正光学系との間に第一反射ミラーを
配置し、この第一反射ミラーを主走査方向に沿った回動
中心の周りに回動自在及び任意位置固定自在に支持した
ので、補正光学系を設置する際の偏心により、補正光学
系を通過する光束がこの補正光学系の主走査方向に沿っ
た中心線位置から偏心して走査線曲がりが発生した場合
には、第一反射ミラーを主走査方向に沿った回動中心の
周りに回動させることにより、補正光学系を通過する光
束が補正光学系の主走査方向に沿った中心線位置を通過
するように調節することができ、これにより、走査線曲
がりを補正することができ、光走査により形成する画像
の品質を向上させることができる。
According to the optical scanning device of the first aspect of the present invention, the first reflection mirror is disposed between the scanning optical system and the correction optical system, and the first reflection mirror is arranged along the main scanning direction. Since it is supported so as to be freely rotatable around the center of rotation and freely fixed at an arbitrary position, the eccentricity at the time of installing the correction optical system causes the light beam passing through the correction optical system to be centered along the main scanning direction of the correction optical system. When the scanning line is decentered from the line position and the scanning line is bent, the light beam passing through the correction optical system is rotated by rotating the first reflecting mirror around the rotation center along the main scanning direction. The adjustment can be made so as to pass through the center line position along the main scanning direction, whereby the scanning line bending can be corrected, and the quality of an image formed by optical scanning can be improved.

【0040】請求項2記載の発明の光走査装置によれ
ば、請求項1記載の発明の光走査装置において、補正光
学系と被走査面との間に第二反射ミラーを配置し、この
第二反射ミラーを主走査方向に沿った回動中心の周りに
回動自在及び任意位置固定自在に支持したので、第一反
射ミラーを回動させて走査線曲がりを補正したときに、
被走査面上の走査線の位置が副走査方向にズレた場合に
は、第二反射ミラーを回動中心の周りに回動させること
によりそのズレを補正することができ、これにより光走
査により形成する画像の品質を向上させることができ、
特に、カラー画像を形成する場合において各色が副走査
方向に色ズレすることを防止できる。
According to the optical scanning device of the second aspect of the present invention, in the optical scanning device of the first aspect of the present invention, a second reflection mirror is disposed between the correction optical system and the surface to be scanned. Since the two reflecting mirrors are supported so as to be rotatable around the center of rotation along the main scanning direction and freely fixed at an arbitrary position, when the first reflecting mirror is rotated to correct the scanning line bending,
When the position of the scanning line on the surface to be scanned is shifted in the sub-scanning direction, the shift can be corrected by rotating the second reflection mirror around the center of rotation, and thereby the optical scanning can be performed. The quality of the image to be formed can be improved,
In particular, when a color image is formed, it is possible to prevent each color from shifting in the sub-scanning direction.

【0041】請求項3記載の発明の光走査装置によれ
ば、補正光学系を光軸方向と平行な回動中心の周りに回
動自在及び任意位置固定自在に支持したので、補正光学
系やその他の光学素子の配置誤差により、補正光学系を
通過する光束がこの補正光学系の主走査方向に沿った中
心線に対して傾いて走査線傾きが発生した場合には、補
正光学系を回動中心の周りに回動させることにより補正
光学系を通過する光束が補正光学系の主走査方向に沿っ
た位置を通過するように調節することができ、これによ
り、走査線傾きを補正することができ、光走査により形
成する画像の品質を向上させることができる。
According to the optical scanning device of the third aspect of the present invention, the correction optical system is rotatably supported around a rotation center parallel to the optical axis direction and freely fixed at an arbitrary position. When the light beam passing through the correction optical system is tilted with respect to the center line of the correction optical system along the main scanning direction due to an arrangement error of other optical elements, and the scanning line tilts, the correction optical system is rotated. By rotating around the moving center, the light beam passing through the correction optical system can be adjusted so as to pass through the position along the main scanning direction of the correction optical system, thereby correcting the scanning line inclination. Thus, the quality of an image formed by optical scanning can be improved.

【0042】請求項4記載の発明の光走査装置によれ
ば、請求項3記載の発明の光走査装置において、補正光
学系の主走査方向の両端部にこの補正光学系の回動方向
と平行な支持面を持つ支持部を設け、光軸方向と垂直で
あって前記支持面と面接触して前記支持部を摺動自在に
支持する基準面をハウジング部に設けたので、補正光学
系を回動させて走査線傾きを補正したときに、補正光学
系が光軸方向に移動することを防止でき、被走査面上に
おける光束のスポット径を一定にしてこの光走査で形成
する画像の品質を向上させることができる。
According to the optical scanning device of the fourth aspect, in the optical scanning device of the third aspect, both ends of the correction optical system in the main scanning direction are parallel to the rotation direction of the correction optical system. A supporting portion having a support surface is provided, and a reference surface perpendicular to the optical axis direction and slidably supporting the supporting portion in surface contact with the supporting surface is provided in the housing portion. When the scanning optical system is rotated to correct the inclination of the scanning line, the correcting optical system can be prevented from moving in the optical axis direction, and the spot diameter of the light beam on the surface to be scanned is kept constant, and the quality of the image formed by this optical scanning is improved. Can be improved.

【0043】請求項5記載の発明の光走査装置によれ
ば、請求項3記載の発明の光走査装置において、補正光
学系にこの補正光学系の主走査方向を位置決めする位置
決め手段を設け、前記位置決め手段と係合する係合部を
ハウジング部に設けたので、補正光学系を回動させて走
査線傾きを補正したときに、補正光学系が主走査方向に
移動することを防止でき、走査線の主走査方向に沿った
位置ズレの発生を防止してこの光走査で形成する画像の
品質を向上させることができる。
According to the optical scanning device of the fifth aspect of the present invention, in the optical scanning device of the third aspect of the present invention, the correction optical system is provided with positioning means for positioning the correction optical system in the main scanning direction. Since the housing is provided with an engaging portion for engaging with the positioning means, when the correction optical system is rotated to correct the scanning line inclination, the correction optical system can be prevented from moving in the main scanning direction, and scanning can be performed. It is possible to prevent the displacement of the line along the main scanning direction and improve the quality of an image formed by the optical scanning.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第一の実施の形態における光走査装置
の概略構造を示す斜視図である。
FIG. 1 is a perspective view showing a schematic structure of an optical scanning device according to a first embodiment of the present invention.

【図2】走査線曲がりを補正する原理を説明する斜視図
である。
FIG. 2 is a perspective view illustrating a principle of correcting a scanning line bending.

【図3】走査線曲がりを補正する原理を説明する側面図
である。
FIG. 3 is a side view illustrating a principle of correcting a scan line bending.

【図4】走査線曲がりを補正する原理を説明する平面図
である。
FIG. 4 is a plan view illustrating the principle of correcting a scanning line bending.

【図5】走査線傾きを補正する原理を説明する斜視図で
ある。
FIG. 5 is a perspective view illustrating a principle of correcting a scanning line inclination.

【図6】走査線傾きを補正する原理を説明する平面図で
ある。
FIG. 6 is a plan view illustrating a principle of correcting a scanning line inclination.

【図7】第一反射ミラーの取付構造を示す分解斜視図で
ある。
FIG. 7 is an exploded perspective view showing a mounting structure of a first reflection mirror.

【図8】第一反射ミラーの取付状態を示す斜視図であ
る。
FIG. 8 is a perspective view showing an attached state of a first reflection mirror.

【図9】補正光学系の構造を示す斜視図である。FIG. 9 is a perspective view illustrating a structure of a correction optical system.

【図10】補正光学系の取付構造を示す分解斜視図であ
る。
FIG. 10 is an exploded perspective view showing a mounting structure of a correction optical system.

【図11】補正光学系の取付状態を示す側面図である。FIG. 11 is a side view showing a mounting state of the correction optical system.

【図12】補正光学系の取付状態を示す平面図である。FIG. 12 is a plan view showing a mounting state of a correction optical system.

【図13】補正光学系の取付時における位置決め突起と
係合溝との係合状態を示す正面図である。
FIG. 13 is a front view showing an engagement state between a positioning projection and an engagement groove when the correction optical system is attached.

【図14】本発明の第二の実施の形態における光走査装
置の概略構造を示す模式図である。
FIG. 14 is a schematic diagram illustrating a schematic structure of an optical scanning device according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 レーザ光源 2 偏向器 3 走査光学系 4 補正光学系 4c,4d 支持面 4e,4f 支持部 4g 位置決め手段 5 第一反射ミラー 10 被走査面 11 ハウジング部 19a,20a 基準面 27 係合部 28 第二反射ミラー DESCRIPTION OF SYMBOLS 1 Laser light source 2 Deflector 3 Scanning optical system 4 Correction optical system 4c, 4d Support surface 4e, 4f Support portion 4g Positioning means 5 First reflection mirror 10 Scanned surface 11 Housing portion 19a, 20a Reference surface 27 Engagement portion 28 Double reflection mirror

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 レーザ光源と、このレーザ光源から出射
された光束を主走査方向に偏向させる偏向器と、この偏
向器により偏向された光束を収束させつつ被走査面上を
等速度で走査させる走査光学系と、前記被走査面と前記
走査光学系との間に設置されて光束を被走査面上に幾何
光学的に収束させる補正光学系とを備えた光走査装置に
おいて、 前記走査光学系と前記補正光学系との間に第一反射ミラ
ーを配置し、この第一反射ミラーを主走査方向に沿った
回動中心の周りに回動自在及び任意位置固定自在に支持
したことを特徴とする光走査装置。
1. A laser light source, a deflector for deflecting a light beam emitted from the laser light source in a main scanning direction, and scanning the surface to be scanned at a constant speed while converging the light beam deflected by the deflector. An optical scanning device comprising: a scanning optical system; and a correction optical system that is provided between the scanned surface and the scanning optical system and converges a light beam geometrically on the scanned surface. A first reflection mirror is arranged between the correction optical system and the correction optical system, and the first reflection mirror is supported so as to be freely rotatable around a rotation center along the main scanning direction and to be freely fixed at an arbitrary position. Optical scanning device.
【請求項2】 補正光学系と被走査面との間に第二反射
ミラーを配置し、この第二反射ミラーを主走査方向に沿
った回動中心の周りに回動自在及び任意位置固定自在に
支持したことを特徴とする請求項1記載の光走査装置。
2. A second reflection mirror is disposed between the correction optical system and the surface to be scanned, and the second reflection mirror is rotatable around a rotation center along a main scanning direction and freely fixed at an arbitrary position. 2. The optical scanning device according to claim 1, wherein the optical scanning device is supported by the optical scanning device.
【請求項3】 レーザ光源と、このレーザ光源から出射
された光束を主走査方向に偏向させる偏向器と、この偏
向器により偏向された光束を収束させつつ被走査面上を
等速度で走査させる走査光学系と、前記被走査面と前記
走査光学系との間に設置されて光束を被走査面上に幾何
光学的に収束させる補正光学系とを備えた光走査装置に
おいて、 前記補正光学系を光軸方向と平行な回動中心の周りに回
動自在及び任意位置固定自在に支持したことを特徴とす
る光走査装置。
3. A laser light source, a deflector for deflecting a light beam emitted from the laser light source in the main scanning direction, and scanning the surface to be scanned at a constant speed while converging the light beam deflected by the deflector. An optical scanning device comprising: a scanning optical system; and a correction optical system provided between the surface to be scanned and the scanning optical system to geometrically converge a light beam on the surface to be scanned. An optical scanning device characterized in that the optical scanning device is supported so as to be rotatable around a rotation center parallel to the optical axis direction and to be freely fixed at an arbitrary position.
【請求項4】 補正光学系の主走査方向の両端部にこの
補正光学系の回動方向と平行な支持面を持つ支持部を設
け、光軸方向と垂直であって前記支持面と面接触して前
記支持部を摺動自在に支持する基準面をハウジング部に
設けたことを特徴とする請求項3記載の光走査装置。
4. A support section having a support surface parallel to the rotation direction of the correction optical system is provided at both ends of the correction optical system in the main scanning direction, and is perpendicular to the optical axis direction and is in surface contact with the support surface. 4. The optical scanning device according to claim 3, wherein a reference surface for slidably supporting the support portion is provided on the housing portion.
【請求項5】 補正光学系にこの補正光学系の主走査方
向を位置決めする位置決め手段を設け、前記位置決め手
段と係合する係合部をハウジング部に設けたことを特徴
とする請求項3記載の光走査装置。
5. The correction optical system according to claim 3, wherein positioning means for positioning the correction optical system in the main scanning direction is provided, and an engaging portion for engaging with the positioning means is provided on the housing. Optical scanning device.
JP32084597A 1997-11-21 1997-11-21 Optical scanning device Expired - Lifetime JP3844161B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32084597A JP3844161B2 (en) 1997-11-21 1997-11-21 Optical scanning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32084597A JP3844161B2 (en) 1997-11-21 1997-11-21 Optical scanning device

Publications (2)

Publication Number Publication Date
JPH11153765A true JPH11153765A (en) 1999-06-08
JP3844161B2 JP3844161B2 (en) 2006-11-08

Family

ID=18125896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32084597A Expired - Lifetime JP3844161B2 (en) 1997-11-21 1997-11-21 Optical scanning device

Country Status (1)

Country Link
JP (1) JP3844161B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7218337B2 (en) * 2002-09-19 2007-05-15 Ricoh Company, Ltd. Optical scanner, optical-path adjustment method, and image forming apparatus
US7466332B2 (en) * 2004-06-03 2008-12-16 Samsung Electronics Co., Ltd. Light scanning unit
US7525561B2 (en) 2002-07-02 2009-04-28 Ricoh Company, Ltd. Optical scanner and image forming apparatus
US7535594B2 (en) 2003-02-25 2009-05-19 Ricoh Company, Limited Scanning lens for optical scanner, optical scanner, and image forming apparatus
US7684100B2 (en) 2004-11-26 2010-03-23 Ricoh Company, Ltd. Optical-element holding device, method of adjusting shape of optical element, optical-element shape adjusting device, method of correcting scanning line variation, optical scanning device, and image forming apparatus
US8619107B2 (en) 2004-02-18 2013-12-31 Ricoh Company, Ltd. Beam-spot position compensation method, optical scanning device, and multi-color image forming device
US8824022B2 (en) 2003-09-18 2014-09-02 Ricoh Company, Ltd. Optical scanning apparatus and image forming apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7525561B2 (en) 2002-07-02 2009-04-28 Ricoh Company, Ltd. Optical scanner and image forming apparatus
US7532227B2 (en) 2002-07-02 2009-05-12 Ricoh Company, Ltd. Optical scanner and image forming apparatus
US7218337B2 (en) * 2002-09-19 2007-05-15 Ricoh Company, Ltd. Optical scanner, optical-path adjustment method, and image forming apparatus
US7535594B2 (en) 2003-02-25 2009-05-19 Ricoh Company, Limited Scanning lens for optical scanner, optical scanner, and image forming apparatus
US8824022B2 (en) 2003-09-18 2014-09-02 Ricoh Company, Ltd. Optical scanning apparatus and image forming apparatus
US8619107B2 (en) 2004-02-18 2013-12-31 Ricoh Company, Ltd. Beam-spot position compensation method, optical scanning device, and multi-color image forming device
US7466332B2 (en) * 2004-06-03 2008-12-16 Samsung Electronics Co., Ltd. Light scanning unit
US7684100B2 (en) 2004-11-26 2010-03-23 Ricoh Company, Ltd. Optical-element holding device, method of adjusting shape of optical element, optical-element shape adjusting device, method of correcting scanning line variation, optical scanning device, and image forming apparatus

Also Published As

Publication number Publication date
JP3844161B2 (en) 2006-11-08

Similar Documents

Publication Publication Date Title
JP3679490B2 (en) Optical scanning device
JP3844161B2 (en) Optical scanning device
JP4677657B2 (en) Scanning optical device
JPH08122685A (en) Reflection type scanning optical device
JP2973550B2 (en) Laser beam scanning optical device
JP3844165B2 (en) Optical scanning apparatus and image forming apparatus
JP3648391B2 (en) Multi-beam scanning device and light source device thereof
JPH0720399A (en) Raster scanner
JP3196711B2 (en) Optical scanning device
JP2643224B2 (en) Light beam scanning optical system
JP2004301971A (en) Optical scanner
US7184070B2 (en) Exposure device including housing rotated about projection
JPH1039244A (en) Passive facet tracking system and scanning system
US6922296B2 (en) Optical path adjusting device
JP2887918B2 (en) Mirror support structure for raster scanning device and mirror angle adjusting method using the same
JP2749850B2 (en) Optical deflection device
JP4415581B2 (en) Optical scanning apparatus and image forming apparatus
JP2003131154A (en) Optical scanner and image forming device using the same
JP4534570B2 (en) Optical scanning device
JPH06265807A (en) Light beam scanning optical system
JPH10142547A (en) Optical scanning device
JPH11218700A (en) Light beam scan optical device
JPH10213769A (en) Lens holding device and optical beam scanning optical device
JP2001166242A (en) Optical scanner and mirror surface adjusting device
JP2893872B2 (en) Optical scanning device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050418

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20050418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060810

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090825

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100825

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100825

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110825

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110825

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120825

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120825

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130825

Year of fee payment: 7

EXPY Cancellation because of completion of term