JPH11151751A - Biaxially oriented polyester film and its production - Google Patents

Biaxially oriented polyester film and its production

Info

Publication number
JPH11151751A
JPH11151751A JP32119397A JP32119397A JPH11151751A JP H11151751 A JPH11151751 A JP H11151751A JP 32119397 A JP32119397 A JP 32119397A JP 32119397 A JP32119397 A JP 32119397A JP H11151751 A JPH11151751 A JP H11151751A
Authority
JP
Japan
Prior art keywords
film
biaxially oriented
stretching
oriented polyester
polyester film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32119397A
Other languages
Japanese (ja)
Inventor
Hiroyuki Tanaka
裕之 田中
Hiroshi Kubota
啓 窪田
Iwao Okazaki
巌 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP32119397A priority Critical patent/JPH11151751A/en
Publication of JPH11151751A publication Critical patent/JPH11151751A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance thermal dimensional stability without lowering the modulus of elasticity and productivity by biaxially stretching an unstretched film based on polyethylene terephthalate and specified in the relaxing time of carbonyl carbon in structural analysis by solid high resolving power NMR to heat-treat the stretched film. SOLUTION: A molten extruded film comprising polyester based on polyethylene terephthalate is cooled on the surface of a cooling metal roll by a static electricity applying casting method to obtain an unstretched film. The melt extrusion temp. at this time is pref. higher than the m.p. of polyester by 25-60 deg.C. Herein, by biaxially stretching the unstretched film characterized by that the relaxing time of carbonyl carbon in structural analysis by solid high resolving power NMR is 55 msec or less, further pref., 45 msec or less and amorphous and high in amorphous motility is biaxially stretched and heat-treated to obtain a film very small in heat shrinkage factor.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、二軸配向ポリエス
テルフィルム、特に長手方向の強度が高く、かつ熱収縮
率の小さなポリエステルフィルムおよびその製造方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a biaxially oriented polyester film, particularly to a polyester film having a high strength in the longitudinal direction and a small heat shrinkage, and a method for producing the same.

【0002】[0002]

【従来の技術】ポリエステルフィルム、特にポリエチレ
ンテレフタレートを主成分とするポリエステルフィルム
は、優れた機械的特性、熱的特性、電気的特性、表面特
性、光学特性、また、耐熱性、耐薬品性などの性質を利
用して、磁気記録媒体用、コンデンサー用、包装用など
種々の用途に幅広く用いられている。
2. Description of the Related Art Polyester films, particularly polyester films containing polyethylene terephthalate as a main component, have excellent mechanical properties, thermal properties, electrical properties, surface properties, optical properties, heat resistance, chemical resistance and the like. Utilizing its properties, it is widely used in various applications such as for magnetic recording media, capacitors, and packaging.

【0003】一方、これらの用途製品の高品質化、コン
パクト化などのニーズにしたがい、ポリエステルフィル
ムに対する要求特性もますます厳しくなってきている。
上記の各用途の中でも、特に、磁気記録媒体用途では、
高品質化とともに、長時間記録化、コンパクト化にとも
なうベースフィルムの薄膜化のために、さらなる高弾性
率化、高強度化が望まれ、また、記録の高密度化ととも
に、さらなる熱寸法安定性が望まれている。
[0003] On the other hand, in accordance with the needs for high quality and compactness of these application products, the required characteristics of polyester films are becoming more and more severe.
Among the above applications, particularly for magnetic recording media,
Along with high quality, long-term recording and thinning of the base film due to compactness, further higher elastic modulus and higher strength are desired. In addition to higher recording density, higher thermal dimensional stability Is desired.

【0004】一般にポリエステルフィルムは温度ととも
に収縮する性質がある。ポリエステルフィルムの熱収縮
率を小さくする手段として、高温で熱処理を施すこと
や、延伸後に弛緩処理を施すことや、フィルムをロール
状に巻き取った状態で110℃〜130℃の雰囲気中に
6時間以上放置する処理方法(例えば、特開昭60ー1
03517号公報)や、フィルムを比較的ゆるく巻きそ
のまま加熱炉中で熱処理する方法(例えば、特開昭58
ー98219号公報)、さらにはフィルムの固有粘度を
小さくする方法(特開平9ー16952)などが知られ
ている。
In general, a polyester film has a property of shrinking with temperature. As means for reducing the heat shrinkage of the polyester film, heat treatment at a high temperature, relaxation treatment after stretching, or in a state where the film is wound into a roll in an atmosphere of 110 ° C to 130 ° C for 6 hours The above-mentioned treatment method (for example, JP-A-60-1)
No. 03517) and a method in which a film is relatively loosely wound and heat-treated in a heating furnace as it is (for example, Japanese Unexamined Patent Publication No.
JP-A-98219) and a method of reducing the intrinsic viscosity of a film (JP-A-9-16952).

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記の
ような従来の技術により製造したポリエステルフィルム
には、例えば、次のような問題がある。
However, the polyester film produced by the above-mentioned conventional technique has the following problems, for example.

【0006】高温において熱処理を施したり、延伸後に
弛緩処理を施したりすると、それにともなって弾性率な
どの機械的特性が低下する。フィルムをロール状に巻き
取った状態で110〜130℃の雰囲気中に6時間以上
放置する処理方法は、ロール表層部とロール芯部に処理
ムラが生じ、しかもフィルムにしわや巻硬度ムラ、平面
性悪化などが発生し、その結果、ロール状フィルムの外
観が悪化するばかりでなく、加熱処理時間が長く、生産
性がよくない。また、フィルムを比較的ゆるく巻いて熱
処理する方法は、広幅で長尺のフィルムをゆるく巻くこ
とが困難であり、また、フィルム間に空気層が存在する
ために、各フィルム間の熱伝導が遅く、ロール状フィル
ム全体の昇温に時間がかかる。また、巻き取り後の熱処
理による方法ではポリエステルのガラス転移点付近の熱
収縮率を小さくすることはできるが、100℃付近での
熱収縮率を小さくすることはできない。また、固有粘度
の小さなフィルムは耐引き裂き性が低下するため延伸時
に破れが発生しやすく、生産性が低下するだけでなく、
裁断や磁気記録媒体における磁性層塗布、包装材料にお
ける印刷などのフィルム加工工程でも破れが発生しやす
くなり、加工性が低下する。
When a heat treatment is performed at a high temperature or a relaxation treatment is performed after stretching, mechanical properties such as an elastic modulus are reduced accordingly. When the film is wound into a roll and left in an atmosphere at 110 to 130 ° C. for 6 hours or more, the surface of the roll and the core of the roll have uneven processing. As a result, not only the appearance of the roll film deteriorates, but also the heat treatment time is long, and the productivity is not good. In addition, it is difficult to heat the film by winding the film relatively loosely, and it is difficult to wind a wide and long film loosely.In addition, since an air layer exists between the films, heat conduction between the films is slow. In addition, it takes time to raise the temperature of the entire roll film. Further, the method using heat treatment after winding can reduce the heat shrinkage near the glass transition point of the polyester, but cannot reduce the heat shrinkage near 100 ° C. In addition, a film having a small intrinsic viscosity tends to be broken during stretching because of a decrease in tear resistance, and not only does productivity decrease,
In film processing steps such as cutting, coating of a magnetic layer on a magnetic recording medium, and printing on a packaging material, breakage is liable to occur, and workability is reduced.

【0007】本発明の目的は、弾性率などの機械的特性
を低下させることなく、また、処理時間に長時間を要し
たり、特別な設備を設置したり、生産性や加工性を低下
させることなく、熱寸法安定性や機械的特性に優れた二
軸配向ポリエステルフィルムを提供することにある。
An object of the present invention is to reduce the mechanical properties such as the elastic modulus, to require a long processing time, to install special equipment, and to reduce productivity and workability. An object of the present invention is to provide a biaxially oriented polyester film which is excellent in thermal dimensional stability and mechanical properties without any problem.

【0008】[0008]

【課題を解決するための手段】この目的に沿う2軸配向
ポリエステルフィルムは、以下の製法で得ることができ
る。すなわち、ポリエチレンテレフタレートを主成分と
し、固体高分解能NMRによる構造解析におけるカルボ
ニル炭素の緩和時間T1ρが55msec以下の未延伸
フィルムを2軸延伸し、さらに熱処理することを特徴と
する二軸配向ポリエステルフィルムの製造方法である。
The biaxially oriented polyester film for this purpose can be obtained by the following production method. That is, a biaxially oriented polyester film comprising polyethylene terephthalate as a main component, biaxially stretching an unstretched film having a carbonyl carbon relaxation time T1ρ of 55 msec or less in structural analysis by solid high-resolution NMR, and further heat-treating the unstretched film. It is a manufacturing method.

【0009】[0009]

【発明の実施の形態】すなわち、固体高分解能NMRに
よる構造解析におけるカルボニル炭素の緩和時間T1ρ
が55msec以下、好ましくは50msec以下、さ
らに好ましくは45msec以下の、非晶性でありかつ
非晶の運動性の高い未延伸フィルムを2軸延伸、熱処理
することにより、熱収縮率の非常に小さなフィルムを得
ることができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS That is, the relaxation time T1ρ of carbonyl carbon in the structural analysis by solid-state high-resolution NMR.
A film having an extremely small heat shrinkage ratio is obtained by biaxially stretching and heat-treating an unstretched, amorphous and highly motile unstretched film of 55 msec or less, preferably 50 msec or less, more preferably 45 msec or less. Can be obtained.

【0010】一般に、強度の高いポリエチレンテレフタ
レートを主成分とする2軸配向ポリエステルフィルムを
得るためには、融点以上で溶融押出したシートを金属製
のキャスティングロール上で冷却固化させたのち、2軸
延伸、熱処理を行って製造する方法が多く用いられる。
押出後の冷却効率を高めるための方法としては、静電荷
を印加してキャスティングロールととの密着性を高める
方法が有効である。このようにして作成される押出後の
未延伸フィルムは一般に結晶化度が非常に小さい非晶性
の状態であるが、溶融時に完全に融けなかった微少な規
則構造が残存していたり、押出時のせん断力による配
向、冷却過程における再秩序化がおこるため、完全な非
晶状態とはならず、固体高分解能NMRによる構造解析
におけるカルボニル炭素の緩和時間T1ρは55mse
cより大きくなる。
Generally, in order to obtain a biaxially oriented polyester film containing polyethylene terephthalate as a main component, a sheet extruded at a melting point or higher is cooled and solidified on a metal casting roll, and then biaxially stretched. , And a method of performing a heat treatment to manufacture.
As a method for increasing the cooling efficiency after extrusion, a method of applying an electrostatic charge to increase the adhesion to a casting roll is effective. The unstretched film after extrusion formed in this manner is generally in an amorphous state having a very small crystallinity, but a fine regular structure that did not completely melt when melting is left, or when extruded. Is caused by reorientation in the cooling process and the orientation due to the shearing force of the GaN. Therefore, the amorphous state is not completely obtained, and the relaxation time T1ρ of carbonyl carbon in the structural analysis by solid-state high-resolution NMR is 55 ms.
larger than c.

【0011】このような未延伸フィルムの秩序構造を解
除させるためには、溶融キャストした未延伸フィルムを
示差走査熱量計(DSC)で測定されるガラス転移点よ
り30〜80℃高い温度で0.1〜10秒処理を行うこ
とが好ましい。加熱処理の温度が低すぎたり、処理時間
がこれより短かいと秩序構造が解除できず、また、処理
温度が高すぎたり、処理時間が長すぎると逆に結晶化が
開始してしまい、カルボニル炭素の緩和時間T1ρが5
5msec以下のフィルムを得ることができず、熱収縮
率の小さなフィルムを得ることができない。さらに好ま
しい熱処理温度はガラス転移点より40〜60℃高い温
度、さらに好ましい熱処理時間は0.1〜7秒である。
In order to release the ordered structure of the unstretched film, the melt-cast unstretched film is heated at a temperature 30 to 80 ° C. higher than the glass transition point measured by a differential scanning calorimeter (DSC). It is preferable to perform the treatment for 1 to 10 seconds. If the temperature of the heat treatment is too low or the treatment time is shorter than this, the ordered structure cannot be released.If the treatment temperature is too high or the treatment time is too long, crystallization starts. Carbon relaxation time T1ρ is 5
A film of 5 msec or less cannot be obtained, and a film having a small heat shrinkage cannot be obtained. A more preferred heat treatment temperature is a temperature 40 to 60 ° C. higher than the glass transition point, and a more preferred heat treatment time is 0.1 to 7 seconds.

【0012】このような処理を行った後、2軸延伸を行
うを行う際に、ガラス転移点以上に長時間保持すると結
晶化が起こったり、たとえ結晶化が起こらなくても微少
な単位での秩序化が起こってしまい、未延伸フィルムの
カルボニル炭素の緩和時間T1ρが55msecより大
きくなってしまう場合がある。これを避けるためには延
伸を行う前に一度ガラス転移点より5℃以上低い温度ま
で冷却した後再び加熱して2軸延伸を行う方法が有効で
ある。また、本発明の製法による熱収縮率低減効果は用
いるポリエステルの固有粘度が、0.55〜0.70d
l/g、好ましくは0.58〜0.65の範囲であり、
長手方向の延伸倍率が全体で4.5倍以上、好ましくは
5.0倍以上であり、さらに得られるフィルムの長手方
向の弾性率6.0GPa以上、好ましくは7.0GPa
以上の時に顕著であり、長手方向の80℃、30分にお
ける熱収縮率が0.15%以下、100℃、30分にお
ける熱収縮率が0.5%以下、長手方向の引き裂き伝播
抵抗が5000N/m以上のフィルムが得られる。
[0012] After performing such a treatment, when performing biaxial stretching, crystallization occurs if held for a long time at or above the glass transition point, or even if crystallization does not occur, it may be measured in minute units. In some cases, ordering occurs, and the relaxation time T1ρ of carbonyl carbon of the unstretched film becomes longer than 55 msec. In order to avoid this, it is effective to perform biaxial stretching by cooling once to a temperature lower than the glass transition point by 5 ° C. or more before stretching and then heating again. The heat shrinkage reduction effect of the production method of the present invention is such that the intrinsic viscosity of the polyester used is 0.55 to 0.70 d.
1 / g, preferably in the range of 0.58 to 0.65;
The stretching ratio in the longitudinal direction is 4.5 times or more as a whole, preferably 5.0 times or more, and the elastic modulus in the longitudinal direction of the obtained film is 6.0 GPa or more, preferably 7.0 GPa.
The heat shrinkage in the longitudinal direction at 80 ° C. for 30 minutes is 0.15% or less, the heat shrinkage in 100 ° C. for 30 minutes is 0.5% or less, and the tear propagation resistance in the longitudinal direction is 5000 N. / M or more.

【0013】本発明に用いるポリエチレンテレフタレー
トを主成分とするポリエステルとは、エチレンテレフタ
レ−トを90重量%以上繰り返し単位として含むポリエ
ステルのことを言い、使用目的に応じて、10重量%以
下の共重合成分、添加剤を用いても良いし、少量の多種
ポリマーと混合して用いても良い。また、フィルムに滑
り性を与える目的で、不活性粒子を5.0重量%以下の
範囲で添加しても良い。
The polyester containing polyethylene terephthalate as a main component used in the present invention refers to a polyester containing ethylene terephthalate as a repeating unit in an amount of 90% by weight or more, and 10% by weight or less depending on the purpose of use. A polymerization component and an additive may be used, or a mixture with a small amount of various polymers may be used. In order to give the film a slipperiness, inert particles may be added in a range of 5.0% by weight or less.

【0014】添加する粒子の種類は特に限定されない
が、良好な摩擦特性、耐摩耗性を両立するためには、コ
ロイダルシリカに起因する実質的に球形のシリカ粒子、
球形の架橋高分子粒子(例えば架橋ポリスチレンや架橋
ジビニルベンゼンなど)が好ましい。フィルムを構成す
るポリエステルに粒子を含有させる方法としては、ジオ
ール成分であるエチレングリコールに粒子を所定割合に
てスラリーの形で分散させ、このエチレングリコールを
ジカルボン酸成分(主にテレフタル酸)と重合させる方
法が好ましい。粒子を添加する際には、例えば、粒子を
合成時に得られる水ゾルやアルコールゾルを一旦乾燥さ
せることなく添加すると、粒子の分散性がよく、出力特
性を良好とすることができる。また、粒子の水スラリー
を直接所定のポリエステルペレットと混合し、ベント式
2軸混練押出機を用いて、ポリエステルに練り込む方法
も有効である。粒子の含有量、個数を調節する方法とし
ては、上記方法で高濃度の粒子のマスタを作っておき、
それを製膜時に粒子に実質的に含有しないポリエステル
で希釈して、粒子の含有量を調節する方法が有効であ
る。
The type of particles to be added is not particularly limited, but in order to achieve both good friction characteristics and abrasion resistance, substantially spherical silica particles derived from colloidal silica,
Spherical crosslinked polymer particles (such as crosslinked polystyrene and crosslinked divinylbenzene) are preferred. As a method of including particles in the polyester constituting the film, particles are dispersed in a predetermined ratio in the form of a slurry in ethylene glycol, which is a diol component, and the ethylene glycol is polymerized with a dicarboxylic acid component (mainly terephthalic acid). The method is preferred. When the particles are added, for example, if the water sol or alcohol sol obtained during the synthesis is added without drying, the particles have good dispersibility and can have good output characteristics. It is also effective to directly mix the water slurry of the particles with predetermined polyester pellets and knead the polyester with a vented twin-screw extruder. As a method of adjusting the content and the number of particles, a master of high-concentration particles is prepared by the above method,
It is effective to dilute it with a polyester substantially not contained in the particles at the time of film formation and adjust the content of the particles.

【0015】用いるポリエステルの固有粘度は、押出時
の安定性や破れなどの製膜上の安定性、後工程の加工性
の面から、0.55〜0.70dl/g、好ましくは
0.58〜0.65の範囲であることが好ましい。
The intrinsic viscosity of the polyester used is from 0.55 to 0.70 dl / g, preferably from 0.58 to 0.70 dl / g, from the viewpoints of stability at the time of extrusion, stability in film formation such as tearing, and workability in a subsequent step. It is preferably in the range of 0.65.

【0016】本発明のポリエステルフィルムは単一の層
からなるフィルムでも良いが、2層以上の積層フィルム
であっても良い。また、フィルム全体でポリエチレンテ
レフタレートの占める割合が90重量%以上となる範囲
であれば、積層部に添加する粒子や添加物、共重合成分
の含有量を多くしても良いし、ポリエチレンテレフタレ
ート以外のポリエステル、例えばポリブチレンテレフタ
レート、ポリプロピレンテレフタレート、ポリエチレン
2,6-ナフタレ−ト、ポリブチレン2,6-ナフタレートなど
を用いても良い。特に磁気テープとして用いる場合にお
いては、2層または3層構成の積層フィルムとし、表裏
の表面形態をそれぞれ別に設計することが、摩擦特性、
耐摩耗性と磁気テープとしての出力特性を両立するため
に好ましい。
The polyester film of the present invention may be a single-layer film or a laminated film of two or more layers. In addition, as long as the proportion of polyethylene terephthalate in the entire film is 90% by weight or more, the content of the particles, additives, and copolymer components added to the laminated portion may be increased, or the content other than polyethylene terephthalate may be increased. Polyester, for example polybutylene terephthalate, polypropylene terephthalate, polyethylene
2,6-naphthalate, polybutylene 2,6-naphthalate and the like may be used. In particular, when used as a magnetic tape, a laminated film having a two-layer or three-layer structure and separately designing the front and back surface morphologies can provide friction characteristics,
It is preferable to achieve both abrasion resistance and output characteristics as a magnetic tape.

【0017】次に、本発明フィルムの製造方法について
説明する。ポリエチレンテレフタレートを主成分とする
ポリエステルからなる溶融押出フイルムを、静電印加キ
ャスト法を用いて、冷却金属ロール表面で冷却し、未延
伸フィルムを得る。このときの溶融押出温度はポリエス
テルの融点より25〜60℃高い温度が好ましい。押出
温度が低すぎると非晶性の高いフィルムを得ることがで
きず、高すぎると分解物が発生して良好な物性のフィル
ムを得ることができない。また、高速製膜を行うために
は冷却ロールの温度を5〜50℃、好ましくは10〜3
0℃の範囲とすることが好ましい。
Next, a method for producing the film of the present invention will be described. A melt extruded film made of a polyester containing polyethylene terephthalate as a main component is cooled on a cooling metal roll surface by using an electrostatic application casting method to obtain an unstretched film. The melt extrusion temperature at this time is preferably a temperature 25 to 60 ° C. higher than the melting point of the polyester. If the extrusion temperature is too low, a film having high amorphousness cannot be obtained, and if it is too high, a decomposition product is generated and a film having good physical properties cannot be obtained. In order to perform high-speed film formation, the temperature of the cooling roll is 5 to 50 ° C., preferably 10 to 3 ° C.
The temperature is preferably in the range of 0 ° C.

【0018】このようにして得られた未延伸フィルム
は、溶融状態から急激に冷却されるため、一般に結晶化
度の非常に小さな、非晶性のフィルムであり、密度法で
求められる結晶化度は5%以下であるが、本発明におい
ては、冷却ロールの温度を小さくし、表面が平滑な金属
冷却ロールを用いることにより、結晶化度を2%以下と
することが、熱収縮率の小さなフィルムを得るために好
ましい。この押出直後の未延伸フィルムでは、密度法や
X線回折法による結晶化度がたとえ0%であっても、溶
融時に完全に融けなかった微少な規則構造が残存してい
たり、押出時のせん断力による配向、冷却過程における
再秩序化がおこるため、完全な非晶状態とはならず、固
体高分解能NMRによる構造解析におけるカルボニル炭
素の緩和時間T1ρは55msecより大きくなる。
Since the unstretched film thus obtained is rapidly cooled from the molten state, it is generally an amorphous film having a very small crystallinity, and the crystallinity determined by the density method is generally low. Is 5% or less, but in the present invention, the crystallinity is reduced to 2% or less by lowering the temperature of the cooling roll and using a metal cooling roll having a smooth surface. Preferred for obtaining a film. In the unstretched film immediately after the extrusion, even if the crystallinity by the density method or the X-ray diffraction method is 0%, a fine ordered structure that did not completely melt at the time of melting remains, Since the orientation by the force and the re-ordering in the cooling process occur, the amorphous state is not completely obtained, and the relaxation time T1ρ of the carbonyl carbon in the structural analysis by solid-state high-resolution NMR is larger than 55 msec.

【0019】次にこの未延伸フィルムに処理を施し秩序
構造を解除させる。秩序構造解除の方法としては、有機
溶剤を用いたり電磁波を照射することにより分子鎖を運
動させる方法もあるが、結晶化による再秩序化が起こる
までの範囲で制御することが非常に困難であるため、ガ
ラス転移点以上の温度で加熱処理を行う方法が最も好ま
しい。未延伸フィルムを加熱処理する方法としては、
(1) 加熱ロール上でフィルムを加熱する方法、(2) 赤外
線ヒーターを用いる方法、(3) オーブン内で熱風処理す
る方法などがあるが、製膜速度を大きくするためには赤
外線ヒーターと加熱ロールを併用する方法が最も好まし
い。ここで未延伸フィルムとは、押出時のフィルムと同
じ状態であるか、もしくは延伸倍率が1.5倍以下で、
かつ結晶化度が10%以下である状態のフィルムを言
う。加熱処理の温度としては、ポリエステルのガラス転
移点より30〜80℃高い温度、さらに好ましくはガラ
ス転移点より40〜60℃高い温度が好ましく、処理時
間は0.1〜10秒、さらに好ましくは0.1〜7秒の
範囲が好ましい。加熱処理の温度がこれより低かった
り、処理時間が短かいと秩序構造が解除できず、また、
処理温度が高すぎたり、処理時間が長すぎると逆に結晶
化が開始してしまい、カルボニル炭素の緩和時間T1ρ
が55msec以下のフィルムを得ることができない。
Next, the unstretched film is treated to release the ordered structure. As a method of releasing the ordered structure, there is a method of moving the molecular chain by using an organic solvent or irradiating electromagnetic waves, but it is very difficult to control the order until re-ordering occurs by crystallization. Therefore, a method of performing heat treatment at a temperature equal to or higher than the glass transition point is most preferable. As a method of heat-treating the unstretched film,
There are (1) a method of heating a film on a heating roll, (2) a method of using an infrared heater, and (3) a method of hot air treatment in an oven. The method of using a roll together is most preferable. Here, the unstretched film is in the same state as the film at the time of extrusion, or the stretch ratio is 1.5 times or less,
A film having a crystallinity of 10% or less. The temperature of the heat treatment is preferably 30 to 80 ° C higher than the glass transition point of the polyester, more preferably 40 to 60 ° C higher than the glass transition point, and the treatment time is 0.1 to 10 seconds, more preferably 0 to 10 seconds. A range of 0.1 to 7 seconds is preferred. If the temperature of the heat treatment is lower than this, or if the treatment time is short, the ordered structure cannot be released,
If the treatment temperature is too high or the treatment time is too long, crystallization starts conversely, and the carbonyl carbon relaxation time T1ρ
Cannot be obtained.

【0020】このような処理を行った後、2軸延伸を行
うを行う際に、ガラス転移点以上に長時間保持すると結
晶化が起こったり、たとえ結晶化が起こらなくても微少
な単位での秩序化が起こってしまい、未延伸フィルムの
カルボニル炭素の緩和時間T1ρが55msecより大
きくなってしまう場合がある。これを避けるためには延
伸を行う前に一度ガラス転移点より5℃以上低い温度ま
で冷却した後再び加熱して2軸延伸を行う方法が有効で
ある。冷却の方法としては、冷風による冷却方法、冷却
ロールを用いる方法があるが、良好な平面性のフィルム
を得るためには冷却ロールを用いる方法が好ましい。
After performing such a treatment, when biaxial stretching is performed, crystallization may occur if the crystallization is maintained for a long time at or above the glass transition point. In some cases, ordering occurs, and the relaxation time T1ρ of carbonyl carbon of the unstretched film becomes longer than 55 msec. In order to avoid this, it is effective to perform biaxial stretching by cooling once to a temperature lower than the glass transition point by 5 ° C. or more before stretching and then heating again. As a cooling method, there are a cooling method using cold air and a method using a cooling roll, and a method using a cooling roll is preferable to obtain a good flat film.

【0021】さらにこの未延伸フィルムを公知の方法で
二軸延伸、熱処理を行って二軸配向ポリエステルフィル
ムを得る。延伸方法としては、最初に長手方法、次に幅
方向の延伸を行う逐次二軸延伸を用いる事が有効であ
る。長手方向の弾性率の大きなフィルムを得るために、
幅方向の延伸を行ったあとさらに長手方向に延伸する方
法を採っても良い。
Further, the unstretched film is biaxially stretched and heat-treated by a known method to obtain a biaxially oriented polyester film. As the stretching method, it is effective to use a longitudinal method first, and then a sequential biaxial stretching in which the film is stretched in the width direction. In order to obtain a film with a large elastic modulus in the longitudinal direction,
After stretching in the width direction, a method of further stretching in the longitudinal direction may be adopted.

【0022】長手方向の延伸はポリエステルのガラス転
移温度Tgより10℃以上高く、かつ延伸前の加熱処理
温度より低い温度で、加熱ロールを用いて5000〜5
0000%/分の延伸速度で、一度にもしくは数回に分
けて4.5〜7.0倍、好ましくは5.0〜6.5倍の
範囲で行うことが有効である。幅方向の延伸の後さらに
長手方向に延伸する場合は、先工程の長手方向の延伸温
度をポリエステルのガラス転移点より10〜40℃高い
温度で行い、後工程での長手方向の延伸はガラス転移点
より30〜90℃高い温度で1.1〜2.0倍の範囲で
行い、全体の長手方向の倍率が上述の好ましい範囲とな
るようにすることが好ましい。また、幅方向の延伸は、
公知のテンターを用いてガラス転移点より5〜40℃高
い温度で、1000〜20000%/分の延伸速度で、
3〜7倍の範囲で行うことが好ましい。
The stretching in the longitudinal direction is performed at a temperature higher than the glass transition temperature Tg of the polyester by 10 ° C. or more and lower than the heat treatment temperature before stretching by using a heating roll at 5000 to 5 ° C.
It is effective to carry out the stretching at a stretching rate of 0000% / min at once or in several times in a range of 4.5 to 7.0 times, preferably 5.0 to 6.5 times. When stretching in the longitudinal direction after stretching in the width direction, the stretching temperature in the longitudinal direction in the previous step is performed at a temperature higher by 10 to 40 ° C. than the glass transition point of the polyester. It is preferable that the heating is performed at a temperature 30 to 90 ° C. higher than the point and in a range of 1.1 to 2.0 times so that the overall longitudinal magnification is within the above-described preferable range. The stretching in the width direction is
Using a known tenter, at a temperature 5 to 40 ° C. higher than the glass transition point, at a stretching speed of 1000 to 20000% / min,
It is preferable to carry out in a range of 3 to 7 times.

【0023】延伸後の熱処理は170〜240℃で1〜
60秒行うのが好ましい。幅方向の熱寸法安定性を高め
るためには、熱処理時に幅方向に2〜15%の弛緩熱処
理を施すことが好ましい。また、上記熱処理の後さらに
この熱処理温度より20〜160℃低い温度で1〜60
秒の2段熱処理を行うことにより、本発明の効果がより
一層良好となり好ましい。
The heat treatment after the stretching is performed at 170 to 240 ° C.
It is preferably performed for 60 seconds. In order to increase the thermal dimensional stability in the width direction, it is preferable to perform a 2-15% relaxation heat treatment in the width direction during the heat treatment. After the heat treatment, the temperature is further reduced by 1 to 60 at a temperature 20 to 160 ° C. lower than the heat treatment temperature.
By performing a two-stage heat treatment in seconds, the effect of the present invention is further improved, which is preferable.

【0024】このようにして得られるフィルムは、熱収
縮率が通常の製法によるポリエステルフィルムより小さ
く、長手方向の弾性率が6.0GPa以上であっても8
0℃の条件下に30分間保持したときの長手方向の熱収
縮率が0.15%以下の二軸配向ポリエステルフィルム
を得ることができる。さらに、好ましい条件をとり、未
延伸フィルムの固体高分解能NMRによる構造解析にお
けるカルボニル炭素の緩和時間T1ρを50msec以
下、さらに好ましくは45msec以下とすることによ
り、長手方向の弾性率が7.0GPa以上であっても熱
収縮率が0.20%以下、さらには0.15%以下の二
軸配向ポリエステルフィルムを得ることができる。ま
た、延伸時の破れ発生が少なく生産性に優れるだけでは
なく、引き裂き伝播抵抗も500N/m以上の加工性に
優れたフィルムが得られる。
The film obtained in this manner has a heat shrinkage smaller than that of a polyester film produced by an ordinary production method, and has an elastic modulus in the longitudinal direction of 6.0 GPa or more.
A biaxially oriented polyester film having a heat shrinkage in the longitudinal direction of 0.15% or less when held at 0 ° C. for 30 minutes can be obtained. Furthermore, by taking preferable conditions and setting the relaxation time T1ρ of carbonyl carbon in the structural analysis of the unstretched film by solid high-resolution NMR to 50 msec or less, more preferably 45 msec or less, the elastic modulus in the longitudinal direction is 7.0 GPa or more. Even with this, a biaxially oriented polyester film having a heat shrinkage of 0.20% or less, and even 0.15% or less can be obtained. Further, a film excellent in workability with not only a small number of tears during stretching but also excellent productivity but also a tear propagation resistance of 500 N / m or more can be obtained.

【0025】本発明で得られるポリエステルフィルムの
用途は特に限定されないが、大きな強度と小さな熱収縮
率が求められる高密度磁気テープ用途、高密度磁気ディ
スク用途、コンデンサ、電気絶縁用途、インクリボン、
画像受容シート、包装材料などに適している。
The use of the polyester film obtained by the present invention is not particularly limited, but it is required to use a high-density magnetic tape, a high-density magnetic disk, a capacitor, an electrical insulation, an ink ribbon, and the like, which require a large strength and a small heat shrinkage.
Suitable for image receiving sheets, packaging materials, etc.

【0026】[物性の測定方法ならびに効果の評価方法]
本発明の特性値の測定方法並びに効果の評価方法は次の
通りである。
[Method of measuring physical properties and method of evaluating effects]
The method for measuring characteristic values and the method for evaluating effects according to the present invention are as follows.

【0027】(1)カルボニル炭素の緩和時間T1ρ 高分解能固体NMRの測定装置は、日本電子製スペクト
ロメータJNM−GX270、日本電子製固体アンプ、
MASコントローラNM−GSH27MU、日本電子製
プローブNM−GSH27T VT.Wを用いた。測定
13C核のT1ρ(回転座標における縦緩和)測定を実
施した。
(1) Relaxation time T1ρ of carbonyl carbon A high-resolution solid-state NMR measuring device is a JEOL spectrometer JNM-GX270, a JEOL solid-state amplifier,
MAS controller NM-GSH27MU, JEOL probe NM-GSH27T VT. W was used. For the measurement, T1ρ (longitudinal relaxation in rotational coordinates) of 13 C nucleus was measured.

【0028】測定は、温度24.5℃、湿度50RH
%、静磁場強度6.34T(テスラ)下で、1H、13
の共鳴周波数はそれぞれ270.2MHz、67.9M
Hzである。ケミカルシフトの異方性の影響を消すため
にMAS(マジック角度回転)法を採用した。回転数は
3.5〜3.7kHzで行った。パルス系列の条件は、
1Hに対して90℃、パルス幅4μsec、ロッキング
磁場強度62.5kHzとした、1Hの分極を13Cに移
すCP(クロスポーラリゼーション)の接触時間は1.
5msecである。また保持時間τとしては、0.00
1,0.5,0.7,1,3,7,10,20,30,
40,50msecをもちいた。保持時間τ後の13Cの
磁化ベクトルの自由誘導減衰(FID)を測定した(F
ID測定中1Hによる双極子相互作用の影響を除去する
ために高出力デカップリングを行った。なおS/N比を
向上させるため512回の積算を行った)。また、パル
ス繰り返し時間としては5sec〜15secの間で行
った。PETのカルボニル炭素のピークは165ppm
に観測される。
The measurement was conducted at a temperature of 24.5 ° C. and a humidity of 50 RH.
%, Under static magnetic field strength of 6.34 T (tesla), 1 H, 13 C
Have resonance frequencies of 270.2 MHz and 67.9 M, respectively.
Hz. In order to eliminate the influence of the anisotropy of the chemical shift, a MAS (magic angle rotation) method was adopted. The rotation speed was 3.5 to 3.7 kHz. The condition of the pulse sequence is
90 ° C. against 1 H, pulse width 4 .mu.sec, and the locking field strength 62.5 kHz, the contact time is 1 CP transferring polarization of the 1 H to 13 C (cross polarimetry internalization).
5 msec. The holding time τ is 0.00
1,0.5,0.7,1,3,7,10,20,30,
40, 50 msec was used. The free induction decay (FID) of the 13 C magnetization vector after the retention time τ was measured (F
High power decoupling was performed to eliminate the influence of dipole interaction due to 1 H during ID measurement. Note that 512 integrations were performed to improve the S / N ratio.) Further, the pulse repetition time was set between 5 seconds and 15 seconds. The peak of PET carbonyl carbon is 165 ppm.
Observed.

【0029】一般に、T1ρは、多項式 I(t)=Σ(Ai)exp(−t/T1ρi) (T1ρi:T1ρのi番目の成分、Ai:T1ρiに
対する成分の割合)で表される。しかし、結晶化度の小
さな未延伸フィルムでは1成分系で近似できるため、1
成分系でのフィッティング結果からT1ρ値を求めた。
すなわち、 I(t)=exp(−t/T1ρ) とし、片対数プロットの傾きからT1ρを求めた。
In general, T1ρ is represented by a polynomial I (t) = Σ (Ai) exp (−t / T1ρi) (T1ρi: the i-th component of T1ρ, Ai: the ratio of the component to T1ρi). However, an unstretched film having a small crystallinity can be approximated by a one-component system.
The T1ρ value was determined from the fitting result in the component system.
That is, I (t) = exp (−t / T1ρ), and T1ρ was determined from the slope of the semilogarithmic plot.

【0030】(2)弾性率 JIS K−7127に規定された方法にしたがって、
東洋測器製の引張試験機を用いて、25℃、65%RH
にて測定した。サンプルは測定方向に長さ200mm、
幅10mmの短冊状に切り出し、初期引張チャック間距
離は100mmとし、引張速度は300mm/分とし
た。
(2) Modulus of elasticity According to the method specified in JIS K-7127,
Using a tensile tester manufactured by Toyo Sokki, 25 ° C, 65% RH
Was measured. The sample is 200mm long in the measurement direction,
A 10 mm wide strip was cut out, the initial distance between the tension chucks was 100 mm, and the tension speed was 300 mm / min.

【0031】(3)熱収縮率 JIS C−2318に規定された方法にしたがってフ
ィルム長手方向の熱収縮率を測定した。ただし、オーブ
ンの温度と保持時間は80℃、30分および100℃、
30分とし、それぞれサンプルを変え20回の測定結果
の平均を用いた。熱収縮率は小さいほど好ましいが、高
密度メタルテープなどの磁気記録材料の分野においては
フィルム長手方向の弾性率が6.0GPa以上であり、
なおかつ80℃、30分の熱収縮率が0.15%以下、
100℃、30分における熱収縮率は0.5%以下であ
ることが好ましい。
(3) Heat Shrinkage The heat shrinkage in the longitudinal direction of the film was measured according to the method specified in JIS C-2318. However, the temperature and holding time of the oven are 80 ° C, 30 minutes and 100 ° C,
The sample was changed to 30 minutes, and each sample was changed, and the average of the results of 20 measurements was used. The smaller the heat shrinkage, the more preferable. However, in the field of magnetic recording materials such as high-density metal tape, the elastic modulus in the film longitudinal direction is 6.0 GPa or more,
The heat shrinkage at 80 ° C. for 30 minutes is 0.15% or less,
The heat shrinkage at 100 ° C. for 30 minutes is preferably 0.5% or less.

【0032】(4)ガラス転移点、融点 パーキングエルマ社製のDSC(示差走査熱量計)II型
を用いて測定した。試料10mgをDSC装置にセット
し、300℃の温度で5分間溶融した後、液体窒素中で
急冷する。この試料を10℃/分で昇温し、ガラス転移
点を検知する。さらに昇温を続け、ガラス状態からの結
晶化発熱ピーク温度をもって冷結晶化温度、結晶融解に
基づく吸熱ピーク温度を融点とした。
(4) Glass transition point and melting point Measured using a DSC (differential scanning calorimeter) type II manufactured by Parking Elmer. A sample (10 mg) is set in a DSC device, melted at a temperature of 300 ° C. for 5 minutes, and then rapidly cooled in liquid nitrogen. This sample is heated at a rate of 10 ° C./min, and the glass transition point is detected. The temperature was further increased, and the crystallization exothermic peak temperature from the glassy state was defined as the cold crystallization temperature, and the endothermic peak temperature based on crystal melting was defined as the melting point.

【0033】(5)ポリエステルの固有粘度[η](単
位はdl/g) オルトクロロフェノール中、25℃で測定した溶液粘度
から下記式から計算される値を用いる。 ηsp/C=[η]+K[η]2・C ここで、 ηsp=(溶液粘度/溶媒粘度)−1 Cは溶媒100mlあたりの溶解ポリマ重量(g/10
0ml、通常1.2)Kはハギンス定数(0.343と
する)また、溶液粘度、溶媒粘度はオストワルド粘度計
を用いて測定した。
(5) Intrinsic viscosity [η] of polyester (unit: dl / g) A value calculated from the following equation from the solution viscosity measured at 25 ° C. in orthochlorophenol is used. η sp / C = [η] + K [η] 2 · C, where η sp = (solution viscosity / solvent viscosity) −1 C is the weight of dissolved polymer per 100 ml of solvent (g / 10
0 ml, usually 1.2) K is the Haggins constant (0.343), and the solution viscosity and the solvent viscosity were measured using an Ostwald viscometer.

【0034】(6)引き裂き伝播抵抗 軽荷重式引裂試験機(東洋精機(株))を用いて、AST
M−D−1922に従って測定した。サンプルサイズは
51×54mmで1R3mmの切れ込みをフィルムの長
手方向に入れ、残り51mmを引き裂いた時の指示値を
読みとった。
(6) Tear Propagation Resistance AST was measured using a light load type tear tester (Toyo Seiki Co., Ltd.).
It was measured according to MD-1922. The sample size was 51 × 54 mm, and a cut of 1R3 mm was made in the longitudinal direction of the film, and the indicated value when the remaining 51 mm was torn was read.

【0035】この引き裂き抵抗は、長手方向の延伸を強
化するなどして配向を強めることにより、抵抗値が低く
なる。また同じ配向であれば、ポリマーの固有粘度が小
さくなると低くなる傾向がある。引き裂き伝播抵抗が4
000N/m以下であると、フィルム加工する工程内で
破れが発生しやすくなり、加工性が著しく悪くなる。
The tearing resistance is reduced by strengthening the orientation by strengthening the stretching in the longitudinal direction or the like. If the orientation is the same, the intrinsic viscosity of the polymer tends to decrease as the intrinsic viscosity decreases. 4 tear propagation resistance
If it is 000 N / m or less, tearing is likely to occur in the process of processing the film, and the workability is significantly deteriorated.

【実施例】以下に、実施例を挙げて本発明を具体的に説
明する。
The present invention will be specifically described below with reference to examples.

【0036】実施例1 常法により、平均粒子径が0.45μmの架橋ポリスチ
レン粒子を0.5重量%含有数する固有粘度0.60d
l/gのポリエチレンテレフタレートを重合し、ペレッ
トを得た。粒子はエチレングリコール中で、50μm径
のガラスビーズをメディアとして分散させ、ガラスビー
ズを除去した後、テレフタル酸と重合した。重合触媒と
しては酢酸マグネシウム0.06重量%、三酸化アンチ
モン0.008重量%、リン化合物としてトリメチルホ
スフェートを0.02重量%用いた。
Example 1 According to a conventional method, an intrinsic viscosity of 0.60 d containing 0.5% by weight of crosslinked polystyrene particles having an average particle diameter of 0.45 μm.
1 / g of polyethylene terephthalate was polymerized to obtain pellets. The particles were dispersed in ethylene glycol using glass beads having a diameter of 50 μm as a medium. After removing the glass beads, the particles were polymerized with terephthalic acid. 0.06% by weight of magnesium acetate and 0.008% by weight of antimony trioxide were used as a polymerization catalyst, and 0.02% by weight of trimethyl phosphate was used as a phosphorus compound.

【0037】このポリエステルのペレットを、180℃
で3時間乾燥後、公知の押出機を用いて、290℃で溶
融押出しを行い、静電印加キャスト法を用いて、表面温
度20℃の金属キャスティングドラム上に巻き付けて、
冷却、固化し、未延伸フィルムを得た。このときのフィ
ルムのカルボニル炭素のT1ρは表1に示すとおり62
msecであった。この未延伸フィルムを、公知の赤外
線ヒーターで0.1秒加熱後、表面温度130℃の公知
のシリコーンゴム製ロール上で3.0秒処理した後、3
0℃の金属ロール上で1.5秒間冷却した。このときの
フィルムのカルボニル炭素のT1ρは44msecであ
った。この未延伸フィルムを100℃の公知のテフロン
製ロール上で3秒間加熱後、長手方向に100℃で3.
3倍、熱風温度95℃のテンター内で幅方向に3.0
倍、さらに長手方向に加熱ロール上で140℃で1.7
0倍延伸を行った。さらにこの二軸延伸フィルムを幅方
向にクリップで固定し、張力下でテンター内で200
℃、6秒間の熱処理を行った後、80℃、1秒間の熱処
理を行い、二軸配向ポリエステルフィルムを得た。得ら
れたフィルムは表2のように弾性率が大きく、熱収縮率
が小さく、なおかつ引き裂き伝播抵抗の小さなフィルム
であった。
The polyester pellet was heated at 180 ° C.
After drying for 3 hours, using a known extruder, melt-extruded at 290 ° C., and wrapped around a metal casting drum having a surface temperature of 20 ° C. using an electrostatic application casting method.
After cooling and solidification, an unstretched film was obtained. At this time, T1ρ of the carbonyl carbon of the film was 62 as shown in Table 1.
msec. The unstretched film was heated for 0.1 second with a known infrared heater, and then treated on a known silicone rubber roll having a surface temperature of 130 ° C. for 3.0 seconds.
Cooled on metal roll at 0 ° C. for 1.5 seconds. At this time, T1ρ of the carbonyl carbon of the film was 44 msec. The unstretched film was heated on a known Teflon roll at 100 ° C. for 3 seconds, and then heated at 100 ° C. in the longitudinal direction.
3 times, 3.0 in the width direction in a tenter with hot air temperature of 95 ° C
Times, and 1.7 in the longitudinal direction on a heating roll at 140 ° C.
The film was stretched 0 times. Further, the biaxially stretched film is fixed in the width direction with a clip, and the tension is set to 200 in a tenter under tension.
After heat treatment at 6 ° C. for 6 seconds, heat treatment at 80 ° C. for 1 second was performed to obtain a biaxially oriented polyester film. As shown in Table 2, the obtained film had a large elastic modulus, a small heat shrinkage and a small tear propagation resistance.

【0038】実施例2 実施例1においてロール上加熱処理の前に赤外線ヒータ
による加熱処理を行わず、延伸前の加熱ロールの表面温
度を130℃、ロールとの接触時間を4.0秒とし、か
つ加熱処理後に金属ロール上での冷却処理を行わず、1
回目の長手方向の延伸倍率を3.6倍、幅方向延伸後の
2回目の長手方向の延伸倍率を1.40倍とした以外は
実施例1と全く同じ条件で製膜を行った。表1に示すと
おり延伸前のフィルムのカルボニル炭素のT1ρは48
msecと本願の範囲内となり、得られたフィルム特性
も表2に示すとおり良好であった。
Example 2 In Example 1, the heat treatment by the infrared heater was not performed before the heat treatment on the roll, the surface temperature of the heated roll before stretching was 130 ° C., and the contact time with the roll was 4.0 seconds. In addition, the cooling process is not performed on the metal roll after the heating process, and
A film was formed under exactly the same conditions as in Example 1 except that the stretching ratio in the longitudinal direction at the first time was 3.6 times and the stretching ratio at the second longitudinal direction after the stretching in the width direction was 1.40 times. As shown in Table 1, T1ρ of the carbonyl carbon of the film before stretching was 48.
msec, which was within the range of the present application, and the obtained film properties were also good as shown in Table 2.

【0039】実施例3 実施例2において、延伸前の加熱ロールの表面温度を1
10℃、ロールとの接触時間を4.0秒とし、1回目の
長手方向の延伸倍率を3.5倍、幅方向延伸後の2回目
の長手方向の延伸倍率を1.50倍とした以外は実施例
1と全く同じ条件でフィルムを作製した。表1に示すと
おり延伸前のフィルムのカルボニル炭素のT1ρは52
msecと本願の範囲内となり、得られたフィルム特性
も表2に示すとおり良好であった。
Example 3 In Example 2, the surface temperature of the heating roll before stretching was set to 1
10 ° C., except that the contact time with the roll was 4.0 seconds, the first stretching ratio in the longitudinal direction was 3.5 times, and the second stretching ratio in the longitudinal direction after stretching in the width direction was 1.50 times. Produced a film under exactly the same conditions as in Example 1. As shown in Table 1, T1ρ of the carbonyl carbon of the film before stretching was 52.
msec, which was within the range of the present application, and the obtained film properties were also good as shown in Table 2.

【0040】実施例4 実施例2において、幅方向延伸前にまず長手方向に11
0℃で3.0倍続けて長手方向に90℃で2.0倍延伸
し、幅方向延伸後の長手方向再延伸を行わない以外は実
施例2と全く同じ条件でフィルムを作製した。表1に示
すとおり延伸前のフィルムのカルボニル炭素のT1ρは
48msecと本願の範囲内となり、得られたフィルム
特性も表2に示すとおり良好であった。
Example 4 In Example 2, before stretching in the width direction, firstly 11
A film was produced under exactly the same conditions as in Example 2 except that the film was stretched 3.0 times at 0 ° C. and 2.0 times at 90 ° C. in the longitudinal direction, and the longitudinal stretching was not performed after the stretching in the width direction. As shown in Table 1, T1ρ of the carbonyl carbon of the film before stretching was 48 msec, which was within the range of the present application, and the obtained film properties were good as shown in Table 2.

【0041】比較例1 実施例1において赤外線ヒータによる加熱処理、ロール
上加熱処理、金属ロール上での冷却処理を行わない以外
は全く同じ条件でフィルムを作製した。表1に示すとお
り延伸前のフィルムのカルボニル炭素のT1ρは62m
secと本願の範囲外となり、得られたフィルムも表2
に示すとおり熱収縮率が大きく劣るものであった。
Comparative Example 1 A film was produced under exactly the same conditions as in Example 1 except that the heat treatment using an infrared heater, the heat treatment on a roll, and the cooling treatment on a metal roll were not performed. As shown in Table 1, T1ρ of the carbonyl carbon of the film before stretching was 62 m
sec and out of the scope of the present application, the obtained film is also shown in Table 2.
As shown in the figure, the heat shrinkage was significantly inferior.

【0042】比較例2 実施例1において、延伸前の加熱ロールの表面温度を1
50℃、ロールとの接触時間を11.0秒とし、加熱処
理後の金属ロール上での冷却処理を行わない以外は全く
同じ条件でフィルムを作製した。加熱温度が高く、時間
も長かったため結晶化が起こり表1に示すとおり延伸前
のフィルムのカルボニル炭素のT1ρは105msec
と本願の範囲外となり、得られたフィルムも表2に示す
とおり熱収縮率が大きく劣るものであった。
Comparative Example 2 In Example 1, the surface temperature of the heating roll before stretching was set to 1
A film was produced under exactly the same conditions except that the contact time with the roll was 11.0 seconds at 50 ° C. and the cooling treatment was not performed on the metal roll after the heat treatment. Since the heating temperature was high and the time was long, crystallization occurred and T1ρ of the carbonyl carbon of the film before stretching was 105 msec as shown in Table 1.
As shown in Table 2, the heat shrinkage of the obtained film was also inferior.

【0043】比較例3 比較例1において、重合時間を短くして固有粘度0.5
2dl/gを用いる以外は全く同じ条件で製膜を行おう
と試みたが、幅方向延伸後の長手方向再延伸時に破れ、
フィルムが全く得られなかった。そこで、長手方向再延
伸の倍率を1.40倍まで下げたところ、安定に製膜す
ることはできなかったものの、破れの頻度は低下し、全
製膜時間の3割程度の時間フィルムを得ることができ
た。表1に示すとおり延伸前のフィルムのカルボニル炭
素のT1ρは63msecと本願の範囲外となり、得ら
れたフィルムは表2に示すとおり熱収縮率は小さいもの
の引き裂き伝播抵抗が小さく加工性に劣るものであっ
た。
Comparative Example 3 In Comparative Example 1, the polymerization time was shortened and the intrinsic viscosity was 0.5
An attempt was made to form a film under exactly the same conditions except that 2 dl / g was used, but the film was broken at the time of re-stretching in the longitudinal direction after stretching in the width direction,
No film was obtained. Then, when the magnification of the longitudinal re-stretching was reduced to 1.40 times, the film could not be formed stably, but the frequency of tearing decreased, and a film was obtained for about 30% of the total film forming time. I was able to. As shown in Table 1, T1ρ of the carbonyl carbon of the film before stretching was 63 msec, which is out of the range of the present application. As shown in Table 2, although the heat shrinkage was small, the tear propagation resistance was small and the workability was poor. there were.

【0044】[0044]

【表1】 [Table 1]

【0045】[0045]

【表2】 [Table 2]

【0046】[0046]

【発明の効果】生産性、加工性が良く、長手方向の弾性
率が大きいにも関わらず熱収縮率の小さなポリエチレン
テレフタレートを主成分とする二軸配向ポリエステルフ
ィルムを得ることができる。
As described above, it is possible to obtain a biaxially oriented polyester film containing polyethylene terephthalate as a main component, which has good productivity and workability, and has a small heat shrinkage despite its large elastic modulus in the longitudinal direction.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI B29L 7:00 9:00 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FIB29L 7:00 9:00

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 ポリエチレンテレフタレートを主成分と
する2軸配向ポリエステルフィルムの製造方法であっ
て、固体高分解能NMRによる構造解析におけるカルボ
ニル炭素の緩和時間T1ρが55msec以下の未延伸
フィルムを2軸延伸し、さらに熱処理することを特徴と
する二軸配向ポリエステルフィルムの製造方法。
1. A method for producing a biaxially oriented polyester film containing polyethylene terephthalate as a main component, comprising: biaxially stretching an unstretched film having a carbonyl carbon relaxation time T1ρ of 55 msec or less in structural analysis by solid high-resolution NMR. And a method for producing a biaxially oriented polyester film, which further comprises a heat treatment.
【請求項2】 溶融キャストした未延伸フィルムを示差
走査熱量計(DSC)で測定されるガラス転移点より3
0〜80℃高い温度で0.1〜10秒処理を行った後2
軸延伸し、さらに熱処理を行うことを特徴とする請求項
1に記載の二軸配向ポリエステルフィルムの製造方法。
2. An unstretched film that has been melt-cast is taken from a glass transition point measured by a differential scanning calorimeter (DSC) at 3 points.
After performing the treatment at a high temperature of 0 to 80 ° C. for 0.1 to 10 seconds, 2
The method for producing a biaxially oriented polyester film according to claim 1, wherein the film is subjected to axial stretching and further heat treatment.
【請求項3】 溶融キャストした未延伸フィルムを示差
走査熱量計(DSC)で測定されるガラス転移点より3
0〜80℃高い温度で0.1〜10秒処理を行った後、
一度ガラス転移点より5℃以上低い温度に冷却した後、
再びガラス転移点より高い温度に加熱して2軸延伸し、
さらに熱処理を行うことを特徴とする請求項1に記載の
二軸配向ポリエステルフィルムの製造方法。
3. An unstretched film that has been melt-cast is taken from a glass transition point measured by a differential scanning calorimeter (DSC) at 3 points.
After performing the treatment at a high temperature of 0 to 80 ° C. for 0.1 to 10 seconds,
Once cooled to a temperature 5 ° C or more lower than the glass transition point,
It is heated to a temperature higher than the glass transition point again and biaxially stretched.
The method for producing a biaxially oriented polyester film according to claim 1, further comprising performing a heat treatment.
【請求項4】 長手方向の延伸倍率が全体で4.5倍以
上であることを特徴とする請求項1〜3に記載の二軸配
向ポリエステルフィルムの製造方法。
4. The method for producing a biaxially oriented polyester film according to claim 1, wherein the stretching ratio in the longitudinal direction is 4.5 times or more as a whole.
【請求項5】 請求項1〜4に記載の製法で作製され
た、フィルム長手方向の弾性率が6.0GPa以上であ
ることを特徴とする二軸配向ポリエステルフィルム。
5. A biaxially oriented polyester film produced by the production method according to claim 1, wherein the elastic modulus in the longitudinal direction of the film is 6.0 GPa or more.
【請求項6】 フィルム全体の固有粘度が0.55〜
0.75の範囲であることを特徴とする請求項5に記載
の2軸配向ポリエステルフィルム。
6. The intrinsic viscosity of the whole film is 0.55 to
The biaxially oriented polyester film according to claim 5, wherein the range is 0.75.
JP32119397A 1997-11-21 1997-11-21 Biaxially oriented polyester film and its production Pending JPH11151751A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32119397A JPH11151751A (en) 1997-11-21 1997-11-21 Biaxially oriented polyester film and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32119397A JPH11151751A (en) 1997-11-21 1997-11-21 Biaxially oriented polyester film and its production

Publications (1)

Publication Number Publication Date
JPH11151751A true JPH11151751A (en) 1999-06-08

Family

ID=18129837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32119397A Pending JPH11151751A (en) 1997-11-21 1997-11-21 Biaxially oriented polyester film and its production

Country Status (1)

Country Link
JP (1) JPH11151751A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113226705A (en) * 2018-12-28 2021-08-06 东洋纺株式会社 Biaxially oriented polypropylene film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113226705A (en) * 2018-12-28 2021-08-06 东洋纺株式会社 Biaxially oriented polypropylene film
CN113226705B (en) * 2018-12-28 2024-04-12 东洋纺株式会社 Biaxially oriented polypropylene film

Similar Documents

Publication Publication Date Title
JP2010031138A (en) Biaxially oriented film
JPH11151751A (en) Biaxially oriented polyester film and its production
JP3640282B2 (en) Method for producing biaxially stretched polyester film
JPH10258458A (en) Biaxially oriented polyester film and its manufacture
JP4441944B2 (en) Biaxially oriented polyester film
JPH08174661A (en) Production of biaxially oriented polyester film
JP2019130777A (en) Laminate polyester film and magnetic recording medium
JP2000309052A (en) Biaxially oriented polyester film and its manufacture
JPS6381022A (en) Biaxially oriented polyester film
JP5199611B2 (en) Polyester composition
JP2516100B2 (en) Biaxially oriented polyester film
JPH11269283A (en) Biaxially oriented polyester film
JP4934063B2 (en) Biaxially oriented polyester film
JP2517562B2 (en) Polyester film roll
JP3988228B2 (en) Biaxially oriented polyester film
JPH0668827B2 (en) Biaxially oriented polyester film for magnetic recording media
JP2008303244A (en) Biaxially oriented polyester film
JP4229682B2 (en) Polyester film and method for producing the same
JP2988579B2 (en) Polyester film and method for producing the same
JPH11207906A (en) Biaxially oriented laminated polyester film
JP3531284B2 (en) Polyester film
JP3048743B2 (en) Method for producing biaxially oriented polyethylene 2,6-naphthalate film
JP2000309077A (en) Biaxially oriented laminated polyester film
JP2009149808A (en) Polyester resin composition, and biaxially oriented film using the same
JPH11188791A (en) Biaxially oriented polyester film and its manufacture