JPH111513A - Production of chlorinated vinyl chloride-based resin - Google Patents

Production of chlorinated vinyl chloride-based resin

Info

Publication number
JPH111513A
JPH111513A JP15393897A JP15393897A JPH111513A JP H111513 A JPH111513 A JP H111513A JP 15393897 A JP15393897 A JP 15393897A JP 15393897 A JP15393897 A JP 15393897A JP H111513 A JPH111513 A JP H111513A
Authority
JP
Japan
Prior art keywords
polymerization
pvc
degree
cpvc
vinyl chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15393897A
Other languages
Japanese (ja)
Inventor
Yuki Maruyama
由紀 丸山
Yasuhiro Kawaguchi
泰広 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Sekisui Co Ltd
Original Assignee
Tokuyama Sekisui Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Sekisui Co Ltd filed Critical Tokuyama Sekisui Co Ltd
Priority to JP15393897A priority Critical patent/JPH111513A/en
Publication of JPH111513A publication Critical patent/JPH111513A/en
Pending legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce the subject resin having improved gelling properties, and capable of being gelled by a comparatively low energy by using a raw material comprising a specific vinyl chloride-based resin (PVC). SOLUTION: A PVC having only one peak in a polymerization degree distribution curve, >=2.8 polymerization degree distribution width (Q) and 500-1,500 average polymerization degree (P) is chlorinated in the method for producing the objective resin excellent in flame resistance, weather resistance, chemical resistance and thermal resistance. The chlorination is carried out in any state of a suspension, a solution and a solid, and promoted by heating and irradiation of ultraviolet rays. When the chlorination is carried out in the suspension state, water is used as a medium, and optionally, a small amount of ketones and, if necessary, hydrochloric acid or a chlorine-based solvent can be added thereto. The degree of the chlorination is regulated so that the chlorine content of the objective vinylic resin may be 60-75 wt.%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、塩素化塩化ビニル
系樹脂の製造方法に関し、詳しくは得られた塩素化塩化
ビニル系樹脂のゲル化特性が改良され、比較的に低いエ
ネルギーでゲル化可能な塩素化塩化ビニル系樹脂の製造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a chlorinated vinyl chloride resin, and more particularly to a method for producing a chlorinated vinyl chloride resin which has improved gelling properties and can be gelled with relatively low energy. And a method for producing a chlorinated vinyl chloride resin.

【0002】[0002]

【従来の技術】塩素化塩化ビニル樹脂(以下CPVCと
称す)は、塩化ビニル樹脂(以下PVCと称す)を塩素
化して作られる。CPVCはPVCの長所といわれる特
性を残し、かつPVCの欠点といわれる性質を改良した
ものとなっている。詳述すれば、CPVCはPVCの長
所といわれる難燃性、耐候性、耐薬品性、などの優れた
性質をそのまま保有している。その上に、CPVCはP
VCよりも熱変形温度が20〜40℃も高い。従ってP
VCは60〜70℃以上では使用できないが、CPVC
は100℃近くでも使用可能であり、PVCが耐熱性に
乏しいという欠点を改良したものとなっている。従って
CPVCは、PVCで作り得なかった耐熱パイプ、耐熱
継手、耐熱バルブ等を作るのに用いることができる。
2. Description of the Related Art Chlorinated vinyl chloride resin (hereinafter referred to as CPVC) is produced by chlorinating vinyl chloride resin (hereinafter referred to as PVC). CPVC retains properties that are said to be advantages of PVC, and is an improvement over properties of PVC that are said to be disadvantageous. More specifically, CPVC has excellent properties such as flame retardancy, weather resistance, chemical resistance and the like, which are said to be advantages of PVC. On top of that, CPVC is P
Heat deformation temperature is higher by 20 to 40 ° C. than VC. Therefore P
Although VC cannot be used at 60-70 ° C or higher, CPVC
Can be used even at around 100 ° C., which is an improvement over the disadvantage that PVC has poor heat resistance. Thus, CPVC can be used to make heat-resistant pipes, heat-resistant joints, heat-resistant valves, etc. that could not be made with PVC.

【0003】上述のようにCPVCはPVCよりも熱変
形温度が高い。従って、通常のCPVCを加工して成形
体を作るには、当然PVCよりも高い温度に加熱してゲ
ル化しなければならない。ところがCPVCはこれを高
温で加熱すると、すぐに分解して着色する。従って、C
PVCはPVCよりも加熱によってゲル化させることが
困難である。このために、CPVCを加熱して成形体に
するとき、充分にゲル化していない状態で成形体にする
ことになり、CPVCの成形体は本来CPVCが持つ衝
撃強度が充分に発現出来ず、結果的にPVCよりも衝撃
強度が劣ることとなり、その結果、CPVCはその利用
の範囲が狭められていた。
[0003] As described above, CPVC has a higher heat distortion temperature than PVC. Therefore, in order to form a molded body by processing normal CPVC, it is necessary to heat the gel to a temperature higher than that of PVC. However, when CPVC is heated at a high temperature, it is immediately decomposed and colored. Therefore, C
PVC is more difficult to gel by heating than PVC. For this reason, when CPVC is heated to form a molded body, the molded body is formed in a state where it is not sufficiently gelled, and the CPVC molded body cannot sufficiently exhibit the impact strength inherent in CPVC. As a result, the impact strength is inferior to PVC, and as a result, the range of use of CPVC has been narrowed.

【0004】そこでCPVCを高温で成形しても分解し
ないように、CPVCの熱安定性を改良する方法が考案
された。しかし、CPVCを高温で成形しようとすると
成形にあたって滑剤などの添加剤を多量に加える必要が
あり、そのために得られた成形体は歪みが大きくなるな
どの別の問題点があった。従って、この提案によっては
CPVCからの良好な成形体を得る事ができなかった。
[0004] Therefore, a method for improving the thermal stability of CPVC has been devised so that CPVC is not decomposed even when molded at a high temperature. However, when attempting to mold CPVC at a high temperature, it is necessary to add a large amount of an additive such as a lubricant at the time of molding, and the resulting molded article has another problem such as increased distortion. Therefore, according to this proposal, a good molded body from CPVC could not be obtained.

【0005】また、CPVCの熱安定性を改良する方法
ではなく、CPVCのゲル化性を改良する方法として、
重合度分布曲線が2つのピークを持つPVCを塩素化用
の原料として用い、ゲル化性を改良する方法が知られて
いる。(特開平7−76608号公報)。この方法では
CPVCを製造するにあたり、重合度分布曲線が2つの
ピ−クを持ち、2つのピーク間に重合度で300〜80
0の差があり、また、重合度分布上の2つのピークの中
間の重合度で分割したとき、低い重合度を持つ分子数が
全体の25〜75%を占めるようなPVCを塩素化原料
に用いると、得られたCPVCのゲル化性が改良される
と記載されている。しかしこの方法を用いると成形時の
溶融粘度にムラが生じ、その結果、成型品の外観に不具
合が生じる等の問題があった。
As a method for improving the gelling property of CPVC, not as a method for improving the thermal stability of CPVC,
There has been known a method of improving the gelling property by using PVC having a polymerization degree distribution curve having two peaks as a raw material for chlorination. (JP-A-7-76608). In this method, when producing CPVC, the polymerization degree distribution curve has two peaks, and the polymerization degree between the two peaks is 300 to 80.
There is a difference of 0, and when divided by the degree of polymerization intermediate between the two peaks on the degree of polymerization distribution, PVC in which the number of molecules having a low degree of polymerization accounts for 25 to 75% of the whole is used as the chlorinated raw material. It is described that when used, the gelling property of the obtained CPVC is improved. However, when this method is used, there is a problem that the melt viscosity at the time of molding becomes uneven, and as a result, the appearance of the molded product becomes defective.

【0006】上述の方法において、外観に不具合が生じ
る原因として、重合度差が大きい2つのCPVCが存在
するために、成形中のCPVCの溶融状態において粘度
差の大きい2つの溶融体が存在することになり、そのた
めに、成形時の溶融体の流れ性に偏りが生じ、これが原
因となって成形体の外観に不具合が生じているものと考
えられる。
[0006] In the above-mentioned method, as a cause of appearance defects, there are two CPVCs having a large difference in the degree of polymerization, and therefore, there are two melts having a large viscosity difference in the molten state of the CPVC during molding. Therefore, it is considered that the flowability of the molten material at the time of molding is biased, and this causes a defect in the appearance of the molded body.

【0007】そこでゲル化させ易いCPVCであって、
加工して衝撃強度の高い成形体を与え、成形体の外観に
不具合を起こさせないようなCPVCの出現が望まれて
いる。
Therefore, CPVC which is easily gelled,
There is a demand for the appearance of CPVC which gives a molded article having a high impact strength by processing and does not cause any trouble in the appearance of the molded article.

【0008】[0008]

【発明が解決しようとする課題】本発明は上述のような
要望に応じようとしてなされたものである。すなわち、
本発明は、PVCの持っている長所をそのまま残してお
り、しかも成形の際にゲル化し易く、従って衝撃強度の
高い成形体が得られ、また成形体の外観も良好なCPV
Cの製造方法を提供することを目的としている。
SUMMARY OF THE INVENTION The present invention has been made in response to the above demands. That is,
The present invention retains the advantages of PVC as it is, and is also easy to gel at the time of molding, so that a molded article having high impact strength can be obtained, and the appearance of the molded article is good.
It is intended to provide a method for producing C.

【0009】[0009]

【課題を解決するための手段】本発明のCPVCの製造
方法は、PVCを塩素化して、CPVCを製造するにあ
たり、重合度分布曲線がただ1つのピークを持ち、その
重合度分布幅(Q)がQ≧2.8のPVCを原料として
用いることを特徴とする。
According to the method for producing CPVC of the present invention, when producing PVC by chlorinating PVC, the polymerization degree distribution curve has only one peak, and the polymerization degree distribution width (Q) is obtained. Is characterized by using a PVC of Q ≧ 2.8 as a raw material.

【0010】これまでのCPVCの原料PVCは、平均
重合度が500〜1500、重合度分布は1つのピーク
を持つ重合度分布曲線で、重合度分布幅(Q)は約Q≦
2.0のPVCが一般に使用されている。
The raw material PVC of the conventional CPVC has an average degree of polymerization of 500 to 1500, and the degree of polymerization distribution is a degree of polymerization distribution curve having one peak, and the degree of polymerization degree distribution (Q) is about Q ≦
2.0 PVC is commonly used.

【0011】CPVCの原料となっているPVCは、重
合反応によって作られる高分子化合物であり、色々な重
合度のものを含んでいる。そのために、PVCの重合度
は分布を持っており、一般的には重合度を全化合物の平
均値を持って表し、平均重合度(P)で示している。ま
た、その重合度分布幅(Q)は次式で定義されている。 重量平均重合度(Pw) Pw=Σni・Pi2 /Σni・Pi 数平均重合度 (Pn) Pn=Σni・Pi/Σni 重合度分布幅 (Q) Q=Pw/Pn ただし、ここでPi はPVCを構成するi番目のポリマ
ーの重合度で、niはi番目のポリマーの分子数であ
る。
[0011] PVC, which is a raw material of CPVC, is a high molecular compound produced by a polymerization reaction, and contains various degrees of polymerization. Therefore, the degree of polymerization of PVC has a distribution, and the degree of polymerization is generally expressed with the average value of all the compounds, and is indicated by the average degree of polymerization (P). Further, the polymerization degree distribution width (Q) is defined by the following equation. Weight average degree of polymerization (Pw) Pw = Σni · Pi 2 / Σni · Pi Number average degree of polymerization (Pn) Pn = Σni · Pi / Σni Polymerization degree distribution width (Q) Q = Pw / Pn where Pi is PVC Where ni is the number of molecules of the i-th polymer.

【0012】一般的にPVCの重合度分布曲線の形状
は、PVCの分子量を横軸にとり、その重合度に該当す
る分子の数を縦軸に取って重合度分布曲線を描くと、重
合度分布曲線は山形となる。この山形は、ただ1つの峰
(ピーク)を持ち、このピークから両側に急激に下降し
て水平に近ずくような形状である。
In general, the shape of the polymerization degree distribution curve of PVC is obtained by plotting the molecular weight of PVC on the horizontal axis and the number of molecules corresponding to the polymerization degree on the vertical axis, and drawing the polymerization degree distribution curve. The curve is chevron. This chevron has a single peak (peak), and has a shape that rapidly descends on both sides from this peak and approaches horizontal.

【0013】本発明では、成形体の外観の不具合を無く
すために、成形混練時の溶融粘度の偏りを生じさせず
に、また、ゲル化性の優れたCPVCを得る方法を考案
した。
In the present invention, in order to eliminate defects in the appearance of the molded article, a method for obtaining a CPVC having excellent gelling property without causing a deviation in melt viscosity during molding and kneading has been devised.

【0014】この方法は、塩素化に用いる原料PVCの
重合度分布を、重合度分布曲線がただ1つのピークを持
ち、低い重合度から高い重合度のPVCが、平均重合度
を中心にして両側に幅広く存在しているような重合度分
布を持つPVC、すなわち重合度分布幅(Q)がQ≧
2.8であるようなPVCを、塩素化の原料に用いる方
法であり、この方法によって得られたCPVCは、ゲル
化性および成形体の外観が良好である事が見いだされ
た。
According to this method, the degree of polymerization distribution of the raw material PVC used for chlorination is determined such that the degree of polymerization distribution curve has only one peak, and PVC having a low degree of polymerization to a high degree of polymerization has two sides around the average degree of polymerization. PVC having a degree of polymerization distribution such that it exists widely, ie, the degree of polymerization distribution width (Q) is Q ≧
This is a method in which PVC having a viscosity of 2.8 is used as a raw material for chlorination, and it has been found that CPVC obtained by this method has good gelling properties and good appearance of a molded article.

【0015】本発明で用いられるPVCは、重合度分布
曲線がただ1つのピークを持ち、低い重合度から高い重
合度のものが平均重合度(P)を中心に±500の範囲
内で両側に幅広く存在し、その結果、重合度分布幅
(Q)が2.8以上になったものが好ましい。実際に
は、平均重合度(P)が500〜1500のPVCを用
いるのが好ましい。
In the PVC used in the present invention, the polymerization degree distribution curve has only one peak, and those having a low polymerization degree to a high polymerization degree are within ± 500 of the average polymerization degree (P) on both sides. Those having a wide range and, as a result, a polymerization degree distribution width (Q) of 2.8 or more are preferable. In practice, it is preferable to use PVC having an average degree of polymerization (P) of 500 to 1500.

【0016】本発明で用いられるPVCは、得られるP
VCの平均重合度に対して、±500の範囲内にある平
均重合度を有するPVCを2種類以上、ブレンドして、
重合度分布幅(Q)を2.8以上に調節されたものが好
ましい。ブレンドする際には、重合度分布曲線がただ1
つのピークを持つように、ブレンドに用いるPVCの平
均重合度とそのブレンドの割合を考慮しなければならな
い。例えば、平均重合度1000、重合度分布幅を2.
8以上のPVCを得るために、平均重合度500の普通
のPVCと平均重合度1500のPVCを1:1の割合
でブレンドして得られるPVCの、重合度分布曲線は2
つのピークを持つ形状になり、このPVCを塩素化して
得られたCPVCを用いると成形体の外観に不具合が生
じる。
The PVC used in the present invention is obtained from P
By blending two or more kinds of PVC having an average degree of polymerization within a range of ± 500 with respect to the average degree of polymerization of VC,
It is preferable that the polymerization degree distribution width (Q) is adjusted to 2.8 or more. When blending, the polymerization degree distribution curve is only 1
In order to have two peaks, the average degree of polymerization of PVC used for blending and the proportion of the blend must be considered. For example, the average polymerization degree is 1,000, and the polymerization degree distribution width is 2.
In order to obtain a PVC of 8 or more, the polymerization degree distribution curve of PVC obtained by blending ordinary PVC having an average degree of polymerization of 500 and PVC having an average degree of polymerization of 1500 in a ratio of 1: 1 is 2
It has a shape having two peaks, and when CPVC obtained by chlorinating this PVC is used, there is a problem in appearance of the molded article.

【0017】本発明に用いられるPVCには、重合段階
において重合条件を調整し重合度分布幅(Q)を2.8
以上にしたPVCが用いられても良い。
In the PVC used in the present invention, the polymerization conditions are adjusted at the polymerization stage so that the polymerization degree distribution width (Q) is 2.8.
The PVC described above may be used.

【0018】重合段階において重合度分布幅を調節する
方法には、以下の方法が知られているが、これら何れの
方法が用いられてもよい。 (A)PVCの重合転化率が20〜70重量%の際に調
整剤を添加する方法。(特開昭60−72906号公
報) (B)PVCの重合途中に調整剤を添加し、かつ重合温
度を段階的に変化させる方法。(特開昭60−7290
6号公報) (C)PVCの重合を複数回に分けて行い、その際に重
合温度を変化させて、段階的に重合度を小さくする方
法。(特公平4−28723号公報) (D)PVCの重合途中、重合転化率が5〜60重量%
の際に連鎖移動剤を添加する方法。(特開平3ー223
307号公報)
The following methods are known as methods for adjusting the polymerization degree distribution width in the polymerization stage, and any of these methods may be used. (A) A method of adding a regulator when the polymerization conversion rate of PVC is 20 to 70% by weight. (B) A method in which a regulator is added during the polymerization of PVC and the polymerization temperature is changed stepwise. (JP-A-60-7290
(Claim 6) (C) A method in which the polymerization of PVC is performed in a plurality of times, and the polymerization temperature is changed at that time to gradually reduce the degree of polymerization. (Japanese Patent Publication No. 4-28723) (D) During the polymerization of PVC, the polymerization conversion rate is 5 to 60% by weight.
A method of adding a chain transfer agent at the time of (JP-A-3-223
No. 307)

【0019】本発明では原料として用いるPVCの重合
度分布幅(Q)は、上述の範囲に限定されるが、これを
塩素化してCPVCとすることについては格別の限定は
無い。例えば、塩素化は懸濁状態でも、溶液状態でも、
固体状態でもこれを行うことができる。このとき、加熱
したり、紫外線を照射したりして、塩素化を促進する事
もできる。また、懸濁状態で行うのに、媒体として水を
使用し、水中に少量のアセトン、メチルエチルケトン等
のケトン類を加えても良く、さらに必要により塩酸を加
えても良い。また、トリクロロエチレン、四塩化炭素等
の塩素系溶媒を加えても良い。塩素化の程度は、得られ
たCPVCの塩素含有量が60〜75重量%となるよう
にするのが好ましい。
In the present invention, the polymerization degree distribution width (Q) of PVC used as a raw material is limited to the above-mentioned range, but there is no particular limitation in chlorinating this into CPVC. For example, chlorination can be suspended or in solution,
This can be done even in the solid state. At this time, chlorination can be promoted by heating or irradiating ultraviolet rays. Further, when the suspension is carried out, water may be used as a medium, and a small amount of ketones such as acetone and methyl ethyl ketone may be added to the water, and hydrochloric acid may be added if necessary. Further, a chlorinated solvent such as trichlorethylene and carbon tetrachloride may be added. The degree of chlorination is preferably such that the resulting CPVC has a chlorine content of 60 to 75% by weight.

【0020】[0020]

【発明の実施の形態】以下に実施例と比較例を挙げて、
この発明の優れている所以を具体的に説明する。また、
実施例および比較例では、そこで得られたCPVCの物
性および重合度分布を測定しているが、その測定は次の
ようにして行った。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Examples and comparative examples are given below.
The advantages of the present invention will be specifically described. Also,
In the examples and comparative examples, the physical properties and the degree of polymerization distribution of CPVC obtained therefrom were measured, and the measurements were performed as follows.

【0021】(1)ゲル化エネルギー(J/g) CPVC100重量部、ジブチル錫メルカプト2重量
部、MBS樹脂5重量部、及びワックス1重量部からな
る配合物60gを東洋精機社製ラボプラストミルのロー
ター中に投入し、回転数40rpm.温度200℃で混
練させ、混練トルクが最大に達するまでに要したエネル
ギーをゲル化エネルギーとした。
(1) Gelation energy (J / g) A blend consisting of 100 parts by weight of CPVC, 2 parts by weight of dibutyltin mercapto, 5 parts by weight of MBS resin, and 1 part by weight of wax was mixed with 60 g of a compound manufactured by Toyo Seiki Co., Ltd. Put into a rotor and rotate at 40 rpm. Kneading was performed at a temperature of 200 ° C., and the energy required until the kneading torque reached the maximum was defined as the gelling energy.

【0022】(2)平均重合度 JIS K−6721により比粘度を測定して平均重合
度を算出した。 (3)重合度分布 PVCポリマーの重合度分布幅(Q)は、一般に行われ
ているゲルパーミエーションクロマトグラフィーにより
Pw/Pnとして算出した。詳細にはテトラヒドロフラ
ンに、PVCを0.1重量%溶解したサンプルを1×1
2 〜1×108 範囲の分子の篩い分けが可能なポリス
チレンゲルから構成されるカラムを通して重合度分布曲
線を描かせ、次いで、校正曲線を用いて重合度分布Pw
/Pnを算出した。 (4)外観 上記の配合物を用い、テスト押し出し機を使用し、20
φのパイプ金型を用いて200〜205℃の温度で成形
を行い、得られた成形体の外観を目視観察により評価し
た。
(2) Average Degree of Polymerization The specific viscosity was measured according to JIS K-6721 to calculate the average degree of polymerization. (3) Polymerization degree distribution The polymerization degree distribution width (Q) of the PVC polymer was calculated as Pw / Pn by generally performed gel permeation chromatography. Specifically, a sample in which 0.1% by weight of PVC was dissolved in tetrahydrofuran was 1 × 1.
A degree of polymerization distribution curve is drawn through a column composed of polystyrene gel capable of sieving molecules in the range of 0 2 to 1 × 10 8 , and then a degree of polymerization distribution Pw is calculated using a calibration curve.
/ Pn was calculated. (4) Appearance Using the above composition, using a test extruder,
Using a φ pipe mold, molding was performed at a temperature of 200 to 205 ° C., and the appearance of the obtained molded body was evaluated by visual observation.

【0023】(実施例1)PVCとしては、平均重合度
が800〜1200の範囲内にある種々のPVCを重合
度分布曲線がただ1つのピークを持つようにブレンド
し、平均重合度が1000であり重合度分布幅(Q)が
2.8としたものを用いた。ガラスライニングをした内
容積300リットルのオートクレーブに、上記のPVC
100重量部とイオン交換水500重量部とをを入れ、
よく攪拌してPVCを水中に分散させ、懸濁状態とし
た。次いで、この懸濁液を70℃に加熱し、オートクレ
ーブ内を減圧脱気して酸素を除いた後、オートクレーブ
内に窒素ガスを吹き込み、次いで塩素を吹き込み、水銀
灯から紫外線を照射しながらPVCを塩素化した。オー
トクレーブ内の塩酸濃度を測定して、塩素化反応の進行
状況を確認し、得られるCPVCの塩素含有量が約6
6.5重量%に達した時点で塩素ガスの供給を停止し、
塩素化反応を終了した。その後、窒素ガスを吹き込んで
未反応塩素を追い出し、得られた分散物をアルカリで中
和し、水洗し、脱水し、乾燥してCPVCを得た。
(Example 1) As PVC, various PVCs having an average degree of polymerization in the range of 800 to 1200 are blended so that the degree of polymerization distribution curve has only one peak. The one having a polymerization degree distribution width (Q) of 2.8 was used. In a 300 liter glass-lined autoclave, place the above PVC
100 parts by weight and 500 parts by weight of ion-exchanged water are added,
With good stirring, PVC was dispersed in water to obtain a suspended state. Next, the suspension was heated to 70 ° C., the inside of the autoclave was degassed under reduced pressure to remove oxygen, nitrogen gas was blown into the autoclave, chlorine was blown, and PVC was chlorinated while irradiating ultraviolet rays from a mercury lamp. It has become. The concentration of hydrochloric acid in the autoclave was measured to check the progress of the chlorination reaction, and the resulting CPVC had a chlorine content of about 6%.
When the amount of chlorine gas reaches 6.5% by weight, the supply of chlorine gas is stopped.
The chlorination reaction was completed. Thereafter, unreacted chlorine was expelled by blowing nitrogen gas, and the obtained dispersion was neutralized with an alkali, washed with water, dehydrated, and dried to obtain CPVC.

【0024】こうして得られたCPVCについて先に述
べた方法によって、ゲル化するのに要したエネルギーを
測定したところ、そのエネルギーは150J/gであっ
た。また、成形した成形体の外観も良好であった。
The energy required for gelation of the thus obtained CPVC was measured by the method described above, and was found to be 150 J / g. The appearance of the molded article was also good.

【0025】(実施例2)平均重合度が600〜140
0の範囲内にある種々のPVCを重合度分布曲線がただ
1つのピークを持つようにブレンドし、平均重合度が1
000であり、重合度分布幅(Q)が3.4としたもの
を用い、それ以外は実施例1と同様に塩素化して、塩素
含有量が66.5重量%のCPVCを得た。
(Example 2) The average degree of polymerization was from 600 to 140.
Various PVCs within the range of 0 are blended such that the polymerization degree distribution curve has only one peak, and the average degree of polymerization is 1
000, and the chlorination was carried out in the same manner as in Example 1 except that the polymerization degree distribution width (Q) was 3.4, to obtain CPVC having a chlorine content of 66.5% by weight.

【0026】得られたCPVCについて、ゲル化に要し
たエネルギーを測定したところ、110J/gであっ
た。また、成形した成形体の外観も良好であった。
The energy required for gelation of the obtained CPVC was measured and found to be 110 J / g. The appearance of the molded article was also good.

【0027】(実施例3)重合に連鎖移動剤を添加し、
平均重合度が1000であり、重合度分布幅(Q)を
3.0にしたPVCを用いた。詳細には、容量216リ
ットルの重合槽にイオン交換水99Kg、ポリビニルア
ルコール3重量%液1.4Kg、ラウロイルパーオキサ
イド60gを供給し、真空操作を実施した。その後、塩
化ビニルモノマー66Kgを添加し、50℃で重合を開
始した。重合転化率が約40重量%の時点で、メルカプ
トエタノールを0.2g加えた。重合転化率が85重量
%に達した時点で反応を停止し、未反応塩化ビニルモノ
マーを回収した後、生成したPVCを重合槽から取り出
して乾燥してPVCを得た。このPVCを実施例1と同
様に塩素化して、塩素含有量が66.5重量%のCPV
Cを得た。
Example 3 A chain transfer agent was added to the polymerization,
PVC having an average degree of polymerization of 1,000 and a degree of polymerization degree distribution (Q) of 3.0 was used. Specifically, 99 kg of ion-exchanged water, 1.4 kg of a 3% by weight solution of polyvinyl alcohol, and 60 g of lauroyl peroxide were supplied to a polymerization tank having a capacity of 216 liters, and a vacuum operation was performed. Thereafter, 66 kg of a vinyl chloride monomer was added, and polymerization was started at 50 ° C. When the polymerization conversion was about 40% by weight, 0.2 g of mercaptoethanol was added. When the polymerization conversion reached 85% by weight, the reaction was stopped, unreacted vinyl chloride monomer was recovered, and the produced PVC was taken out of the polymerization tank and dried to obtain PVC. This PVC was chlorinated in the same manner as in Example 1 to obtain a CPV having a chlorine content of 66.5% by weight.
C was obtained.

【0028】得られたCPVCについて、ゲル化に要し
たエネルギーを測定したところ、140J/gであっ
た。また、成形した成形体の外観も良好であった。
The energy required for gelation of the obtained CPVC was measured and found to be 140 J / g. The appearance of the molded article was also good.

【0029】(実施例4)重合に連鎖移動剤を添加し、
平均重合度が1000であり、重合度分布幅(Q)を
3.6にしたPVCを用いた。詳細には、容量216リ
ットルの重合槽にイオン交換水99Kg、ポリビニルア
ルコール3重量%液1.4Kg、ラウロイルパーオキサ
イド60gを供給し、真空操作を実施した。その後、塩
化ビニルモノマー66Kgを添加し、50℃で重合を開
始した。重合転化率が約40重量%の時点で、メルカプ
トエタノールを0.5g加えた。重合転化率が85重量
%に達した時点で反応を停止し、未反応塩化ビニルモノ
マーを回収した後、生成したPVCを重合槽から取り出
して乾燥してPVCを得た。このPVCを実施例1と同
様に塩素化して、塩素含有量が66.5重量%のCPV
Cを得た。
(Example 4) A chain transfer agent was added to the polymerization,
PVC having an average polymerization degree of 1000 and a polymerization degree distribution width (Q) of 3.6 was used. Specifically, 99 kg of ion-exchanged water, 1.4 kg of a 3% by weight solution of polyvinyl alcohol, and 60 g of lauroyl peroxide were supplied to a polymerization tank having a capacity of 216 liters, and a vacuum operation was performed. Thereafter, 66 kg of a vinyl chloride monomer was added, and polymerization was started at 50 ° C. When the polymerization conversion was about 40% by weight, 0.5 g of mercaptoethanol was added. When the polymerization conversion reached 85% by weight, the reaction was stopped, unreacted vinyl chloride monomer was recovered, and the produced PVC was taken out of the polymerization tank and dried to obtain PVC. This PVC was chlorinated in the same manner as in Example 1 to obtain a CPV having a chlorine content of 66.5% by weight.
C was obtained.

【0030】得られたCPVCについて、ゲル化に要し
たエネルギーを測定したところ、110J/gであっ
た。また、成形した成形体の外観も良好であった。
When the energy required for gelation of the obtained CPVC was measured, it was 110 J / g. The appearance of the molded article was also good.

【0031】(実施例5)重合に連鎖移動剤を添加し、
平均重合度が800であり、重合度分布幅(Q)を3.
0にしたPVCを用いた。詳細には、容量216リット
ルの重合槽にイオン交換水99Kg、ポリビニルアルコ
ール3重量%液1.4Kg、ラウロイルパーオキサイド
60gを供給し、真空操作を実施した。その後、塩化ビ
ニルモノマー66Kgを添加し、54℃で重合を開始し
た。重合転化率が約40重量%の時点で、メルカプトエ
タノールを0.2g加えた。重合転化率が85重量%に
達した時点で反応を停止し、未反応塩化ビニルモノマー
を回収した後、生成したPVCを重合槽から取り出して
乾燥してPVCを得た。このPVCを実施例1と同様に
塩素化して、塩素含有量が66.5重量%のCPVCを
得た。
Example 5 A chain transfer agent was added to the polymerization,
The average polymerization degree is 800, and the polymerization degree distribution width (Q) is 3.
Zeroed PVC was used. Specifically, 99 kg of ion-exchanged water, 1.4 kg of a 3% by weight solution of polyvinyl alcohol, and 60 g of lauroyl peroxide were supplied to a polymerization tank having a capacity of 216 liters, and a vacuum operation was performed. Thereafter, 66 kg of a vinyl chloride monomer was added, and polymerization was started at 54 ° C. When the polymerization conversion was about 40% by weight, 0.2 g of mercaptoethanol was added. When the polymerization conversion reached 85% by weight, the reaction was stopped, unreacted vinyl chloride monomer was recovered, and the produced PVC was taken out of the polymerization tank and dried to obtain PVC. This PVC was chlorinated in the same manner as in Example 1 to obtain a CPVC having a chlorine content of 66.5% by weight.

【0032】得られたCPVCについて、ゲル化に要し
たエネルギーを測定したところ、120J/gであっ
た。また、成形した成形体の外観も良好であった。
The energy required for gelation of the obtained CPVC was measured and found to be 120 J / g. The appearance of the molded article was also good.

【0033】(比較例1)重合度が1000であり、従
来の重合方法によって得られる、重合度分布曲線がただ
1つのピークを持ち、その重合度分布幅(Q)が2.0
であるPVCを用いた。 詳細には、容量216リット
ルの重合槽にイオン交換水99Kg、ポリビニルアルコ
ール3重量%液1.4Kg、ラウロイルパーオキサイド
60gを供給し、真空操作を実施した。その後、塩化ビ
ニルモノマー66Kgを添加し57℃で重合を開始し
た。重合転化率が85重量%に達した時点で反応を停止
し、未反応塩化ビニルモノマーを回収した後、生成した
PVCを重合槽から取り出して乾燥してPVCを得た。
このPVCを実施例1と同様に塩素化して、塩素含有量
が66.5重量%のCPVCを得た。
(Comparative Example 1) The degree of polymerization was 1,000, the degree of polymerization distribution curve obtained by the conventional polymerization method had only one peak, and the degree of polymerization distribution (Q) was 2.0.
Was used. Specifically, 99 kg of ion-exchanged water, 1.4 kg of a 3% by weight solution of polyvinyl alcohol, and 60 g of lauroyl peroxide were supplied to a polymerization tank having a capacity of 216 liters, and a vacuum operation was performed. Thereafter, 66 kg of a vinyl chloride monomer was added, and polymerization was started at 57 ° C. When the polymerization conversion reached 85% by weight, the reaction was stopped, unreacted vinyl chloride monomer was recovered, and the produced PVC was taken out of the polymerization tank and dried to obtain PVC.
This PVC was chlorinated in the same manner as in Example 1 to obtain a CPVC having a chlorine content of 66.5% by weight.

【0034】得られたCPVCについて、ゲル化に要し
たエネルギーを測定したところ、200J/gであっ
た。また、成形した成形体の外観は良好であった。
The energy required for gelation of the obtained CPVC was measured and found to be 200 J / g. Further, the appearance of the molded article was good.

【0035】(比較例2)平均重合度が600のPVC
と1400のPVCを1:1の割合でブレンドし、平均
重合度は1000であるが、重合度分布曲線が2つのピ
ークを持つものを用い、それ以外は実施例1と同様に塩
素化して、塩素含有量が66.5重量%のCPVCを得
た。
Comparative Example 2 PVC having an average degree of polymerization of 600
And PVC of 1400 are blended at a ratio of 1: 1 and the average degree of polymerization is 1000, but a polymerization degree distribution curve having two peaks is used. Otherwise, chlorination is performed in the same manner as in Example 1, CPVC having a chlorine content of 66.5% by weight was obtained.

【0036】得られたCPVCについて、ゲル化に要し
たエネルギーを測定したところ、110J/gであっ
た。しかし、成形時の溶融状態にムラが生じ、成形体の
外観が悪化した。
The energy required for gelation of the obtained CPVC was measured and found to be 110 J / g. However, unevenness occurred in the molten state during molding, and the appearance of the molded body was deteriorated.

【0037】(比較例3)重合に連鎖移動剤を添加し、
平均重合度が1000であり、重合度分布幅(Q)を
2.5にしたものを用いた。詳細には、容量216リッ
トルの重合槽にイオン交換水99Kg、ポリビニルアル
コール3重量%液1.4Kg、ラウロイルパーオキサイ
ド60g、を供給し、真空操作を実施した。その後、塩
化ビニルモノマー66Kgを添加し、55℃で重合を開
始した。重合転化率が約40重量%の時点で、メルカプ
トエタノールを0.1g加えた。重合転化率が85重量
%に達した時点で反応を停止し、未反応塩化ビニルモノ
マーを回収した後、生成したPVCを重合槽から取り出
して乾燥してPVCを得た。このPVCを実施例1と同
様に塩素化して、塩素含有量が66.5重量%のCPV
Cを得た。
Comparative Example 3 A chain transfer agent was added to the polymerization.
The one having an average polymerization degree of 1,000 and a polymerization degree distribution width (Q) of 2.5 was used. Specifically, 99 kg of ion-exchanged water, 1.4 kg of a 3% by weight solution of polyvinyl alcohol, and 60 g of lauroyl peroxide were supplied to a polymerization tank having a capacity of 216 liters, and a vacuum operation was performed. Thereafter, 66 kg of a vinyl chloride monomer was added, and polymerization was started at 55 ° C. When the polymerization conversion was about 40% by weight, 0.1 g of mercaptoethanol was added. When the polymerization conversion reached 85% by weight, the reaction was stopped, unreacted vinyl chloride monomer was recovered, and the produced PVC was taken out of the polymerization tank and dried to obtain PVC. This PVC was chlorinated in the same manner as in Example 1 to obtain a CPV having a chlorine content of 66.5% by weight.
C was obtained.

【0038】得られたCPVCについて、ゲル化に要し
たエネルギーを測定したところ、200J/gであっ
た。また、成形した成形体の外観は良好であった。
The energy required for gelation of the obtained CPVC was measured and found to be 200 J / g. Further, the appearance of the molded article was good.

【0039】(比較例4)重合度が800であり、通常
の重合方法によって得られる、重合度分布曲線がただ1
つのピークを持ち、その重合度分布幅(Q)が1.9で
あるPVCを用いた。 詳細には、容量216リットル
の重合槽にイオン交換水99Kg、ポリビニルアルコー
ル3重量%液1.4Kg、ラウロイルパーオキサイド6
0g、を供給し、真空操作を実施した。その後、塩化ビ
ニルモノマー66Kgを添加し、54℃で重合を開始し
た。重合転化率が85重量%に達した時点で反応を停止
し、未反応塩化ビニルモノマーを回収した後、生成した
PVCを重合槽から取り出して乾燥してPVCを得た。
それ以外は実施例1と同様に塩素化して、塩素含有量が
66.5重量%のCPVCを得た。
(Comparative Example 4) The polymerization degree was 800, and the polymerization degree distribution curve obtained by the ordinary polymerization method was only 1
PVC having two peaks and having a polymerization degree distribution width (Q) of 1.9 was used. Specifically, 99 kg of ion-exchanged water, 1.4 kg of a 3% by weight solution of polyvinyl alcohol, and lauroyl peroxide 6 were placed in a polymerization tank having a capacity of 216 liters.
0 g, and a vacuum operation was performed. Thereafter, 66 kg of a vinyl chloride monomer was added, and polymerization was started at 54 ° C. When the polymerization conversion reached 85% by weight, the reaction was stopped, unreacted vinyl chloride monomer was recovered, and the produced PVC was taken out of the polymerization tank and dried to obtain PVC.
Otherwise chlorinating was carried out in the same manner as in Example 1 to obtain CPVC having a chlorine content of 66.5% by weight.

【0040】得られたCPVCについて、ゲル化に要し
たエネルギーを測定したところ、180J/gであっ
た。また、成形した成形体の外観は良好であった。
The energy required for gelation of the obtained CPVC was measured and found to be 180 J / g. Further, the appearance of the molded article was good.

【0041】(比較例5)平均重合度が300のPVC
と1300のPVCを1:1の割合でブレンドし、平均
重合度は800であるが、重合度分布曲線が2つのピー
クを持つものを用い、それ以外は実施例1と同様に塩素
化して、塩素含有量が66.5重量%のCPVCを得
た。
(Comparative Example 5) PVC having an average degree of polymerization of 300
And 1300 PVC are blended at a ratio of 1: 1 and the average degree of polymerization is 800, but a polymerization degree distribution curve having two peaks is used. Otherwise, chlorination is performed in the same manner as in Example 1, CPVC having a chlorine content of 66.5% by weight was obtained.

【0042】得られたCPVCについて、ゲル化に要し
たエネルギーを測定したところ、100J/gであっ
た。しかし、成形時の溶融状態にムラが生じ、成形体の
外観は悪化した。
The energy required for gelation of the obtained CPVC was measured and found to be 100 J / g. However, unevenness occurred in the molten state during molding, and the appearance of the molded body was deteriorated.

【0043】[0043]

【発明の効果】この発明によれば、重合度分布曲線はた
だ1つのピークを持ち、重合度分布幅(Q)が2.8以
上のPVCを塩素化の原料として用いているので、PV
C中に低い重合度を持った分子数が多く存在し、このP
VCを塩素化をして得られたCPVCのゲル化は、比較
的低いエネルギーでおこなうことができる。
According to the present invention, the degree of polymerization distribution curve has only one peak, and the degree of polymerization distribution width (Q) of 2.8 or more is used as a chlorination raw material.
In C, there are many molecules having a low degree of polymerization.
Gelation of CPVC obtained by chlorinating VC can be performed with relatively low energy.

【0044】また、重合度は平均重合度を中心に幅広く
分布し、その重合度分布曲線はただ1つのピークを持つ
ような分布形状をしているので、このようなPVCを塩
素化して得られたCPVは、重合度分布曲線が2つのピ
ークを持つようなPVCを塩素化して得られたCPVC
のように、成形混練時の溶融粘度にムラが生じることが
無い。
The polymerization degree is widely distributed around the average polymerization degree, and the polymerization degree distribution curve has a distribution shape having only one peak. Is obtained by chlorinating PVC such that the degree of polymerization distribution curve has two peaks.
As described above, there is no unevenness in the melt viscosity during molding and kneading.

【0045】すなわち、この発明によって得られたCP
VCを成形して成形体にすると、成形体はCPVCの特
性を保持し、ゲル化し易く、耐衝撃性も高く、しかも成
形体の外観も良好なものが得られる。従って、この発明
は、耐熱パイプや耐熱継ぎ手等の製造に適したCPVC
を提供できるという点で、大きな利益を与えるものであ
る。
That is, the CP obtained by the present invention
When VC is formed into a molded article, the molded article retains the properties of CPVC, is easily gelled, has high impact resistance, and has a good appearance. Therefore, the present invention provides a CPVC suitable for manufacturing heat-resistant pipes and heat-resistant joints.
In that it can provide significant benefits.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 塩化ビニル系樹脂を塩素化して、塩素化
塩化ビニル系樹脂を製造するにあたり、重合度分布曲線
がただ1つのピークを持ち、その重合度分布幅(Q)が
Q≧2.8の塩化ビニル系樹脂を原料とすることを特徴
とする塩素化塩化ビニル系樹脂の製造方法。
In producing a chlorinated vinyl chloride resin by chlorinating a vinyl chloride resin, a polymerization degree distribution curve has only one peak, and the polymerization degree distribution width (Q) is Q ≧ 2. 8. A method for producing a chlorinated vinyl chloride resin, comprising using the vinyl chloride resin as a raw material.
【請求項2】 塩素化に用いる塩化ビニル系樹脂が、該
塩化ビニル系樹脂の平均重合度に対して±500 の範囲内
の平均重合度をもつ2種類以上の塩化ビニル系樹脂をブ
レンドすることにより、重合度分布幅(Q)がQ≧2.
8に調節され、重合度分布曲線はただ1つのピークを持
つことを特徴とする請求項1に記載の塩素化塩化ビニル
系樹脂の製造方法。
2. A method of blending two or more vinyl chloride resins having an average degree of polymerization within a range of ± 500 with respect to the average degree of polymerization of the vinyl chloride resin. , The polymerization degree distribution width (Q) is Q ≧ 2.
The method for producing a chlorinated vinyl chloride resin according to claim 1, wherein the polymerization degree distribution curve is adjusted to 8, and the polymerization degree distribution curve has only one peak.
【請求項3】 塩素化に用いる塩化ビニル系樹脂が、重
合段階において重合度分布幅(Q)がQ≧2.8に調節
され、重合度分布曲線はただ1つのピークを持つことを
特徴とする請求項1に記載の塩素化塩化ビニル系樹脂の
製造方法。
3. The vinyl chloride resin used for chlorination is characterized in that the polymerization degree distribution width (Q) is adjusted to Q ≧ 2.8 in the polymerization step, and the polymerization degree distribution curve has only one peak. The method for producing a chlorinated vinyl chloride resin according to claim 1.
JP15393897A 1997-06-11 1997-06-11 Production of chlorinated vinyl chloride-based resin Pending JPH111513A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15393897A JPH111513A (en) 1997-06-11 1997-06-11 Production of chlorinated vinyl chloride-based resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15393897A JPH111513A (en) 1997-06-11 1997-06-11 Production of chlorinated vinyl chloride-based resin

Publications (1)

Publication Number Publication Date
JPH111513A true JPH111513A (en) 1999-01-06

Family

ID=15573370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15393897A Pending JPH111513A (en) 1997-06-11 1997-06-11 Production of chlorinated vinyl chloride-based resin

Country Status (1)

Country Link
JP (1) JPH111513A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020203858A1 (en) * 2019-03-29 2020-10-08 積水化学工業株式会社 Chlorinated vinyl chloride resin
KR20210148099A (en) * 2019-03-29 2021-12-07 세키스이가가쿠 고교가부시키가이샤 Chlorinated vinyl chloride resin
CN116790081A (en) * 2023-07-28 2023-09-22 新疆至臻化工工程研究中心有限公司 Method for producing chlorinated polymer mixture by coupling chlorination process

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020203858A1 (en) * 2019-03-29 2020-10-08 積水化学工業株式会社 Chlorinated vinyl chloride resin
JPWO2020203858A1 (en) * 2019-03-29 2021-10-28 積水化学工業株式会社 Chlorinated vinyl chloride resin
KR20210148099A (en) * 2019-03-29 2021-12-07 세키스이가가쿠 고교가부시키가이샤 Chlorinated vinyl chloride resin
KR20210148098A (en) * 2019-03-29 2021-12-07 세키스이가가쿠 고교가부시키가이샤 Chlorinated vinyl chloride resin
US12110385B2 (en) 2019-03-29 2024-10-08 Sekisui Chemical Co., Ltd. Chlorinated vinyl chloride resin
CN116790081A (en) * 2023-07-28 2023-09-22 新疆至臻化工工程研究中心有限公司 Method for producing chlorinated polymer mixture by coupling chlorination process

Similar Documents

Publication Publication Date Title
US4412898A (en) Process for chlorination of PVC in water without use of swelling agents
EP1053284B1 (en) Mixtures of thermoplastic fluoropolymers
JPH05132602A (en) Chlorinated pvc blend
JPH111513A (en) Production of chlorinated vinyl chloride-based resin
JP4168189B2 (en) Composite of acrylic rubber and fluororubber, method for producing the same, and vulcanizable rubber composition
US3583956A (en) Vinyl chloride polymers
JPH0241523B2 (en)
JP3164743B2 (en) Method for producing chlorinated vinyl chloride resin
JPS6031503A (en) Production of chlorinated polyethylene rubber of good moldability
JP2818101B2 (en) Method for producing chlorinated vinyl chloride resin
JP3057126B2 (en) Method for producing chlorinated vinyl chloride resin
JPH0995513A (en) Production of postchlorinated vinyl chlride resin
JPH0776608A (en) Production of chlorinated vinyl chloride resin
JPH0770234A (en) Production of chlorinated vinyl chloride resin suitable for heat forming
JPH0762020A (en) Production of chlorinated vinyl chloride resin
JPH1135627A (en) Production of chlorinated vinyl chloride resin
JPH10279627A (en) Production of chlorinated vinyl chloride resin
JP2005036216A (en) Vinyl chloride resin and vinyl chloride resin-molded article
JP2000136214A (en) Chlorinated vinyl chloride-based resin and its production
JP2000273121A (en) Chlorinated polyvinyl chloride-based resin and its manufacture
JP3481099B2 (en) Chlorinated vinyl chloride resin and production method
JPH11349767A (en) Chlorinated vinyl chloride-based resin
JPH11100411A (en) Production of chlorinated vinyl chloride resin
JPS6281437A (en) Rubber goods having excellent methanol resistance
JP2001278992A (en) Molded product of chlorinated vinyl chloride resin and resin pipe