JPH11349767A - Chlorinated vinyl chloride-based resin - Google Patents

Chlorinated vinyl chloride-based resin

Info

Publication number
JPH11349767A
JPH11349767A JP24713898A JP24713898A JPH11349767A JP H11349767 A JPH11349767 A JP H11349767A JP 24713898 A JP24713898 A JP 24713898A JP 24713898 A JP24713898 A JP 24713898A JP H11349767 A JPH11349767 A JP H11349767A
Authority
JP
Japan
Prior art keywords
pvc
vinyl chloride
polymerization
average
cpvc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24713898A
Other languages
Japanese (ja)
Inventor
Yuki Maruyama
由紀 丸山
Hideaki Yoshitomi
英明 吉富
Hiroshi Sakai
拓 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Sekisui Co Ltd
Original Assignee
Tokuyama Sekisui Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Sekisui Co Ltd filed Critical Tokuyama Sekisui Co Ltd
Priority to JP24713898A priority Critical patent/JPH11349767A/en
Publication of JPH11349767A publication Critical patent/JPH11349767A/en
Pending legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain the subject vinyl chloride-based resin excellent in heat resistance and heat stability and having good thermoformability by chlorinating a mixture of two or more kinds of vinyl chloride-based resins having average polymerization degree within a specific range and different in average polymerization degree. SOLUTION: This vinyl chloride-based resin is obtained by chlorinating a mixture of two or more kinds of vinyl chloride-based resins (PVC) having <800, preferably >=450 and <750 average polymerization degree and different in average polymerization degree. PVC having >=400 and <800 average polymerization degree among PVCs used for mixing is used as the PVC and PVC are mixed so that the difference between the lowest average polymerization degree and the highest polymerization degree is 100-400 and PVC whose distribution curve of polymerization degree has >=2 peaks is preferably chlorinated. Average chlorine content of the resin is preferably 60-72 wt.%. When PVC is chlorinated, it is preferable that hydrogen peroxide in an amount of 5-100 ppm based on PVC is added to a reactor and chlorination reaction of the resin is preferably carried out at 90-140 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、耐熱性に優れ、熱
成形性が良好でかつ熱安定性に優れる塩素化塩化ビニル
系樹脂に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a chlorinated vinyl chloride resin having excellent heat resistance, good thermoformability and excellent thermal stability.

【0002】[0002]

【従来の技術】塩素化塩化ビニル系樹脂(以下、CPV
Cという)は、一般に塩化ビニル系樹脂(以下、PVC
という)を塩素化して作られる。CPVCはPVCの長
所といわれる難燃性、耐薬品性の特性を残し、かつPV
Cの欠点といわれる耐熱温度が低い点を改良しているの
で広い用途が期待されている。一方PVCは熱変形温度
が低いために、60〜70℃以上では使用できないとい
う大きな欠点をもっている。これに対しCPVCは熱変
形温度がPVCより20〜40℃も高く、PVCの欠点
である耐熱性が改良されている。
2. Description of the Related Art Chlorinated vinyl chloride resin (hereinafter referred to as CPV)
C) is generally a vinyl chloride resin (hereinafter referred to as PVC).
Chlorination). CPVC retains flame-retardant and chemical-resistant properties, which are said to be advantages of PVC, and
C is expected to be used in a wide range of applications because it has improved the low heat resistance temperature which is said to be a disadvantage of C. On the other hand, PVC has a major drawback that it cannot be used at temperatures of 60 to 70 ° C. or higher because of its low heat deformation temperature. On the other hand, the heat deformation temperature of CPVC is higher by 20 to 40 ° C. than that of PVC, and the heat resistance, which is a drawback of PVC, is improved.

【0003】CPVCの耐熱性はその塩素含有量が多く
なるほど高くなる。しかしながら、塩素含有量が多くな
るほどCPVCの溶融時の粘度は高くなり成形加工は困
難になってくる。また、普通のCPVCは熱定性が悪く
高温に加熱すると熱劣化が起こりやすく、分解して着色
する。もし着色を少なくするために温度を低くして成形
を行うと、CPVCが十分に溶融せず結果的にゲル化不
十分の成形体となるので物性が十分に発現せず、外観も
不良なものとなってしまう。これはCPVCの塩素含有
量が多くなるほどその傾向は強い。
[0003] The heat resistance of CPVC increases as its chlorine content increases. However, as the chlorine content increases, the viscosity of CPVC at the time of melting increases, and the molding process becomes more difficult. In addition, ordinary CPVC has poor thermal qualitative properties and tends to undergo thermal degradation when heated to high temperatures, and is decomposed and colored. If molding is performed at a low temperature in order to reduce coloring, CPVC does not melt sufficiently, resulting in a molded article with insufficient gelation, so that physical properties are not sufficiently exhibited and appearance is poor. Will be. This tendency is stronger as the chlorine content of CPVC increases.

【0004】そのため、CPVCは押出成形、射出成
形、カレンダー成形、プレス成形、ブロー成形の加熱・
溶融・可塑化の工程を経る熱成形法においては、一般に
平均塩素含有量が68重量%未満のものが用いられてい
る。平均塩素含有量が68重量%以上のCPVCは既に
開発されているが、上記理由のため、熱成形法には使用
できず、ほとんどが溶剤に溶解させて用いる用途に限定
されている。
[0004] For this reason, CPVC is used for extruding, injection molding, calendar molding, press molding, and blow molding.
In a thermoforming method through a melting and plasticizing step, a material having an average chlorine content of less than 68% by weight is generally used. Although CPVC having an average chlorine content of 68% by weight or more has already been developed, it cannot be used for the thermoforming method for the above-mentioned reason, and is mostly limited to uses dissolved in a solvent.

【0005】平均塩素含有量が68重量%以上のCPV
Cは高い耐熱性をもつが、同時に溶融粘度が高く、熱成
形をするには210℃以上の高温での成形が必要とな
る。しかし、210℃以上の高温で熱成形すると成形体
に着色が発生したり、分解やヤケが生ずるという問題点
が生じる。
CPV having an average chlorine content of 68% by weight or more
C has high heat resistance, but at the same time, has a high melt viscosity, and thermoforming requires molding at a high temperature of 210 ° C. or higher. However, when thermoforming is performed at a high temperature of 210 ° C. or more, there are problems in that the molded product is colored, decomposed or burnt.

【0006】そこで、平均塩素含有量が68重量%未満
のCPVCと同様に180〜200℃の比較的低い温度
で成形すると、着色は少なくヤケも生じないが、充分に
溶融しない状態で成形されるため、ゲル化が不充分とな
り成形品の物性低下や成形品の外観が悪化する。このよ
うな理由によりCPVCの成形温度は制限され、その利
用範囲が狭められる事となっている。
Therefore, when molded at a relatively low temperature of 180 to 200 ° C., as in the case of CPVC having an average chlorine content of less than 68% by weight, the coloring is small and no burns are produced, but the molding is not sufficiently melted. As a result, the gelation is insufficient, and the physical properties of the molded article are deteriorated and the appearance of the molded article is deteriorated. For these reasons, the molding temperature of CPVC is limited, and its use range is narrowed.

【0007】塩素含有量が高いCPVCを比較的低い温
度で成形しても、良好な成形体が得られる方法として
は、アクリル樹脂等の加工助剤を添加する方法が試みら
れているが、この場合、塩素含有量が高いCPVCの重
要な特性である耐熱性を低下させることや、添加剤使用
によるコストアップ等の問題点があった。
[0007] As a method of obtaining a good molded product even when molding CPVC having a high chlorine content at a relatively low temperature, a method of adding a processing aid such as an acrylic resin has been attempted. In this case, there are problems such as a decrease in heat resistance, which is an important property of CPVC having a high chlorine content, and an increase in cost due to the use of an additive.

【0008】従って、CPVCの大きな特徴である高い
耐熱性を維持しつつ、比較的低い温度で熱成形しても良
好な成形体を得られるように、従来のCPVCよりも塩
素含有量に対する溶融粘度を低くし、また熱成形による
熱劣化を受けにくい熱安定性が良好であるCPVCが要
望されていた。
[0008] Therefore, in order to obtain a good molded product even when thermoforming at a relatively low temperature while maintaining high heat resistance, which is a major feature of CPVC, the melt viscosity with respect to the chlorine content is higher than that of conventional CPVC. Therefore, there has been a demand for a CPVC which has a low thermal stability and has good thermal stability which is less susceptible to thermal deterioration due to thermoforming.

【0009】[0009]

【発明が解決しようとする課題】本発明は、上記問題点
を解決するものであって、PVCの優れた特性を残し、
CPVCの優れた耐熱性を保持しながら、その溶融粘度
を低くして加工性を向上させ、さらに従来のCPVCよ
りも優れた熱安定性を持たせ、その結果、得られる成形
体の物性低下も外観の悪化もなく、着色も少ない良好な
成形体が得られるようなCPVCを提供することを目的
とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and has excellent properties of PVC.
While maintaining the excellent heat resistance of CPVC, its melt viscosity is lowered to improve processability, and furthermore, it is made to have better thermal stability than conventional CPVC. It is an object of the present invention to provide a CPVC capable of obtaining a good molded body with no deterioration in appearance and little coloring.

【0010】[0010]

【課題を解決するための手段】請求項1に記載の発明
は、PVCを塩素化してなるCPVCであって、該PV
Cには平均重合度が800未満である異なる平均重合度
のPVCを2種以上混合したものであることを特徴とす
る。
According to the first aspect of the present invention, there is provided a CPVC obtained by chlorinating PVC.
C is a mixture of two or more types of PVC having different average polymerization degrees, each having an average polymerization degree of less than 800.

【0011】請求項2に記載の発明は、PVCを塩素化
してなるCPVCであって、該PVCの平均重合度が4
50以上750未満であるように、異なる平均重合度の
PVCを2種以上混合したものを用いることを特徴とす
る。
The invention according to claim 2 is a CPVC obtained by chlorinating PVC, wherein the average degree of polymerization of the PVC is 4%.
It is characterized in that a mixture of two or more kinds of PVCs having different average polymerization degrees is used so that it is 50 or more and less than 750.

【0012】請求項3に記載の発明は、PVCを塩素化
してなるCPVCであって、平均塩素含有量が60〜7
2重量%であることを特徴とする。
The third aspect of the present invention is a CPVC obtained by chlorinating PVC, which has an average chlorine content of 60 to 7%.
2% by weight.

【0013】請求項4に記載の発明は、PVCを塩素化
してなるCPVCであって、混合に用いるPVCの平均
重合度がそれぞれ400以上800未満であり、それぞ
れのPVCの平均重合度の最大と最小との差が100〜
400であることを特徴とする。
[0013] The invention according to claim 4 is a CPVC obtained by chlorinating PVC, wherein the average degree of polymerization of the PVC used for mixing is 400 or more and less than 800, and the maximum degree of average polymerization of each PVC is less than 400. The difference from the minimum is 100 ~
400.

【0014】請求項5に記載の発明は、CPVCを製造
する際、塩素化の過程で原料のPVCに対し5〜100
ppmの過酸化水素を反応容器内に添加し、90〜14
0℃の温度で塩素化反応を行うことを特徴とする。
[0014] According to a fifth aspect of the present invention, in the production of CPVC, PVC is used as a raw material in a chlorination process.
ppm of hydrogen peroxide was added to the reactor, and 90 to 14 ppm was added.
The chlorination reaction is performed at a temperature of 0 ° C.

【0015】請求項5に記載の発明は、得られたCPV
Cが熱成形用であることを特徴とする。
[0015] The invention according to claim 5 provides the obtained CPV.
C is for thermoforming.

【0016】本発明は、塩素化される前の原料PVCの
重合度分布が塩素化後のCPVCの溶融粘度に影響する
ことを見いだした。即ち、通常の重合度分布をしたPV
Cを塩素化したCPVCに対して、平均重合度は同じで
あるが、異なる平均重合度を有するPVCを2種以上混
合して重合度分布を広げたPVCを塩素化したCPVC
は耐熱性を下げることなく溶融粘度が低下し、その結果
成形性が向上し良好な熱成形体が得られることを見いだ
した。
The present invention has found that the degree of polymerization distribution of the raw material PVC before chlorination affects the melt viscosity of CPVC after chlorination. That is, PV having a normal polymerization degree distribution
The average degree of polymerization is the same as that of CPVC obtained by chlorinating C, but a PVC obtained by mixing two or more PVCs having different average degrees of polymerization to broaden the degree of polymerization distribution is obtained by chlorinating PVC.
Found that the melt viscosity was reduced without lowering the heat resistance, and as a result, the moldability was improved and a good thermoformed product was obtained.

【0017】即ち、これまでのCPVCの原料には、通
常、重合度分布曲線がただ一つのピークを有するPVC
が用いられてきた。これに対して、異なる平均重合度の
PVCを2種以上混合し、この際に用いるPVCの内、
平均重合度が最も低いものと、平均重合度が最も高いも
のとの平均重合度の差が100〜400になるように混
合させたものを塩素化して得られたCPVCは、上記重
合度分布曲線がただ一つのピークを有し平均重合度が同
じであるPVCを塩素化して得られたCPVCよりも、
熱成形時の溶融粘度が低下し、その結果、熱成形が容易
となり、得られる成形体の物性及び外観が良好になる。
That is, the conventional CPVC raw materials usually include PVC having a polymerization degree distribution curve having only one peak.
Has been used. On the other hand, two or more PVCs having different average polymerization degrees are mixed, and among the PVCs used in this case,
CPVC obtained by chlorinating the mixture having a difference in average polymerization degree between the lowest average polymerization degree and the highest average polymerization degree being 100 to 400, the polymerization degree distribution curve Has a single peak and the same average degree of polymerization than the CPVC obtained by chlorinating PVC,
The melt viscosity at the time of thermoforming decreases, and as a result, thermoforming is facilitated, and the physical properties and appearance of the obtained molded body are improved.

【0018】特に、混合に用いるPVCの内、平均重合
度が400以上800未満であるPVCを用い、平均重
合度が最も低いものと、平均重合度が最も高いものとの
平均重合度の差が100〜400になるように混合させ
重合度分布曲線が2つ以上のピークを持つようなPVC
を塩素化して得られたCPVCは、熱成形性が更に良好
となり、より好ましい。
In particular, of the PVC used for mixing, PVC having an average degree of polymerization of 400 or more and less than 800 is used, and the difference between the average degree of polymerization and the one having the highest degree of polymerization is different. PVC which is mixed so as to have a polymerization degree distribution curve having two or more peaks.
CPVC obtained by chlorinating is more favorable in thermoformability, and is more preferable.

【0019】本発明の混合用に用いるPVCの平均重合
度は400以上800未満に限定される。平均重合度が
400未満のPVCを混合用に用いると、得られるCP
VCの耐衝撃性の低下が著しく大きくなり、平均重合度
が800以上のPVCを混合用に用いると、溶融粘度が
著しく上昇してしまい、重合度分布幅を広げても溶融粘
度を低下させる効果が低くなるので、上記範囲に限定さ
れる。
The average degree of polymerization of the PVC used for mixing in the present invention is limited to 400 or more and less than 800. When PVC having an average degree of polymerization of less than 400 is used for mixing, the resulting CP
The drop in the impact resistance of VC becomes remarkably large, and when a PVC having an average degree of polymerization of 800 or more is used for mixing, the melt viscosity is remarkably increased. Is reduced, so that it is limited to the above range.

【0020】本発明のCPVCの原料PVCの平均重合
度は450以上750未満になるように、上記混合用P
VCの平均重合度を調製する事が好ましい。平均重合度
が450未満では、熱成形時の金型への粘着が強くカス
レやヤケが生じ易く、成形体の外観不良が起こりやすく
なり、得られた成形体の耐衝撃性等の物性低下も大きく
実用に適さない。また、平均重合度が750以上では溶
融粘度が高過ぎて成形時に溶融粘度が大きく影響するカ
レンダー成形や射出成形には適さないので、上記範囲が
好ましい。
The raw material PVC for the CPVC of the present invention has an average polymerization degree of 450 or more and less than 750, so that the mixing P
It is preferable to adjust the average degree of polymerization of VC. If the average degree of polymerization is less than 450, adhesion to a mold during thermoforming is strong, and burrs and burns are liable to occur, and the appearance of the molded article tends to be poor. Large and unsuitable for practical use. When the average degree of polymerization is 750 or more, the melt viscosity is too high and is not suitable for calendering or injection molding, which greatly affects the melt viscosity during molding.

【0021】本発明において、上記重合度分布曲線が2
つ以上のピークを持つような広い分布のCPVCを得る
方法として、予め2種以上の平均重合度の異なるPVC
を混合したPVCを塩素化してCPVCを得ても、ある
いは、平均重合度の異なる2種以上のPVCを別々に塩
素化した後に混合してCPVCを得ても、いずれの方法
で得られたものであってもよい。
In the present invention, the polymerization degree distribution curve is 2
As a method for obtaining a wide distribution of CPVC having two or more peaks, two or more types of PVCs having different average polymerization degrees are used in advance.
Can be obtained by chlorinating a PVC mixed with, or by separately chlorinating two or more PVCs having different average degrees of polymerization and then mixing to obtain a CPVC. It may be.

【0022】本発明において、CPVCの平均塩素含有
量は60〜72重量%が好ましい。特に平均塩素含有量
が67重量%以上の高塩素化領域において、溶融粘度を
低下させ、熱成形性を向上させる効果が大きい。平均塩
素含有量が60重量%未満のCPVCは、その溶融粘度
は充分に低く重合度分布幅を広げて溶融粘度をこれ以上
低くしなくても良好な成形体を得ることができ、また、
平均塩素含有量が72重量%を超えるCPVCは耐衝撃
性等の物性値低下が大きく、実用使用には適さないので
上記範囲が好ましい。
In the present invention, the average chlorine content of CPVC is preferably from 60 to 72% by weight. Particularly in a high chlorination region having an average chlorine content of 67% by weight or more, the effect of reducing the melt viscosity and improving the thermoformability is great. CPVC having an average chlorine content of less than 60% by weight has a sufficiently low melt viscosity to obtain a good molded article without further lowering the melt viscosity by widening the polymerization degree distribution width.
The above range is preferable for CPVC having an average chlorine content of more than 72% by weight because physical properties such as impact resistance are greatly reduced and are not suitable for practical use.

【0023】本発明において、CPVCの原料として用
いられるPVCの製造方法は特に限定されず、例えば、
懸濁重合法、乳化重合法、あるいは塊状重合法等が挙げ
られ、この中では懸濁重合法によるものが好ましい。そ
の理由は懸濁重合法で得られたPVCは、多孔性の細か
い粒子として得られるからである。また、PVCの粒子
径については、PVC全体の95重量%以上が75〜5
00μmの粒子径であることが好ましい。その理由は、
75μm未満の細かい粒子や500μmを超える粗い粒
子が多くなると、得られたCPVCを熱成形する際に、
配合のバラツキを生じやすく、そのため加熱時に熱劣化
を生じ成形体の着色を招き、良好な成形体を得ることが
できなくなるからである。
In the present invention, the method for producing PVC used as a raw material for CPVC is not particularly limited.
Examples thereof include a suspension polymerization method, an emulsion polymerization method, and a bulk polymerization method. Among them, a method based on the suspension polymerization method is preferable. The reason is that PVC obtained by the suspension polymerization method is obtained as porous fine particles. As for the particle diameter of PVC, 95% by weight or more of the whole PVC is 75 to 5%.
Preferably, the particle size is 00 μm. The reason is,
When fine particles of less than 75 μm and coarse particles of more than 500 μm increase, when thermoforming the obtained CPVC,
The reason for this is that the composition tends to vary, which causes thermal deterioration during heating, causing the molded product to be colored, and making it impossible to obtain a good molded product.

【0024】本発明において、CPVCの原料として用
いられるPVCは、塩化ビニルの単独重合体の他、塩化
ビニルと他の単量体との共重合体であっても良い。他の
単量体としては、例えば、塩化ビニリデン、エチレン、
プロピレン、アクリロニトリル、酢酸ビニル、メタクリ
ル酸エステル等が挙げられる。
In the present invention, PVC used as a raw material for CPVC may be a homopolymer of vinyl chloride or a copolymer of vinyl chloride and another monomer. Other monomers, for example, vinylidene chloride, ethylene,
Examples include propylene, acrylonitrile, vinyl acetate, and methacrylic acid ester.

【0025】本発明において、該PVCを塩素化する方
法については一般的に知られているどの方法でおこなっ
ても、CPVCの優れた耐熱性は保持しながらその溶融
粘度は低く加工性が向上したCPVCが得られる。しか
しながら実際には加工時の熱履歴による分解により成形
体の着色が強くなる問題が生じていた。
In the present invention, regardless of the method of chlorinating the PVC, which is generally known, the melt viscosity is low and the processability is improved while maintaining the excellent heat resistance of CPVC. CPVC is obtained. However, in practice, there has been a problem that coloring of the molded article becomes strong due to decomposition due to heat history during processing.

【0026】そこで着色の少ない良好な成形体を得る手
段として、CPVCの熱安定性を向上させる目的で、特
開平6−228226に開示されている方法で塩素化反
応をおこなったところ、CPVCの熱安定性が向上し、
その結果、加工性も良く、外観良好、着色が少ないCP
VC成形体が得られることを見出した。
In order to improve the thermal stability of CPVC, a chlorination reaction was carried out by the method disclosed in JP-A-6-228226. Improved stability,
As a result, good workability, good appearance, and little coloring CP
It has been found that a VC molded body can be obtained.

【0027】即ち、密閉できる容器内でPVCを水性媒
体中に懸濁させ、容器内に窒素を吹き込んで容器内の酸
素を除いた後、塩素を容器内に導入してPVCを塩素化
する方法において、塩素化の過程でPVCに対して5〜
100ppm量の過酸化水素を容器内に添加し、100
〜140℃の温度でPVCを塩素化する。
That is, a method of suspending PVC in an aqueous medium in a sealable container, blowing nitrogen into the container to remove oxygen in the container, and introducing chlorine into the container to chlorinate PVC. In the chlorination process, 5 to PVC
100 ppm of hydrogen peroxide was added to the container,
Chlorinate PVC at a temperature of 140140 ° C.

【0028】上記過酸化水素の添加時期は、容器内の酸
素を除いた後であれば、塩素の導入前であってもよく、
また塩素の導入後であってもよい。あるいは、PVCの
塩素化反応の末期近くであってもよい。
The hydrogen peroxide may be added before the introduction of chlorine as long as oxygen is removed from the container.
It may be after the introduction of chlorine. Alternatively, it may be near the end of the chlorination reaction of PVC.

【0029】過酸化水素は、純粋な過酸化水素の形で添
加してもよいが、溶液の形で添加するのが好ましい。特
に水溶液の形で添加するのが好ましい。過酸化水素の添
加量は、PVCに対して5〜100ppm量が好まし
い。5ppm以下ではPVCの塩素化が円滑に行われ
ず、得られたCPVCの熱安定性も向上しないからであ
り、100ppm以上では得られるCPVCの熱安定性
が逆に悪くなるからである。
The hydrogen peroxide may be added in the form of pure hydrogen peroxide, but is preferably added in the form of a solution. Particularly, it is preferable to add in the form of an aqueous solution. The amount of hydrogen peroxide to be added is preferably 5 to 100 ppm based on PVC. If the content is 5 ppm or less, the chlorination of PVC is not performed smoothly, and the thermal stability of the obtained CPVC is not improved. If the content is 100 ppm or more, the thermal stability of the obtained CPVC deteriorates.

【0030】添加された過酸化水素は、塩素化反応の過
程で徐々に消費されるので、過酸化水素の添加は一時に
行わないで、少量ずつ長い時間に渡って行うことが好ま
しい。塩素を導入してのち30分から1時間経過した時
点で過酸化水素の添加を始め、塩素化反応の終了時の3
0分から1時間前に過酸化水素の添加を終えるのがより
好ましい。
Since the added hydrogen peroxide is gradually consumed in the course of the chlorination reaction, it is preferable that the addition of the hydrogen peroxide is not carried out at once but is carried out little by little over a long period of time. 30 minutes to one hour after the introduction of chlorine, the addition of hydrogen peroxide was started, and 3 hours at the end of the chlorination reaction.
More preferably, the addition of hydrogen peroxide is completed from 0 minutes to 1 hour before.

【0031】また、塩素化反応としては100〜140
℃の範囲が好ましい。100℃未満では塩素化反応速度
が遅く、塩素化に長時間を要し、140℃を超えると塩
素化と共に脱塩酸反応が起こり、得られるCPVCが着
色したものとなるからである。
The chlorination reaction is 100 to 140
C. is preferred. If the temperature is lower than 100 ° C., the chlorination reaction rate is slow, and a long time is required for the chlorination. If the temperature exceeds 140 ° C., the chlorination and the dehydrochlorination reaction take place, and the obtained CPVC becomes colored.

【0032】本発明では、密閉できる容器内でPVCを
水性媒体中に懸濁させる。密閉できる容器としては、ガ
ラスライニングをした耐圧容器で、攪拌機と加熱冷却用
のジャケットとを備えたものが好ましい。この容器の中
へ適当量の脱イオン水を入れ、次いでこの中へ適当量の
PVC粉末を投入し、容器内を攪拌してPVCを水中に
分散させて、PVCを水中に懸濁させる。
In the present invention, PVC is suspended in an aqueous medium in a sealable container. The hermetically sealable container is preferably a glass-lined pressure-resistant container provided with a stirrer and a heating and cooling jacket. An appropriate amount of deionized water is put into the container, and then an appropriate amount of PVC powder is put into the container, and the inside of the container is stirred to disperse the PVC in the water and suspend the PVC in the water.

【0033】本発明では、上述のようにして得たPVC
懸濁液の入った容器から酸素を除く。このためには、最
初に真空ポンプを使用して容器内を吸引し脱気すること
が好ましい。吸引は容器内の気圧が、例えばその時の水
の蒸気圧に水銀柱20mmHgの圧力を加えた程度の圧
力に達するまで行い、この程度の圧力に数分間維持する
ことによって最初の脱気を行う。その後、容器内に窒素
を圧入してしばらく放置した後、再び真空ポンプによっ
て吸引脱気を行って酸素を除く。この操作を繰り返し
て、容器内の酸素量を100ppm以下とする。
In the present invention, the PVC obtained as described above is used.
Remove oxygen from container with suspension. For this purpose, it is preferable that the inside of the container is first suctioned and deaerated using a vacuum pump. Suction is performed until the pressure in the container reaches, for example, a pressure of about 20 mmHg of mercury added to the vapor pressure of water at that time, and the first degassing is performed by maintaining this pressure for several minutes. Then, after nitrogen is injected into the container and left for a while, suction and deaeration is again performed by a vacuum pump to remove oxygen. This operation is repeated to reduce the amount of oxygen in the container to 100 ppm or less.

【0034】上述のようにして、容器内の酸素を除いて
から、容器内に塩素を導入してPVCを塩素化する。そ
の時導入する塩素は純粋なものが好ましいが、市販の塩
素をそのまま使用してもよい。市販の塩素は1000p
pm以上の酸素を含んでいるが、本発明ではこのような
塩素をそのままPVCの塩素化に用いる事ができる。
又、塩素化するにあたって、前記のように過酸化水素を
添加し、加熱して上記の高温に維持する。
As described above, after removing oxygen in the container, chlorine is introduced into the container to chlorinate PVC. Pure chlorine is preferably introduced at that time, but commercially available chlorine may be used as it is. Commercial chlorine is 1000p
Although it contains oxygen of pm or more, in the present invention, such chlorine can be used as it is for chlorination of PVC.
In chlorination, hydrogen peroxide is added as described above and heated to maintain the above high temperature.

【0035】本発明では、塩素化反応時の圧力としては
特に限定していないが、その時の水蒸気の圧力に0.3
〜5.0Kg/cm2 の圧力を加えた範囲で行うのが好
ましい。圧力が低いと塩素の供給不足を招き、塩素化反
応が円滑に進まないことになるし、圧力が高いと耐圧容
器のコストが係り有利でなくなるからである。
In the present invention, the pressure during the chlorination reaction is not particularly limited.
It is preferable to perform the reaction in a range in which a pressure of ~ 5.0 kg / cm 2 is applied. If the pressure is low, the supply of chlorine will be insufficient, and the chlorination reaction will not proceed smoothly. If the pressure is high, the cost of the pressure-resistant container will increase, which is not advantageous.

【0036】[0036]

【発明の実施の形態】以下に実施例を掲げて本発明を更
に詳しく説明するが、本発明はこれら実施例のみに限定
されるものではない。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

【0037】(実施例1〜10、比較例1〜10)連鎖
移動剤と重合温度を変化させることにより平均重合度を
調整したPVCを懸濁重合法によって重合し、平均重合
度が400以上800未満の範囲にある平均重合度の異
なる数種類のPVCを作製した。得られたPVCを表
1、2に示す様にそれぞれの原料PVCの平均重合度、
混合比、混合されたPVCの平均重合度のものを、水懸
濁系で水銀ランプ照射下で塩素化し、その平均塩素含有
量が66.5重量%及び68.5重量%に示す値に達す
るまで反応した。その後発生する塩酸と残存する塩素を
除去した後、脱水、乾燥してCPVCを得た。得られた
CPVCを用いて下記の配合で成形加工性(溶融粘度、
耐熱性、加工性)について評価した。その結果を表1、
2に示す。
(Examples 1 to 10, Comparative Examples 1 to 10) A chain transfer agent and PVC whose average degree of polymerization was adjusted by changing the polymerization temperature were polymerized by a suspension polymerization method, and the average degree of polymerization was 400 to 800. Several types of PVC having different average degrees of polymerization in the range of less than were prepared. As shown in Tables 1 and 2, the obtained PVC was subjected to an average polymerization degree of each raw material PVC,
Mixing ratio, the average polymerization degree of the mixed PVC are chlorinated in a water suspension system under irradiation with a mercury lamp, and the average chlorine content reaches the values shown in 66.5% by weight and 68.5% by weight. Reacted. After removing hydrochloric acid and residual chlorine generated thereafter, dehydration and drying were performed to obtain CPVC. The molding processability (melt viscosity,
(Heat resistance, workability). Table 1 shows the results.
It is shown in FIG.

【0038】(実施例11〜22)連鎖移動剤と重合温
度を変化させることにより平均重合度を調整したPVC
を懸濁重合法によって重合し、平均重合度が400以上
800未満の範囲にある平均重合度の異なる数種類のP
VCを作製した。得られたPVCを表3に示す様にそれ
ぞれの原料PVCの平均重合度、混合比、混合されたP
VCの平均重合度のものを、水懸濁系で水銀ランプ照射
下で塩素化し、その平均塩素含有量が66.5重量%及
び68.5重量%に示す値に達するまで反応した。その
後発生する塩酸と残存する塩素を除去した後、脱水、乾
燥してCPVCを得た。得られたCPVCを用いて下記
の配合で成形加工性(溶融粘度、耐熱性、加工性)につ
いて評価した。その結果を表3に示す。
(Examples 11 to 22) PVC in which the average degree of polymerization was adjusted by changing the chain transfer agent and the polymerization temperature
Are polymerized by a suspension polymerization method, and several kinds of P having different average polymerization degrees are in the range of 400 to less than 800.
VC was produced. As shown in Table 3, the average degree of polymerization of each raw material PVC, the mixing ratio, and the
VC having an average degree of polymerization was chlorinated in a water suspension under irradiation with a mercury lamp, and reacted until the average chlorine content reached the values shown in 66.5% by weight and 68.5% by weight. After removing hydrochloric acid and residual chlorine generated thereafter, dehydration and drying were performed to obtain CPVC. Using the obtained CPVC, molding processability (melt viscosity, heat resistance, processability) was evaluated with the following composition. Table 3 shows the results.

【0039】また、上記と同様の原料PVCを用い、塩
素化方法として、水銀ランプを照射せず塩素化過程にお
いてPVCに対し約10ppmの過酸化水素を添加し1
00℃の温度で塩素化した平均塩素含有量が66.5重
量%及び68.5重量%のCPVCを用いて下記配合で
成形加工性、およびに熱安定性について評価した。その
結果を表3に示す。
The same raw material PVC as described above was used. As a chlorination method, about 10 ppm of hydrogen peroxide was added to PVC in the chlorination process without irradiation with a mercury lamp.
Using CPVC having an average chlorine content of 66.5% by weight and 68.5% by weight chlorinated at a temperature of 00 ° C., the following formula was evaluated for moldability and heat stability. Table 3 shows the results.

【0040】上記成形加工性を評価するためのCPVC
の配合組成としては、CPVC100重量部、メチルメ
タクリレート・ブタジエン・スチレン共重合樹脂10重
量部、メチルメタクリレート樹脂0.5重量部、ジブチ
ル錫マレエート2.0重量部、及びブチルステアレート
0.5重量部からなるものを使用した。
CPVC for evaluating the above moldability
Is 100 parts by weight of CPVC, 10 parts by weight of methyl methacrylate / butadiene / styrene copolymer resin, 0.5 parts by weight of methyl methacrylate resin, 2.0 parts by weight of dibutyltin maleate, and 0.5 parts by weight of butyl stearate. Was used.

【0041】〔溶融粘度〕高化式フローテスター(島津
製作所社製)を使用して、CPVCを200℃で1mm
φ×1mm長さのダイスを用い100kg/cm2 荷重
下で測定した。試料は上記配合物を2本の6インチロー
ルで200℃×2分間混練してシートを作製し、そのシ
ートを約5mm×5mmの大きさに切断したものを用い
た。溶融粘度(η)は下記式により求めた。 溶融粘度(η)=πPD4 /8LQ 〔式中、P=測定圧力(dyne/cm2 )、D=ダイ
穴直径(mm)、L=ダイ長さ(mm)、Q=フローレ
ート(cm3 /秒)をそれぞれ表す。〕
[Melt Viscosity] Using a Koka type flow tester (manufactured by Shimadzu Corporation), CPVC was measured at 200 ° C. for 1 mm.
The measurement was performed under a load of 100 kg / cm 2 using a dice having a length of φ × 1 mm. As a sample, a sheet was prepared by kneading the above composition with two 6-inch rolls at 200 ° C. for 2 minutes, and the sheet was cut into a size of about 5 mm × 5 mm. The melt viscosity (η) was determined by the following equation. Melt viscosity (η) = πPD 4 / 8LQ [where P = measurement pressure (dyne / cm 2 ), D = die hole diameter (mm), L = die length (mm), Q = flow rate (cm 3) / Sec). ]

【0042】〔耐熱性(柔軟温度)〕上記シートを積層
し、195℃×3分間予熱した後、圧力150kg/c
2で2分間プレス成形して厚さ1mmに加工したプレ
ス板を得た。この板より試験片を切り出し、JIS K
6745「硬質塩化ビニル板」の6.5熱軟化温度
(柔軟温度)試験方法に準拠した。
[Heat resistance (flexible temperature)] After laminating the above sheets and preheating at 195 ° C for 3 minutes, the pressure was 150 kg / c.
A press plate processed to a thickness of 1 mm by press molding at m 2 for 2 minutes was obtained. A test piece is cut out from this plate, and JIS K
The test method was based on the 6.545 softening temperature (softening temperature) test method for 6745 “hard vinyl chloride plate”.

【0043】〔加工性〕 1)シート表面性 上記配合組成物を2本の6インチロールで200℃×2
分間混練して作製したシートの表面を肉眼で観察し、シ
ートが平滑なものを「○」、平滑でないものを「×」、
その中間レベルにあるものを「△」とした。 2)バンク廻り シート作製中のロールに巻き込まれるシートの状態(バ
ンク廻り)を肉眼で観察し、良好なものから順に
「○」、「△」、「×」にて評価した。 3)粘着性 シートを取り出すとき、シートとロール面とが剥がれ易
いものを「○」、粘着して剥がれにくいものを「×」、
若干粘着が見られるものを「△」とした。
[Workability] 1) Sheet surface properties The above composition was rolled at 200 ° C. × 2 using two 6-inch rolls.
The surface of the sheet prepared by kneading for minutes was observed with the naked eye.
Those at the intermediate level were marked with “△”. 2) Around the bank The state (around the bank) of the sheet wound around the roll during the sheet production was visually observed, and evaluated in order from good to “good”, “Δ”, and “x”. 3) Adhesive When taking out the sheet, "○" indicates that the sheet and the roll surface are easily peeled off, "X" indicates that the sheet is sticky and hardly peeled off.
Those with slight adhesion were marked with "△".

【0044】〔熱安定性〕 1)老化熱安定性 上記シートから約4cm×4cmの試験片を切り出し、
これらを200℃のギヤオーブン中に入れ10分毎に取
り出し、シートが黒化するまでの時間(分)で老化熱安
定性を示した。 2)初期着色性 上記シートを積層し、195℃×4分予熱した後、圧力
150kg/cm2 で5分プレス成形して厚さ3mmに
加工したプレス板を得た。このプレス板の黄色度を色差
計を用いて測定しΔYI値で示した。
[Thermal Stability] 1) Aging Thermal Stability A test piece of about 4 cm × 4 cm was cut out from the above sheet.
These were put in a gear oven at 200 ° C. and taken out every 10 minutes, and the aging heat stability was shown by the time (minutes) until the sheet turned black. 2) Initial Colorability The above sheets were laminated, preheated at 195 ° C. for 4 minutes, and then press-molded at a pressure of 150 kg / cm 2 for 5 minutes to obtain a pressed plate having a thickness of 3 mm. The yellowness of the press plate was measured using a color difference meter and indicated by a ΔYI value.

【0045】PVCの平均重合度及びCPVCの平均塩
素含有量については、以下の方法により求めた。 (PVCの平均重合度)JIS K 6721「塩化ビ
ニル樹脂試験方法」の3.1比粘度に準拠して測定し、
平均重合度を算出した。 (CPVCの平均塩素含有量)JIS K 7229
「塩素含有樹脂中の塩素の定量方法」の酸素フラスコ燃
焼法に準拠して測定し、樹脂中の平均塩素含有量を重量
%で示した。
The average degree of polymerization of PVC and the average chlorine content of CPVC were determined by the following methods. (Average degree of polymerization of PVC) Measured according to 3.1 specific viscosity of JIS K 6721 "Testing method for vinyl chloride resin",
The average degree of polymerization was calculated. (Average chlorine content of CPVC) JIS K 7229
It was measured according to the oxygen flask combustion method of "Method for Quantifying Chlorine in Chlorine-Containing Resin", and the average chlorine content in the resin was shown by weight%.

【0046】[0046]

【表1】 [Table 1]

【0047】[0047]

【表2】 [Table 2]

【0048】[0048]

【表3】 [Table 3]

【0049】[0049]

【発明の効果】本発明のCPVCは、原料に用いるPV
Cの平均重合度が450以上750未満であり、その重
合度分布幅を広げるために、平均重合度が400以上8
00未満のPVCを2種以上混合して用いる際に、混合
に用いるPVCの内、最低の重合度と最高の重合度の差
が100〜400になるよに混合したPVCを使用する
ことにより、同じ平均重合度であっても、混合していな
いPVCを原料に用いて得たCPVCよりも溶融粘度が
低くなり、その結果熱成形性が向上し良好な成形体が得
られる。また該PVCの塩素化反応方法として塩素化の
過程でPVCに対し5〜100ppmの過酸化水素を添
加し、90〜140℃の温度で塩素化反応をおこなうこ
とによりCPVCの熱安定性を向上させる。その結果熱
成形性が向上しかつ着色の少ない良好な成形体が得られ
る。
As described above, the CPVC of the present invention can be used as a raw material for PV.
The average degree of polymerization of C is 450 or more and less than 750, and the average degree of polymerization is 400 or more and 8
When two or more kinds of PVC less than 00 are mixed and used, by using the PVC mixed so that the difference between the lowest polymerization degree and the highest polymerization degree becomes 100 to 400 among the PVCs used for the mixing, Even at the same average polymerization degree, the melt viscosity is lower than that of CPVC obtained by using unmixed PVC as a raw material, and as a result, thermoformability is improved and a good molded product is obtained. Further, as a chlorination reaction method of the PVC, the thermal stability of CPVC is improved by adding 5 to 100 ppm of hydrogen peroxide to PVC during the chlorination process and performing the chlorination reaction at a temperature of 90 to 140 ° C. . As a result, a good molded product with improved thermoformability and less coloring can be obtained.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 塩化ビニル系樹脂を塩素化してなる塩素
化塩化ビニル系樹脂であって、該塩化ビニル系樹脂は平
均重合度が800未満である異なる平均重合度の塩化ビ
ニル系樹脂を2種以上混合したものであることを特徴と
する塩素化塩化ビニル系樹脂。
Claims: 1. A chlorinated vinyl chloride resin obtained by chlorinating a vinyl chloride resin, wherein the vinyl chloride resin comprises two kinds of vinyl chloride resins having an average degree of polymerization of less than 800. A chlorinated vinyl chloride resin characterized by being a mixture of the above.
【請求項2】 塩化ビニル系樹脂の平均重合度が450
以上750未満であるように、異なる平均重合度の塩化
ビニル系樹脂を2種以上混合したものを用いることを特
徴とする請求項1記載の塩素化塩化ビニル系樹脂。
2. The vinyl chloride resin has an average degree of polymerization of 450.
The chlorinated vinyl chloride resin according to claim 1, wherein a mixture of two or more kinds of vinyl chloride resins having different average polymerization degrees is used so as to be less than 750.
【請求項3】 平均塩素含有量が60〜72重量%であ
る請求項1又は2記載の塩素化塩化ビニル系樹脂。
3. The chlorinated vinyl chloride resin according to claim 1, wherein the average chlorine content is 60 to 72% by weight.
【請求項4】 混合に用いる塩化ビニル系樹脂の平均重
合度がそれぞれ400以上800未満であり、それぞれ
の塩化ビニル系樹脂の平均重合度の最大と最小との差が
100〜400である請求項1〜3記載の塩素化塩化ビ
ニル系樹脂。
4. The average degree of polymerization of the vinyl chloride resin used for mixing is 400 or more and less than 800, and the difference between the maximum and minimum of the average degree of polymerization of each vinyl chloride resin is 100 to 400. The chlorinated vinyl chloride resin according to any one of 1 to 3.
【請求項5】 塩素化塩化ビニル系樹脂を製造する際、
塩素化の過程で原料の塩化ビニル系樹脂に対し5〜10
0ppmの過酸化水素を反応容器内に添加し、90〜1
40℃の温度で塩素化反応を行うことを特徴とする請求
項1〜4記載の塩素化塩化ビニル系樹脂。
5. When producing a chlorinated vinyl chloride resin,
During the chlorination process, 5-10
0 ppm of hydrogen peroxide is added into the reaction vessel, and 90 to 1
The chlorinated vinyl chloride resin according to claim 1, wherein the chlorination reaction is performed at a temperature of 40C.
【請求項6】 熱成形用であることを特徴とする請求項
1〜5記載の塩素化塩化ビニル系樹脂。
6. The chlorinated vinyl chloride resin according to claim 1, which is for thermoforming.
JP24713898A 1998-04-08 1998-09-01 Chlorinated vinyl chloride-based resin Pending JPH11349767A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24713898A JPH11349767A (en) 1998-04-08 1998-09-01 Chlorinated vinyl chloride-based resin

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-96032 1998-04-08
JP9603298 1998-04-08
JP24713898A JPH11349767A (en) 1998-04-08 1998-09-01 Chlorinated vinyl chloride-based resin

Publications (1)

Publication Number Publication Date
JPH11349767A true JPH11349767A (en) 1999-12-21

Family

ID=26437264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24713898A Pending JPH11349767A (en) 1998-04-08 1998-09-01 Chlorinated vinyl chloride-based resin

Country Status (1)

Country Link
JP (1) JPH11349767A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116790081A (en) * 2023-07-28 2023-09-22 新疆至臻化工工程研究中心有限公司 Method for producing chlorinated polymer mixture by coupling chlorination process

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116790081A (en) * 2023-07-28 2023-09-22 新疆至臻化工工程研究中心有限公司 Method for producing chlorinated polymer mixture by coupling chlorination process

Similar Documents

Publication Publication Date Title
AU758099B2 (en) Processing aid for vinyl chloride resin and vinyl chloride resin composition containing the same
CN111886266B (en) Thermoplastic acrylic resin, process for producing the same, and resin composition
WO2015152260A1 (en) Production method for chlorinated vinyl chloride resin
JP6348615B2 (en) Acrylic processing aid and vinyl chloride resin composition containing the same
JPH11166090A (en) Vinyl chloride-based resin composition
JPH02269755A (en) Vinyl chloride resin composition
WO2006112192A1 (en) (meth)acrylic polymer and vinyl chloride resin composition containing the same
KR100828726B1 (en) Nano composite composition comprising vinylchloride based copolymer and method of producing the same
US7432320B2 (en) Processing aid for vinyl chloride resin and vinyl chloride resin composition
JPH11349767A (en) Chlorinated vinyl chloride-based resin
US3583956A (en) Vinyl chloride polymers
JPS61133257A (en) Vinyl chloride resin composition
JPH05271352A (en) Preparation of melt-processable acrylonitrile/ methacrylonitrile copolymer
US4871780A (en) Porous copolymer resins
JPH1143509A (en) Production of chlorinated vinyl chloride-based resin
JP3176504B2 (en) Method for producing chlorinated vinyl chloride resin
JP2005036196A (en) Vinyl chloride resin and vinyl chloride resin-molded article
JPH08134142A (en) Production of matte vinyl chloride-based polymer and production of composition of the same polymer
JPS61278520A (en) Modification of fluoroelastomer particle
JP2818101B2 (en) Method for producing chlorinated vinyl chloride resin
JPS58103507A (en) Production of chlorinated vinyl chloride resin
JP2006083334A (en) Vinyl chloride copolymer resin, method for producing the same and its resin composition
JP2005036195A (en) Vinyl chloride resin and vinyl chloride resin-molded article
US4950693A (en) Porous copolymer resins
JPS5946962B2 (en) Method for producing chlorinated vinyl chloride resin