JPH0762020A - Production of chlorinated vinyl chloride resin - Google Patents

Production of chlorinated vinyl chloride resin

Info

Publication number
JPH0762020A
JPH0762020A JP22950793A JP22950793A JPH0762020A JP H0762020 A JPH0762020 A JP H0762020A JP 22950793 A JP22950793 A JP 22950793A JP 22950793 A JP22950793 A JP 22950793A JP H0762020 A JPH0762020 A JP H0762020A
Authority
JP
Japan
Prior art keywords
cpvc
vinyl chloride
chloride resin
temperature
impact strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP22950793A
Other languages
Japanese (ja)
Inventor
Teruo Fujimoto
照雄 藤本
Ryuji Tamura
柳二 田村
Hideaki Yoshitomi
英明 吉富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Sekisui Co Ltd
Original Assignee
Tokuyama Sekisui Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Sekisui Co Ltd filed Critical Tokuyama Sekisui Co Ltd
Priority to JP22950793A priority Critical patent/JPH0762020A/en
Publication of JPH0762020A publication Critical patent/JPH0762020A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PURPOSE:To obtain the subject resin providing a molded article having high impact strength, being readily gelatinized, by suspending polyethylene powder having a specific melt index together with a vinyl chloride resin in an aqueous medium, chlorinating the vinyl chloride by introducing a chlorine gas. CONSTITUTION:0.5-2wt.% based on a vinyl chloride resin of polyethylene powder having 0.1-10g/10 minutes melt index and the vinyl chloride resin are dispersed in an aqueous medium such as deionized water into a suspension in a glass lined reactor equipped with a circulation type jacket and oxygen in the reactor is eliminated and sufficiently replaced with nitrogen. At a point of time when the reactor is heated to 125 deg.C, chlorine is introduced into the reactor and the vinyl chloride resin is chlorinated to give the objective high-quality chlorinated vinyl chloride resin which is useful for heat-resistant pipes, heat-resistant joints, heat-resistant valves, etc., is readily gelatinized and provides molded articles having high impact strength.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、塩素化塩化ビニル樹
脂の製造方法に関するものである。とくにこの発明は、
得られた塩素化塩化ビニル樹脂が塩化ビニル樹脂の良好
な特性を失わないでゲル化し易く、そのために衝撃強度
の高い成形体を容易に作れるものである点に特色を持っ
ている。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a chlorinated vinyl chloride resin. In particular, this invention
The obtained chlorinated vinyl chloride resin has a feature that it easily gels without losing the good characteristics of the vinyl chloride resin, and therefore a molded article having high impact strength can be easily produced.

【0002】[0002]

【従来の技術】塩素化塩化ビニル樹脂(以下、これをC
PVCという)は、塩化ビニル樹脂(以下、これをPV
Cという)を塩素化して作られる。CPVCはPVCの
長所と云われる特性を残し、PVCの欠点と云われる性
質を改良したものとなっている。すなわち、CPVCは
PVCの持つ優れた耐候性、耐火炎性、耐薬品性をその
まま残し、耐熱性が劣るというPVCの欠点を改良した
ものとなっている。さらに詳しく云えば、PVCは熱変
形温度が低くて熱水に対しては使用できないのに、CP
VCは熱変形温度がPVCよりも20−40℃も高く
て、熱水に対しても使用できるものとなっている。従っ
て、CPVCは耐熱パイプ、耐熱継手、耐熱バルブなど
を作るのに適している。
2. Description of the Related Art Chlorinated vinyl chloride resin (hereinafter referred to as C
PVC is a vinyl chloride resin (hereinafter referred to as PV
It is made by chlorinating C). CPVC retains the characteristic of PVC as an advantage and improves the characteristic of PVC as a defect. That is, CPVC is a product in which the excellent weather resistance, flame resistance, and chemical resistance of PVC are left as they are, and the disadvantage of PVC that heat resistance is inferior is improved. More specifically, PVC has a low heat distortion temperature and cannot be used for hot water.
The heat distortion temperature of VC is 20-40 ° C. higher than that of PVC, and it can be used for hot water. Therefore, CPVC is suitable for making heat resistant pipes, heat resistant joints, heat resistant valves and the like.

【0003】上述のように、CPVCはPVCよりも熱
変形温度が高い。従って、CPVCを加工して成形体と
するには、当然PVCよりも高い温度に加熱してゲル化
させなければならない。ところが、CPVCは熱安定性
が悪くて、これを加熱してゲル化させようとすると、す
ぐに分解して着色する。従って、CPVCはPVCより
も加熱によってゲル化させることが困難である。このた
めに、CPVCから成形体を作るときには、CPVCを
充分にゲル化させないで成形体とすることとなった。従
って、CPVCの成形体はPVCよりも衝撃強度が劣
る、という結果を招くこととなった。その結果、CPV
Cはその利用を狭められることとなった。
As mentioned above, CPVC has a higher heat distortion temperature than PVC. Therefore, in order to process CPVC into a molded body, it must be heated to a temperature higher than that of PVC to cause gelation. However, CPVC has poor thermal stability, and when it is heated and gelated, it immediately decomposes and becomes colored. Therefore, CPVC is more difficult to gel by heating than PVC. For this reason, when forming a molded product from CPVC, CPVC was not sufficiently gelled to form a molded product. Therefore, the result is that the molded product of CPVC is inferior in impact strength to PVC. As a result, CPV
C will be limited in its use.

【0004】そこで、CPVCの熱安定性を高めようと
の試みがなされた。熱安定性を高めるための試みは、C
PVCに安定剤、滑剤などの添加剤を添加することによ
って行われた。添加剤のうちには、CPVCの熱安定性
を幾分高めるものもあったが、添加剤を添加してCPV
Cを充分にゲル化できるまでに熱安定性を高めようとす
ると、大量の添加剤を加える必要があり、その結果添加
剤のために得られた成形体が歪み易くなる、などの新た
な欠点を生じた。このため、この試みによっては、CP
VC成形体の耐衝撃性を改良することができなかった。
Attempts have therefore been made to increase the thermal stability of CPVC. Attempts to increase thermal stability have been made with C
This was done by adding additives such as stabilizers and lubricants to PVC. Some of the additives increased the thermal stability of CPVC to some extent.
If it is attempted to increase the thermal stability before C can be sufficiently gelled, it is necessary to add a large amount of additive, and as a result, the molded product obtained due to the additive is easily distorted. Occurred. Therefore, depending on this attempt, CP
The impact resistance of the VC molded product could not be improved.

【0005】CPVCに添加剤を加えるのではないが、
エチレン系重合体を用いて、CPVCの熱安定性を改良
する方法が知られている。これは特開昭63−1227
15号公報に記載されている。この公報は、PVCを製
造するにあたり、平均分子量が5000以下のエチレン
系重合体を水性媒体中に加えておき、この中で塩化ビニ
ルを重合させてPVCを作り、次いでこのPVCを塩素
化してCPVCにすると、得られたCPVCが熱安定性
の改良されたものになる、と記載している。しかし、こ
の方法は、PVCから出発してCPVCを得るという方
法を基準にすると、原料として特殊なPVCを使用する
ことにあたるので、CPVCの製造方法としては一般的
でなく、さらに充分な効果を得るには、分散剤としてセ
ルロース誘導体だけを使用しなければならないという制
約があるので、一般的でないという欠点があった。
Although no additives are added to CPVC,
A method for improving the thermal stability of CPVC using an ethylene-based polymer is known. This is Japanese Patent Laid-Open No. 63-1227.
No. 15 publication. This publication discloses that in producing PVC, an ethylene polymer having an average molecular weight of 5000 or less is added to an aqueous medium, vinyl chloride is polymerized therein to make PVC, and then this PVC is chlorinated to obtain CPVC. It is described that the obtained CPVC has improved thermal stability. However, this method, which is based on the method of starting CPVC to obtain CPVC, corresponds to the use of a special PVC as a raw material, and thus is not a general method for producing CPVC, and a sufficient effect can be obtained. Has the drawback of being uncommon because of the limitation that only a cellulose derivative must be used as a dispersant.

【0006】[0006]

【発明が解決しようとする課題】この発明は、普通のP
VCを原料に使用して、これを塩素化することによって
CPVCを作り、得られたCPVCが良質のものであっ
て、耐衝撃性の良好なCPVC成形体を作ることができ
るようにしようとするものである。
SUMMARY OF THE INVENTION The present invention is an ordinary P
To use CP as a raw material and to make CPVC by chlorinating it so that the obtained CPVC is of good quality and has good impact resistance. It is a thing.

【0007】[0007]

【課題を解決するための手段】この発明者は、上記の課
題を解決するために、これまでとは別の立場に立って検
討を加えた。すなわち、これまでは上述のように、CP
VCの熱安定性を向上させようとして添加剤を加えて来
たが、このようなやり方では新たな欠点が生じるので、
根本的な解決にならないと考えた。そこで、この発明者
は考え方を変えて、加熱したときゲル化し易いCPVC
を提供することによって、耐衝撃性を向上させようと考
えた。
Means for Solving the Problems In order to solve the above-mentioned problems, the present inventor made a study from a position different from the conventional one. That is, as described above, the CP
Additives have been added in an attempt to improve the thermal stability of VC, but this approach introduces new drawbacks,
I thought it would not be a fundamental solution. Therefore, the present inventor changed his way of thinking so that CPVC easily gelated when heated.
It was thought that the impact resistance could be improved by providing

【0008】この発明者は、PVCの水性懸濁液を作
り、この液中に少量のポリエチレン粉末を添加して塩素
化することを試み、さらにこうして得られたCPVCを
材料として成形体を作ることを試みた。その結果、ポリ
エチレン粉末として特定なものを用い、これを特定量だ
け加えて塩素化し、且つ塩素化反応を比較的高い温度に
すると、ここにゲル化の容易なCPVCの得られること
を見出した。この発明は、このような知見に基づいて完
成されたものである。
The present inventor made an aqueous suspension of PVC, tried to add a small amount of polyethylene powder to this solution and chlorinated it, and further made a molded article using the CPVC thus obtained as a material. Tried. As a result, it has been found that when a specific polyethylene powder is used and added in a specific amount to chlorinate and the chlorination reaction is carried out at a relatively high temperature, CPVC which is easily gelated can be obtained. The present invention has been completed based on such knowledge.

【0009】この発明は、メルトインデックスが0.1
〜10g/分のポリエチレン粉末を、PVCに対し0.
5〜2重量%の割合で、PVCとともに水性媒体中に分
散させて懸濁液とし、懸濁液中に塩素を吹き込んでPV
Cを塩素化することを特徴とする、CPVCの製造方法
に関するものである。
The present invention has a melt index of 0.1.
10 to 10 g / min of polyethylene powder was added to PVC at 0.
At a rate of 5 to 2% by weight, it is dispersed together with PVC in an aqueous medium to form a suspension, and chlorine is blown into the suspension to produce PV.
It relates to a method for producing CPVC, which comprises chlorinating C.

【0010】この発明は、PVCを水性媒体中に分散さ
せて懸濁状態で塩素化するにあたり、水性媒体中にポリ
エチレン(以下、PEという)の粉末を存在させること
を最大の特徴としている。PEは、そのメルトインデッ
クス(以下、MIという)が0.1〜10g/分である
ことが必要とされる。その理由は実験的事実に基づいて
いる。すなわち、MIが0.1g/分未満では得られた
CPVCがゲル化し難くなるからであり、逆に10g/
分を越えると得られたCPVCの衝撃強度が低下するか
らである。そのうちでは、PEは0.5〜5g/分のM
Iを持っていることが好ましい。
The greatest feature of the present invention is that when PVC is dispersed in an aqueous medium and chlorinated in a suspended state, polyethylene (hereinafter referred to as PE) powder is present in the aqueous medium. PE needs to have a melt index (hereinafter referred to as MI) of 0.1 to 10 g / min. The reason is based on experimental facts. That is, when the MI is less than 0.1 g / min, the obtained CPVC becomes difficult to gel, and conversely 10 g / min.
This is because the impact strength of the obtained CPVC decreases when the amount exceeds the limit. Among them, PE is 0.5-5 g / min M
It is preferable to have I.

【0011】上記のPEは、その添加量をPVCに対し
て0.5〜2重量%とすることが必要である。その理由
も実験的事実に基づいている。すなわち、PEの添加量
が0.5重量%未満では、得られたCPVCがゲル化し
難いものとなるからであり、逆に添加量が2重量%を越
えると、CPVCが加熱変形温度の低いものとなって、
CPVCの最大の特徴を失うことになるからである。
The above PE should be added in an amount of 0.5 to 2% by weight based on PVC. The reason is also based on experimental facts. That is, when the amount of PE added is less than 0.5% by weight, the obtained CPVC becomes difficult to gel, and conversely, when the amount added exceeds 2% by weight, the CPVC has a low heat distortion temperature. And
This is because the maximum characteristics of CPVC will be lost.

【0012】PEの粉末は粒度が50〜200ミクロン
の範囲内にあることが好ましい。PEの粉末を水性媒体
中に分散させるには、PEとPVCとの何れを先にして
もよいが、好ましいのはPEとPVCとを予め混合し
て、この混合物を水性媒体中に分散させることである。
The PE powder preferably has a particle size in the range of 50 to 200 microns. In order to disperse the PE powder in the aqueous medium, either PE or PVC may be added first, but it is preferable that PE and PVC are premixed and the mixture is dispersed in the aqueous medium. Is.

【0013】この発明は、PEの使用とともに、100
〜140℃という比較的高い温度範囲で塩素化反応を行
うことを特徴としている。その理由は、塩素化反応を1
00℃未満で行ったのでは、得られたCPVCを分解さ
せないで充分ゲル化させることが困難だからであり、逆
に140℃を越えた高温で塩素化反応を行ったのでは、
得られたCPVCが熱安定性の悪いものとなるからであ
る。上記の温度範囲内では、110°〜130℃とする
のが好ましい。
The present invention, together with the use of PE,
It is characterized in that the chlorination reaction is carried out in a relatively high temperature range of up to 140 ° C. The reason is that the chlorination reaction is 1
This is because it is difficult to sufficiently gelate the obtained CPVC without decomposing it if carried out at a temperature of less than 00 ° C. Conversely, if the chlorination reaction is carried out at a high temperature of more than 140 ° C.,
This is because the obtained CPVC has poor thermal stability. Within the above temperature range, it is preferably 110 ° to 130 ° C.

【0014】上述の温度範囲で塩素化反応を行うために
は、初め懸濁液を加熱して上記の温度まで昇温させる。
塩素化反応が開始されると、塩素化反応は発熱反応であ
るから、懸濁液内で発熱が起こるので、懸濁液を冷却し
て上記の温度に保つようにする。
In order to carry out the chlorination reaction in the above temperature range, the suspension is first heated to the above temperature.
When the chlorination reaction is started, the chlorination reaction is an exothermic reaction, so that heat is generated in the suspension, so that the suspension is cooled and kept at the above temperature.

【0015】この発明において原料として用いられるP
VCは、どのような製造方法によって作られたものであ
ってもよい。例えば、懸濁重合法でも、乳化重合法で
も、溶液重合法でも、塊状重合法でもよい。また、原料
として用いるPEも、どのような製造方法によって作ら
れたものであってもよく、高密度PEでも低密度PEで
もよい。
P used as a raw material in the present invention
The VC may be made by any manufacturing method. For example, a suspension polymerization method, an emulsion polymerization method, a solution polymerization method, or a bulk polymerization method may be used. The PE used as a raw material may be one produced by any manufacturing method, and may be high-density PE or low-density PE.

【0016】PVCの塩素化では、塩素化反応を促進さ
せるために紫外線を照射したり、微量の酸素を添加する
ことが知られている。この発明方法においても、紫外線
を照射したり、微量の酸素を添加したりして、塩素化反
応を促進させてもよいが、紫外線の照射や微量の酸素の
添加はとくに必要とされない。
In chlorination of PVC, it is known to irradiate ultraviolet rays or add a trace amount of oxygen in order to accelerate the chlorination reaction. Also in the method of the present invention, the chlorination reaction may be promoted by irradiating ultraviolet rays or adding a trace amount of oxygen, but irradiation of ultraviolet rays or addition of a trace amount of oxygen is not particularly required.

【0017】この発明方法の実施にあたってとくに注意
すべき事項は以上のとおりであるが、その他の事項はこ
れまでのPVCの塩素化と変わりがない。例えば、反応
容器には、オイル循環式のジャケットを備えたガラスラ
イニング製の反応容器を用いるのが好ましい。また、塩
素化反応は多量の酸素の存在しない状態で行う必要があ
り、そのために反応容器内に懸濁液を入れたのち、真空
ポンプで内部空気を吸引し、次いで窒素ガスを圧入し、
これを繰り返して酸素を充分に除いたあとで、塩素を圧
入するのが好ましい。
The matters to be particularly noted in carrying out the method of the present invention are as described above, but other matters are the same as the chlorination of PVC so far. For example, it is preferable to use a glass-lined reaction container equipped with an oil circulation jacket as the reaction container. Also, the chlorination reaction needs to be carried out in the absence of a large amount of oxygen, for that purpose, after putting the suspension in the reaction vessel, the internal air is sucked with a vacuum pump, then nitrogen gas is injected under pressure,
It is preferable to repeat this process to sufficiently remove oxygen and then press-fit chlorine.

【0018】塩素化の過程では、従来法と同様に反応容
器内の塩化水素濃度を測定して、PVCの塩素化度を計
算し、所望の塩素化度になったとき塩素の供給を止め、
残存塩素を反応容器から追い出し、水洗乾燥してCPV
Cを得る。
In the chlorination process, the concentration of hydrogen chloride in the reaction vessel is measured in the same manner as in the conventional method, the chlorination degree of PVC is calculated, and when the desired chlorination degree is reached, the chlorine supply is stopped,
Residual chlorine is expelled from the reaction vessel, washed with water and dried to remove CPV.
Get C.

【0019】[0019]

【発明の効果】この発明によれば、メルトインデックス
が0.1〜10g/分のポリエチレン粉末を、PVCに
対し0.5〜2重量%の割合で、PVCとともに水性媒
体中に分散させて懸濁液とし、懸濁液中に塩素を吹き込
んで、PVCを塩素化してCPVCを作るので、得られ
たCPVCはこれを加熱したときゲル化し易いという特
性を持った良質のものである。すなわち、得られたCP
VCは、ゲル化し易いにも拘わらず耐熱性が大きく低下
しておらず、しかもCPVCに特有なすぐれた難燃性、
耐候性、耐薬品性などの長所をそのまま持っている。ま
た、得られたCPVCはゲル化し易いために滑剤、安定
剤などの添加剤を少量加えるだけで、着色の少ない成形
体とすることができ、従って得られた成形体は歪みが少
なく、衝撃強度が高いという利点の加わったCPVC成
形体となる。従って、このCPVCは耐熱パイプ、継
手、バルブなどの工業的成形体を作るに適したものとな
る。この発明は、このような利益を与えるものである。
According to the present invention, polyethylene powder having a melt index of 0.1 to 10 g / min is dispersed in an aqueous medium together with PVC at a rate of 0.5 to 2% by weight based on PVC. As a suspension, chlorine is blown into the suspension to chlorinate PVC to produce CPVC, and thus the obtained CPVC is of high quality having the property of easily gelling when heated. That is, the obtained CP
Despite the fact that VC easily gels, the heat resistance has not deteriorated significantly, and the excellent flame retardancy unique to CPVC,
It has the advantages of weather resistance and chemical resistance. Further, since the obtained CPVC easily gels, it is possible to form a molded product with little coloring by adding a small amount of additives such as a lubricant and a stabilizer. Therefore, the resulting molded product has little distortion and impact strength. It becomes a CPVC molded product with the added advantage of high. Therefore, this CPVC is suitable for making industrial moldings such as heat-resistant pipes, joints and valves. The present invention provides such benefits.

【0020】[0020]

【実施例】以下に実施例と比較例とを挙げて、この発明
の優れている所以を具体的に明らかにする。以下で、単
に部又は%と云うのは重量部又は重量%を表す。
EXAMPLES The advantages of the present invention will be specifically described with reference to the following examples and comparative examples. In the following, simply referred to as parts or% means parts by weight or% by weight.

【0021】[0021]

【実施例1】 (CPVCの製造)内容積が300リットルのオイル循
環式ジャケットを備えたガラスライニング製反応容器
に、懸濁重合法で製造した平均重合度1050のPVC
粉末30kgと、MIが0.1g/分のPE粉末300
gと、脱イオン水150kgとを入れ、よく攪拌して懸
濁液を作った。
Example 1 (Production of CPVC) PVC having an average degree of polymerization of 1050 produced by the suspension polymerization method was placed in a glass-lined reaction vessel equipped with an oil circulation jacket having an internal volume of 300 liters.
30 kg of powder and 300 PE powder with MI of 0.1 g / min
g and 150 kg of deionized water were added and well stirred to form a suspension.

【0022】次いで、反応容器内を真空ポンプで吸引
し、内部圧を水の蒸気圧よりも水銀柱で20mmだけ高
い減圧下に5分保った。その後、反応容器内に窒素ガス
を圧入した。その後再び真空ポンプで吸引して、上記の
減圧下に5分間保って、容器内の酸素を除去した。この
間、加熱したオイルをジャケットに通して容器内を加熱
した。
Then, the inside of the reaction vessel was sucked by a vacuum pump, and the internal pressure was kept for 5 minutes under a reduced pressure higher by 20 mm of mercury column than the vapor pressure of water. Then, nitrogen gas was injected under pressure into the reaction vessel. Then, it was again sucked with a vacuum pump and kept under the above reduced pressure for 5 minutes to remove oxygen in the container. During this time, heated oil was passed through the jacket to heat the inside of the container.

【0023】容器内の温度が125℃に達したとき、市
販されている50kg液化塩素ボンベの底から塩素を取
り出し、この塩素を反応容器内へ吹き込んだ。吹き込み
と同時にジャケットには冷却用オイルを流して、塩素化
に伴う発熱を除去するようにした。容器内の塩化水素濃
度からCPVCの塩素化度を計算し、塩素含有率が6
6.5重量%になったことを確認して、塩素の供給を止
め、同時に容器を冷却した。
When the temperature inside the container reached 125 ° C., chlorine was taken out from the bottom of a commercially available 50 kg liquefied chlorine cylinder, and this chlorine was blown into the reaction container. At the same time as the blowing, cooling oil was flown through the jacket to remove heat generated by chlorination. The chlorination degree of CPVC was calculated from the hydrogen chloride concentration in the container, and the chlorine content was 6
After confirming that the content was 6.5% by weight, the supply of chlorine was stopped and the container was cooled at the same time.

【0024】その後、残留塩素を除去し、塩素化反応を
終了した。得られた生成物を脱イオン水で洗浄し、中和
し、脱水し、乾燥して、白色のCPVC粉末を得た。
After that, residual chlorine was removed and the chlorination reaction was completed. The product obtained was washed with deionized water, neutralized, dehydrated and dried to give a white CPVC powder.

【0025】(CPVCの物性試験)得られたCPVC
を用いて下記の配合物を作った。 CPVC 100部 三塩基性硫酸鉛 3 二塩基性ステアリン酸鉛 1 ステアリン酸鉛 1 MBS樹脂 10
(Physical property test of CPVC) Obtained CPVC
Was used to make the following formulations: CPVC 100 parts Tribasic lead sulfate 3 Dibasic lead stearate 1 Lead stearate 1 MBS resin 10

【0026】1.試験片の作成 上記の配合物を2本の8インチロールに供給し、190
℃で3分間混練し、厚み0.5mmのシートとした。こ
のシートを重ね合わせ、195℃の温度で150kg/
cm2 の圧力下に8分間プレスして、厚み3mmと6.
4mmとのプレス板を得た。 2.物性評価 熱変形温度は、厚みが6.4mmのプレス板を用い、A
STM D−648に規定する方法に従い、負荷荷重1
8.6kg/cm2 で測定した。シャルピー衝撃強度は
厚みが3mmのプレス板を用い、JIS K−7111
に規定する方法に従い、23℃の温度下で測定した。 3.ロール練りによる熱安定性 上記の配合物を表面温度が205℃の8インチロールで
混練し、混練物をロールに巻き付け、巻き付け開始時か
ら30秒毎にシートを切り返しながら、3分毎に少量の
シートを切り出して、シートの着色度を調べ、シートが
黒褐色に変わった時点を捉え、それまでの時間で熱安定
性を示した。 4.昇温プラストグラフによるゲル化温度測定 Haak社製のプラストミル(R−90)を使用して、
上記の配合物55gを回転数40rpmで、温度を15
0℃から毎分5℃の昇温割合で昇温させながら混練し、
混練トルクがピークになった時の温度をゲル化温度とし
た。
1. Preparation of test pieces The above formulation was fed to two 8-inch rolls and
The mixture was kneaded at 0 ° C. for 3 minutes to form a sheet having a thickness of 0.5 mm. This sheet is piled up and 150 kg /
Pressed for 8 minutes under a pressure of 2 cm 2 and a thickness of 3 mm and 6.
A press plate of 4 mm was obtained. 2. Physical property evaluation The heat distortion temperature was measured using a press plate with a thickness of 6.4 mm, A
Load load 1 according to the method specified in STM D-648
It was measured at 8.6 kg / cm 2 . For Charpy impact strength, a press plate with a thickness of 3 mm is used, and JIS K-7111 is used.
The temperature was measured at 23 ° C. according to the method specified in 1. 3. Thermal Stability by Roll Kneading The above composition was kneaded with an 8-inch roll having a surface temperature of 205 ° C., the kneaded product was wound around the roll, and a sheet was cut every 30 seconds from the start of winding and a small amount was cut every 3 minutes. The sheet was cut out, the coloring degree of the sheet was examined, the time when the sheet turned blackish brown was captured, and the thermal stability was shown in the time until then. 4. Gelation temperature measurement by temperature rising plastograph Using a plastomill (R-90) manufactured by Haak,
55 g of the above-mentioned composition was rotated at 40 rpm and the temperature was adjusted to 15
Kneading while raising the temperature from 0 ° C to 5 ° C per minute,
The temperature at which the kneading torque reached its peak was taken as the gelling temperature.

【0027】(試験結果)熱変形温度は106.0℃で
あり、シャルピー衝撃強度は27.0kg・cm/cm
2 であり、ロール練りによる熱安定性は27分で、昇温
プラストによるゲル化温度は190℃であった。こうし
て、このCPVCはゲル化温度が低くて、混練温度が低
いにも拘らず、衝撃強度の高いことが確認された。
(Test Results) The heat distortion temperature is 106.0 ° C. and the Charpy impact strength is 27.0 kg · cm / cm.
2 , the heat stability by roll kneading was 27 minutes, and the gelling temperature by temperature rising plast was 190 ° C. Thus, it was confirmed that this CPVC has a high gelling temperature and a high impact strength despite a low kneading temperature.

【0028】[0028]

【実施例2】 (CPVCの製造)この実施例では、MIが1g/分の
PEを使用することとした以外は、実施例1と全く同様
にして塩素含有率が66.5%のCPVCを得た。
Example 2 (Production of CPVC) In this example, CPVC having a chlorine content of 66.5% was prepared in exactly the same manner as in Example 1 except that PE having MI of 1 g / min was used. Obtained.

【0029】(試験結果)得られたCPVCについて、
実施例1と全く同様にして各種の試験をしたところ、熱
変形温度は106.5℃であり、シャルピー衝撃強度は
25.0kg・cm/cm2 であり、ロール練りによる
熱安定性は28分で、昇温プラストによるゲル化温度は
188℃であった。こうして、このCPVCはゲル化温
度が低くて、混練温度が低いにも拘らず、衝撃強度の高
いことが確認された。
(Test Results) Regarding the obtained CPVC,
Various tests were conducted in exactly the same manner as in Example 1, whereupon the heat distortion temperature was 106.5 ° C., the Charpy impact strength was 25.0 kg · cm / cm 2 , and the thermal stability by roll kneading was 28 minutes. The gelling temperature due to the temperature rising plast was 188 ° C. Thus, it was confirmed that this CPVC has a high gelling temperature and a high impact strength despite a low kneading temperature.

【0030】[0030]

【実施例3】 (CPVCの製造)この実施例では、MIが10g/分
のPEを使用した以外は、実施例1と全く同様にして塩
素含有率が66.5%のCPVCを得た。
Example 3 (Production of CPVC) In this example, CPVC having a chlorine content of 66.5% was obtained in exactly the same manner as in Example 1 except that PE having an MI of 10 g / min was used.

【0031】(試験結果)得られたCPVCについて、
実施例1と全く同様にして各種の試験をしたところ、熱
変形温度は106.0℃であり、シャルピー衝撃強度は
24.0kg・cm/cm2 であり、ロール練りによる
熱安定性は28分で、昇温プラストによるゲル化温度は
185℃であった。こうして、このCPVCはゲル化温
度が低くて、混練温度が低いにも拘らず、衝撃強度が高
いことが確認された。
(Test Results) Regarding the obtained CPVC,
Various tests were conducted in exactly the same manner as in Example 1. As a result, the heat distortion temperature was 106.0 ° C., the Charpy impact strength was 24.0 kg · cm / cm 2 , and the thermal stability by roll kneading was 28 minutes. Then, the gelling temperature by the temperature rising plast was 185 ° C. Thus, it was confirmed that this CPVC has a low gelling temperature and a high impact strength in spite of a low kneading temperature.

【0032】[0032]

【実施例4】 (CPVCの製造)この実施例では、MIが1g/分の
PEを150g使用した以外は、実施例1と全く同様に
して塩素含有率が66.5%のCPVCを得た。
Example 4 (Production of CPVC) In this example, CPVC having a chlorine content of 66.5% was obtained in exactly the same manner as in Example 1 except that 150 g of PE having an MI of 1 g / min was used. .

【0033】(試験結果)得られたCPVCについて、
実施例1と全く同様にして各種の試験をしたところ、熱
変形温度は106.5℃であり、シャルピー衝撃強度は
25.0kg・cm/cm2 であり、ロール練りによる
熱安定性は29分で、昇温プラストによるゲル化温度は
190℃であった。こうして、このCPVCはゲル化温
度が低くて、混練温度が低いにも拘らず、衝撃強度の高
いことが確認された。
(Test Results) Regarding the obtained CPVC,
Various tests were conducted in exactly the same manner as in Example 1. As a result, the heat distortion temperature was 106.5 ° C., the Charpy impact strength was 25.0 kg · cm / cm 2 , and the thermal stability by roll kneading was 29 minutes. The gelling temperature due to the temperature rising plast was 190 ° C. Thus, it was confirmed that this CPVC has a high gelling temperature and a high impact strength despite a low kneading temperature.

【0034】[0034]

【実施例5】 (CPVCの製造)この実施例では、MIが1g/分の
PEを600g使用することとした以外は、実施例1と
全く同様にして塩素含有率が66.5%のCPVCを得
た。
Example 5 (Production of CPVC) In this example, CPVC having a chlorine content of 66.5% was carried out in the same manner as in Example 1 except that 600 g of PE having an MI of 1 g / min was used. Got

【0035】(試験結果)得られたCPVCについて、
実施例1と全く同様にして各種の試験をしたところ、熱
変形温度は105.0℃であり、シャルピー衝撃強度は
26.0kg・cm/cm2 であり、ロール練りによる
熱安定性は28分で、昇温プラストによるゲル化温度は
183℃であった。こうして、このCPVCはゲル化温
度が低くて、混練温度が低いにも拘らず、衝撃強度の高
いことが確認された。
(Test Results) Regarding the obtained CPVC,
Various tests were conducted in exactly the same manner as in Example 1, whereupon the heat distortion temperature was 105.0 ° C., the Charpy impact strength was 26.0 kg · cm / cm 2 , and the thermal stability by roll kneading was 28 minutes. The gelling temperature due to the temperature rising plast was 183 ° C. Thus, it was confirmed that this CPVC has a high gelling temperature and a high impact strength despite a low kneading temperature.

【0036】[0036]

【比較例1】 (CPVCの製造)この比較例では、PEを使用しない
こととした以外は、実施例1と全く同様にして塩素含有
率が66.5%のCPVCを得た。
Comparative Example 1 (Production of CPVC) In this comparative example, CPVC having a chlorine content of 66.5% was obtained in exactly the same manner as in Example 1 except that PE was not used.

【0037】(試験結果)得られたCPVCについて、
実施例1と全く同様にして各種の試験をしたところ、熱
変形温度は106.5℃であり、シャルピー衝撃強度は
15.0kg・cm/cm2 であり、ロール練りによる
熱安定性は28分で、昇温プラストによるゲル化温度は
197℃であった。こうして、このCPVCはゲル化温
度が高くて、混練温度が低いと衝撃強度の低いものとな
ることが確認された。
(Test Results) Regarding the obtained CPVC,
Various tests were conducted in exactly the same manner as in Example 1, whereupon the heat distortion temperature was 106.5 ° C., the Charpy impact strength was 15.0 kg · cm / cm 2 , and the thermal stability by roll kneading was 28 minutes. Then, the gelation temperature by the temperature rising plast was 197 ° C. Thus, it was confirmed that this CPVC had a high gelling temperature and a low kneading temperature resulted in a low impact strength.

【0038】[0038]

【比較例2】 (CPVCの製造)この比較例では、MIが0.05g
/分のPEを300g使用することとした以外は、実施
例1と全く同様にして塩素含有率が66.5%のCPV
Cを得た。
Comparative Example 2 (Production of CPVC) In this comparative example, MI was 0.05 g.
CPV having a chlorine content of 66.5% in exactly the same manner as in Example 1 except that 300 g of PE / min is used.
I got C.

【0039】(試験結果)得られたCPVCについて、
実施例1と全く同様にして各種の試験をしたところ、熱
変形温度は106.0℃であり、シャルピー衝撃強度は
17.0kg・cm/cm2 であり、ロール練りによる
熱安定性は28分で、昇温プラストによるゲル化温度は
195℃であった。こうして、このCPVCはゲル化温
度が高くて、混練温度が低いと衝撃強度の低いものとな
ることが確認された。
(Test Results) Regarding the obtained CPVC,
Various tests were conducted in exactly the same manner as in Example 1. As a result, the heat distortion temperature was 106.0 ° C., the Charpy impact strength was 17.0 kg · cm / cm 2 , and the heat stability by roll kneading was 28 minutes. Then, the gelling temperature by the heated plast was 195 ° C. Thus, it was confirmed that this CPVC had a high gelling temperature and a low kneading temperature resulted in a low impact strength.

【0040】[0040]

【比較例3】 (CPVCの製造)この比較例では、MIが15g/分
のPEを300g使用することとした以外は、実施例1
と全く同様にして塩素含有率が66.5%のCPVCを
得た。
Comparative Example 3 (Production of CPVC) In this comparative example, Example 1 was used except that 300 g of PE having an MI of 15 g / min was used.
A CPVC having a chlorine content of 66.5% was obtained in exactly the same manner as in.

【0041】(試験結果)得られたCPVCについて、
実施例1と全く同様にして各種の試験をしたところ、熱
変形温度は104.5℃であり、シャルピー衝撃強度は
14.0kg・cm/cm2 であり、ロール練りによる
熱安定性は28分で、昇温プラストによるゲル化温度は
185℃であった。こうして、このCPVCはゲル化温
度は低いが、混練温度が低いと衝撃強度の低いことが確
認された。
(Test Results) Regarding the obtained CPVC,
Various tests were conducted in exactly the same manner as in Example 1. As a result, the heat distortion temperature was 104.5 ° C., the Charpy impact strength was 14.0 kg · cm / cm 2 , and the thermal stability by roll kneading was 28 minutes. Then, the gelling temperature by the temperature rising plast was 185 ° C. Thus, it was confirmed that this CPVC had a low gelling temperature, but a low kneading temperature had a low impact strength.

【0042】[0042]

【比較例4】 (CPVCの製造)この比較例では、MIが1g/分の
PEを900g使用することとした以外は、実施例1と
全く同様にして塩素含有率が66.5%のCPVCを得
た。
Comparative Example 4 (Production of CPVC) In this comparative example, CPVC having a chlorine content of 66.5% was carried out in the same manner as in Example 1 except that 900 g of PE having an MI of 1 g / min was used. Got

【0043】(試験結果)得られたCPVCについて、
実施例1と全く同様にして各種の試験をしたところ、熱
変形温度は103.5℃であり、シャルピー衝撃強度は
22.0kg・cm/cm2 であり、ロール練りによる
熱安定性は25分で、昇温プラストによるゲル化温度は
183℃であった。こうして、このCPVCはゲル化温
度が低く、混練温度が低いにも拘らず、衝撃強度が高く
て良好であるが、加熱変形温度が低くて全体としては良
好でないことが確認された。
(Test Results) Regarding the obtained CPVC,
Various tests were conducted in exactly the same manner as in Example 1, whereupon the heat distortion temperature was 103.5 ° C., the Charpy impact strength was 22.0 kg · cm / cm 2 , and the thermal stability by roll kneading was 25 minutes. The gelling temperature due to the temperature rising plast was 183 ° C. In this way, it was confirmed that this CPVC has a high gel strength and a good kneading temperature despite its low kneading temperature, and is good, but it has a low heat distortion temperature and is not good as a whole.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 メルトインデックスが0.1〜10g/
分のポリエチレン粉末を、塩化ビニル樹脂に対し0.5
〜2重量%の割合で、塩化ビニル樹脂とともに水性媒体
中に分散させて懸濁液とし、懸濁液中に塩素を吹き込ん
で塩化ビニル樹脂を塩素化することを特徴とする、塩素
化塩化ビニル樹脂の製造方法。
1. A melt index of 0.1 to 10 g /
0.5 parts of polyethylene powder to vinyl chloride resin
A chlorinated vinyl chloride, characterized in that it is dispersed in an aqueous medium together with a vinyl chloride resin at a ratio of about 2% by weight to form a suspension, and chlorine is blown into the suspension to chlorinate the vinyl chloride resin. Resin manufacturing method.
JP22950793A 1993-08-23 1993-08-23 Production of chlorinated vinyl chloride resin Withdrawn JPH0762020A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22950793A JPH0762020A (en) 1993-08-23 1993-08-23 Production of chlorinated vinyl chloride resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22950793A JPH0762020A (en) 1993-08-23 1993-08-23 Production of chlorinated vinyl chloride resin

Publications (1)

Publication Number Publication Date
JPH0762020A true JPH0762020A (en) 1995-03-07

Family

ID=16893262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22950793A Withdrawn JPH0762020A (en) 1993-08-23 1993-08-23 Production of chlorinated vinyl chloride resin

Country Status (1)

Country Link
JP (1) JPH0762020A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020046051A1 (en) * 2018-08-30 2020-03-05 주식회사 엘지화학 Polyethylene and chlorinated polyethylene thereof
CN112105653A (en) * 2018-08-30 2020-12-18 Lg化学株式会社 Polyethylene and chlorinated polyethylene thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020046051A1 (en) * 2018-08-30 2020-03-05 주식회사 엘지화학 Polyethylene and chlorinated polyethylene thereof
CN112105653A (en) * 2018-08-30 2020-12-18 Lg化学株式会社 Polyethylene and chlorinated polyethylene thereof
US11702488B2 (en) 2018-08-30 2023-07-18 Lg Chem, Ltd. Polyethylene and chlorinated polyethylene thereof
CN112105653B (en) * 2018-08-30 2023-09-19 Lg化学株式会社 Polyethylene and chlorinated polyethylene thereof

Similar Documents

Publication Publication Date Title
USRE31341E (en) Polytetrafluoroethylene fine powder and process for producing the same
US4412898A (en) Process for chlorination of PVC in water without use of swelling agents
JPH01252525A (en) Production of calcium carbonate having large surface area
JPH0762020A (en) Production of chlorinated vinyl chloride resin
KR101855247B1 (en) Method for producing chlorinated vinyl chloride-based resin
US3583956A (en) Vinyl chloride polymers
CA1166602A (en) Process for chlorination of pvc in water without use of swelling agents
JP3057126B2 (en) Method for producing chlorinated vinyl chloride resin
JP2021169636A (en) Chlorinated vinyl-chloride-based resin
JPH0776608A (en) Production of chlorinated vinyl chloride resin
JP2006199801A (en) Chlorinated vinyl chloride-based resin composition and its molded article
KR102498961B1 (en) Chlorinated vinyl chloride resin
JPH111513A (en) Production of chlorinated vinyl chloride-based resin
JP2629808B2 (en) Method for producing modified ethylene copolymer
JPH0790019A (en) Production of chlorinated vinyl chloride resin
JP2851486B2 (en) Method for producing chlorinated vinyl chloride resin
US3546195A (en) Halogenated butene-1 polymers
JPH0770234A (en) Production of chlorinated vinyl chloride resin suitable for heat forming
JPS5825340B2 (en) Method for producing chlorinated vinyl chloride resin foam
JP2818101B2 (en) Method for producing chlorinated vinyl chloride resin
JPH08120008A (en) Production of postchlorinated vinyl chloride resin
JP2000281720A (en) Chlorinated vinyl chloride resin
IL44608A (en) Thermoplastic composition
JPH0455440A (en) Production of flame retardant resin-crosslinked foam
JPH10168122A (en) Production of chlorinated vinyl chloride resin

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20001031