JPH11149655A - Optical recorder - Google Patents

Optical recorder

Info

Publication number
JPH11149655A
JPH11149655A JP9313772A JP31377297A JPH11149655A JP H11149655 A JPH11149655 A JP H11149655A JP 9313772 A JP9313772 A JP 9313772A JP 31377297 A JP31377297 A JP 31377297A JP H11149655 A JPH11149655 A JP H11149655A
Authority
JP
Japan
Prior art keywords
optical
refractive index
single crystal
recording
optical recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9313772A
Other languages
Japanese (ja)
Other versions
JP3485456B2 (en
Inventor
Ichiji Kamiyama
一司 神山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP31377297A priority Critical patent/JP3485456B2/en
Priority to US09/193,111 priority patent/US6043940A/en
Publication of JPH11149655A publication Critical patent/JPH11149655A/en
Application granted granted Critical
Publication of JP3485456B2 publication Critical patent/JP3485456B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an optical recorder having a condenser lens of material which has an extremely high refractive index, is excellent in transmittance, allows easy production and is extremely excellent in terms of workability. SOLUTION: This optical recorder has an objective lens 4 for converging a laser beam L to be cast to a prescribed beam diameter for the purpose of executing information recording to an optical recording medium D and the condenser lens 5 for further condensing the laser beam L transmitted through the objective lens 4 and casting the optical recording medium D with this beam. The condenser lens 5 consists of a single crystal of any among lithium niobate, lithium tantalate, futile, lead molybdate, tellurium dioxide, strontium titanate and zirconium oxide.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光磁気ディスクや
DVD−RAM等の光記録媒体にレーザー光を用いて、
少なくとも情報の書き込み(記録)を行うことが可能な
光ヘッド等の光記録装置に関する。
BACKGROUND OF THE INVENTION The present invention relates to an optical recording medium such as a magneto-optical disk or a DVD-RAM using laser light.
The present invention relates to an optical recording device such as an optical head capable of at least writing (recording) information.

【0002】[0002]

【従来の技術】光磁気ディスクやDVD−RAM等の光
記録媒体の面記録密度を向上させるためには、記録用レ
ーザー光のビーム・スポット径をできるだけ小さくする
必要がある。一般に、レーザー光のビーム・スポット径
は、光源の波長λと対物レンズのNA(開口数)で決定
され、ほぼ0.8×λ/NA程度とされている。このた
め、現在、光ディスク装置で実際に使用されている光波
長の630nm程度からさらに短波長化できる半導体レ
ーザーとして、窒化ガリウム(GaN)系材料を使用し
た青色レーザーの開発が行われている。
2. Description of the Related Art In order to improve the surface recording density of an optical recording medium such as a magneto-optical disk or a DVD-RAM, it is necessary to make the beam spot diameter of a recording laser beam as small as possible. Generally, the beam spot diameter of the laser light is determined by the wavelength λ of the light source and the NA (numerical aperture) of the objective lens, and is about 0.8 × λ / NA. For this reason, a blue laser using a gallium nitride (GaN) -based material has been developed as a semiconductor laser that can be further shortened from the light wavelength of about 630 nm actually used in the optical disk device.

【0003】しかしながら、このような青色レーザー光
の波長を用いたとしても、現在の面記録密度の約3倍程
度にしかならない。そこで、ソリッド・イマージョン・
レンズ((Solid Immersion Lens)以下、SILともい
う)と呼ばれる半球状のレンズを、光記録媒体と対物レ
ンズとの間に配設する光学系により、対物レンズを透過
したビーム・スポット径を1/n倍(ただし、nはSI
Lの屈折率)に絞ることが提案されている(例えば、米
国特許5,125,750号を参照)。
However, even if such a wavelength of blue laser light is used, it is only about three times the current areal recording density. So, Solid Immersion
An optical system in which a hemispherical lens called a lens (hereinafter, also referred to as SIL) is disposed between the optical recording medium and the objective lens reduces the beam spot diameter transmitted through the objective lens by 1 /. n times (where n is SI
(Refractive index of L) (see, for example, US Pat. No. 5,125,750).

【0004】ここで、上記SILを透過して空気中に出
射されたレーザー光は、再び元のビーム径に拡がろうと
するが、光記録媒体の記録面と対向しているSIL底面
との間隔が、光波長の約1/4以内である領域(一般に
ニア・フィールド領域という)では、レーザー光がSI
L内部と同一の性質で出射されていることになり、ビー
ム・スポット径は回折限界の1/n倍に絞られるのであ
る。
[0004] Here, the laser beam transmitted through the SIL and emitted into the air tries to expand to the original beam diameter again, but the gap between the recording surface of the optical recording medium and the bottom surface of the SIL facing the SIL. However, in a region within about 1 / of the light wavelength (generally called a near-field region), the laser light
The light is emitted with the same property as the inside of L, and the beam spot diameter is reduced to 1 / n times the diffraction limit.

【0005】[0005]

【発明が解決しようとする課題】上記SILにはホウ珪
酸ガラス等のガラスが一般に使用されている。ガラスの
屈折率は通常1.8程度までであり、これ以上の高屈折
率を得るには、例えばLa2 3 、ThO2 、Zr
2 、Ta2 5 等の稀元素酸化物を主成分とする特殊
なガラスを用いなければならない。また、このような特
殊なガラスでも屈折率は2.0以下であり、より高密度
で記録させることは困難であった。
Glass such as borosilicate glass is generally used for the SIL. The refractive index of glass is usually up to about 1.8. To obtain a higher refractive index than this, for example, La 2 O 3 , ThO 2 , Zr
Special glass having a rare element oxide such as O 2 or Ta 2 O 5 as a main component must be used. In addition, even such a special glass has a refractive index of 2.0 or less, and it has been difficult to perform recording at a higher density.

【0006】また、特に、ニア・フィールド領域は63
0nm近傍のレーザー波長を光源として用いる場合、レ
ーザースポット径は300nm程度以下となるので、光
記録媒体の記録面に対向するSILの面は平面度の高い
加工精度が要求され、従来のガラスでは硬すぎるという
問題があった。なお、SILに屈折率の高い多結晶体を
使用したとしても、多結晶体に存在する多数の粒界によ
り光の透過率が非常に小さくなり(例えば、使用光波長
500〜600nmの透過率が50%程度以下)、性能
の優れた光ヘッドを提供することができない。
In particular, the near field area is 63
When a laser wavelength near 0 nm is used as a light source, the laser spot diameter is about 300 nm or less, so that the surface of the SIL facing the recording surface of the optical recording medium requires high flatness processing accuracy, and conventional glass hardens. There was a problem of too much. Even if a polycrystalline material having a high refractive index is used for the SIL, the transmittance of light becomes extremely small due to a large number of grain boundaries existing in the polycrystalline material (for example, the transmittance at a used light wavelength of 500 to 600 nm is reduced). 50% or less), it is not possible to provide an optical head having excellent performance.

【0007】そこで本発明では、上述の諸問題を解消
し、非常に高い屈折率を有するとともに透過率に優れ、
製造が容易でしかも加工性の点でも非常に優れた材質の
集光レンズを有した光記録装置を提供することを目的と
する。
Therefore, the present invention solves the above-mentioned problems and has a very high refractive index and excellent transmittance.
An object of the present invention is to provide an optical recording apparatus having a condenser lens made of a material which is easy to manufacture and which is very excellent in workability.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明の光記録装置は、少なくとも光記録媒体に情
報記録を行うためのレーザー光を照射させる集光レンズ
を具備して成る光記録装置、具体的には、例えば、光記
録媒体に情報記録を行うために照射させるレーザー光を
所定ビーム径に絞る対物レンズと、該対物レンズを透過
したレーザー光をさらに集光させ、前記光記録媒体に照
射させるための集光レンズとを備えて成る光ヘッド等の
光記録装置であって、前記集光レンズがニオブ酸リチウ
ム、タンタル酸リチウム、ルチル、モリブデン酸鉛、二
酸化テルル、チタン酸ストロンチウム、酸化ジルコニウ
ムのいずれかから成る単結晶で構成されていることを特
徴とする。
In order to achieve the above object, an optical recording apparatus according to the present invention comprises a light condensing lens for irradiating at least a laser beam for recording information on an optical recording medium. A recording device, specifically, for example, an objective lens for narrowing a laser beam to be irradiated for performing information recording on an optical recording medium to a predetermined beam diameter, and further condensing the laser beam transmitted through the objective lens, An optical recording device, such as an optical head, including a condenser lens for irradiating a recording medium, wherein the condenser lens is formed of lithium niobate, lithium tantalate, rutile, lead molybdate, tellurium dioxide, titanic acid. It is characterized by being composed of a single crystal made of either strontium or zirconium oxide.

【0009】また、集光レンズがマグネシアを3〜7モ
ル%、より好適には4〜5モル%含有するニオブ酸リチ
ウム単結晶から成ることを特徴とする。ここで、マグネ
シアが3〜7モル%であれば、耐光損傷性が大きく、屈
折率の変動が非常に小さいだけでなく、育成された単結
晶もクラックの発生が少なく結晶性も良好であるので、
SILとして好適に使用可能である。
Further, the condenser lens is made of a lithium niobate single crystal containing 3 to 7 mol%, more preferably 4 to 5 mol% of magnesia. Here, if the magnesia is 3 to 7 mol%, not only the light damage resistance is large and the change in the refractive index is very small, but also the grown single crystal is free from cracks and has good crystallinity. ,
It can be suitably used as SIL.

【0010】なお、上記光記録装置は少なくとも光記録
媒体に記録が可能なものであればよく、記録及び再生が
可能なものであってもよい。
[0010] The optical recording apparatus is only required to be capable of recording at least on an optical recording medium, and may be capable of recording and reproducing.

【0011】[0011]

【発明の実施の形態】本発明の実施形態について図面に
基づいて詳細に説明する。光記録媒体に光記録を行わせ
る様子を説明する概略斜視図を図1に示す。また図1の
A−A線概略一部断面図を図2に示す。ポリカーボネー
ト等の樹脂やガラス等から成る基板1上に、例えば窒化
シリコン等から成る誘電体層、Gd−Fe−Co系合金
やTb−Fe−Co系合金等から成る磁性層、窒化シリ
コン等から成る誘電体層、アルミニウム等から成る金属
層、UV樹脂等から成る保護層を含む記録層2を備えた
光磁気ディスクDに、波長500nm〜600nmのレ
ーザー光Lを光記録装置である光ヘッド3により集光し
て、所定径のビーム・スポットを照射する。これにより
光磁気ディスクDの記録層2のビーム・スポットが照射
された領域内の磁性層に情報が記録される。なお、光ヘ
ッド3は不図示の制御装置に接続された可動アーム7に
より支持されている。
Embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic perspective view illustrating how optical recording is performed on an optical recording medium. FIG. 2 is a schematic partial cross-sectional view taken along the line AA of FIG. A dielectric layer made of, for example, silicon nitride, a magnetic layer made of a Gd-Fe-Co-based alloy, a Tb-Fe-Co-based alloy, or the like, made of silicon nitride, etc. on a substrate 1 made of resin such as polycarbonate or glass. A laser beam L having a wavelength of 500 nm to 600 nm is applied to a magneto-optical disk D having a recording layer 2 including a dielectric layer, a metal layer made of aluminum or the like, and a protective layer made of UV resin or the like by an optical head 3 which is an optical recording device. The light is condensed to irradiate a beam spot having a predetermined diameter. As a result, information is recorded on the magnetic layer in the area of the recording layer 2 of the magneto-optical disk D irradiated with the beam spot. The optical head 3 is supported by a movable arm 7 connected to a control device (not shown).

【0012】ここで、光ヘッド3による光磁気ディスク
Dへの情報の記録は、次のようにして行う。まず、レー
ザー光Lは両凸レンズである対物レンズ4により収束さ
れ、さらにニオブ酸リチウム等の単結晶体から成り、下
面5aに焦点を結ぶための平面部を有する半球状の集光
レンズであるSIL5により、所定のビーム・スポット
径に絞られる。
The recording of information on the magneto-optical disk D by the optical head 3 is performed as follows. First, the laser beam L is converged by the objective lens 4 which is a biconvex lens, and is a hemispherical condenser lens SIL5 which is made of a single crystal such as lithium niobate and has a plane portion for focusing on the lower surface 5a. Thus, the beam spot diameter is reduced to a predetermined value.

【0013】そして、光磁気ディスクDに照射されたビ
ーム・スポット内の記録層2を加熱し、その領域が冷え
る際に磁界変調用コイル6で印加した磁界で磁性層を磁
化させることにより記録を行うのである。なお、対物レ
ンズ4は片凸レンズであってもよい。
The recording layer 2 in the beam spot irradiated on the magneto-optical disk D is heated, and when the area is cooled, the magnetic layer is magnetized by the magnetic field applied by the magnetic field modulation coil 6 to perform recording. Do it. Note that the objective lens 4 may be a one-convex lens.

【0014】ここで、SIL5は、ニオブ酸リチウム
(LiNbO3 :融点1250℃,常光屈折率no=
2.29、異常光屈折率ne=2.20)の他に、タン
タル酸リチウム(LiTaO3 :融点1450℃,no
=2.18、ne=2.17)、ルチル(TiO2 :融
点1980℃,no=2.61、ne=2.90)、モ
リブデン酸鉛(PbMoO4 :融点1070℃,no=
2.39、ne=2.26)、二酸化テルル(Te
2 :融点733℃,no=2.43、ne=2.2
7)、チタン酸ストロンチウム(SrTiO3 :融点2
080℃,屈折率2.41)、酸化ジルコニウム(Zr
2 :融点2690℃,屈折率2.42)のいずれかの
単結晶を用いる。
Here, SIL5 is made of lithium niobate (LiNbO 3 : melting point 1250 ° C., refractive index no = normal light).
2.29, extraordinary refractive index ne = 2.20), lithium tantalate (LiTaO 3 : melting point 1450 ° C, no)
= 2.18, ne = 2.17), rutile (TiO 2 : melting point 1980 ° C, no = 2.61, ne = 2.90), lead molybdate (PbMoO 4 : melting point 1070 ° C, no =
2.39, ne = 2.26), tellurium dioxide (Te
O 2 : melting point 733 ° C., no = 2.43, ne = 2.2
7), strontium titanate (SrTiO 3 : melting point 2)
080 ° C., refractive index 2.41), zirconium oxide (Zr
O 2 : a single crystal having a melting point of 2690 ° C. and a refractive index of 2.42) is used.

【0015】これら単結晶は、いずれも屈折率が2.1
以上であり、使用光波長500〜600nmにおいて7
0%以上の優れた透過率を有している。また、特にニオ
ブ酸リチウム、タンタル酸リチウム、及びルチルは、結
晶育成をチョクラルスキー法等により非常に容易に行う
ことができ、しかもガラスより軟らかい(モース硬度が
5〜6)ので加工性という点でも好適である。さらに、
ガラスよりも屈折率変動も少ない(1×10-4以下)と
いう利点を有する。
Each of these single crystals has a refractive index of 2.1.
That is, 7 at the used light wavelength of 500 to 600 nm.
It has an excellent transmittance of 0% or more. In particular, lithium niobate, lithium tantalate, and rutile can be very easily grown by the Czochralski method or the like, and are softer than glass (Mohs hardness is 5 to 6). However, it is suitable. further,
There is an advantage that the refractive index fluctuation is smaller than glass (1 × 10 −4 or less).

【0016】また、特にニオブ酸リチウムの場合、マグ
ネシア(MgO2 )を3〜7モル%添加させると、青緑
色等の短波長レーザー光による屈折率変動(光損傷)が
なく、集光レンズとして好適に使用できる。さらに、ニ
オブ酸リチウム単結晶中のマグネシアが4〜5モル%に
おいては、屈折率変動はほとんどないので非常に好適で
ある。なお、ニオブ酸リチウム中のマグネシアが3モル
%未満であると、耐光損傷性が小さくなり、光誘起によ
る屈折率変動が大きくなるので好ましくない。また、マ
グネシアの含有量が7モル%を超えると育成単結晶にク
ラックの発生が多くなるので好ましくない。
In particular, in the case of lithium niobate, when 3 to 7 mol% of magnesia (MgO 2 ) is added, there is no change in refractive index (optical damage) due to short-wavelength laser light such as blue-green light, and the condensing lens is used. It can be suitably used. Further, when the magnesia in the lithium niobate single crystal is 4 to 5 mol%, there is almost no change in the refractive index, which is very preferable. If the magnesia in the lithium niobate is less than 3 mol%, the light damage resistance becomes small, and the refractive index fluctuation due to light induction becomes large. On the other hand, when the content of magnesia exceeds 7 mol%, cracks are often generated in the grown single crystal, which is not preferable.

【0017】このように、屈折率が従来のガラスより非
常に大きく、屈折率変動がガラスより少なく、しかも加
工性等に非常に優れている上記単結晶は、SILとして
非常に好適に使用することができ、レーザー光のビーム
・スポット径を非常に小さくすることができる。これに
より、現状の記録ピットサイズを大幅に小さくすること
ができ、光記録媒体へ現状の数倍以上もの高密度で記録
が可能となる。
As described above, the above-mentioned single crystal, which has a refractive index much larger than that of a conventional glass, has a smaller refractive index fluctuation than glass, and is very excellent in workability, etc., is very preferably used as an SIL. And the beam spot diameter of the laser beam can be made very small. As a result, the current recording pit size can be significantly reduced, and recording on an optical recording medium can be performed at a density as high as several times that of the current state.

【0018】なお、図1及び図2に示すように、光記録
の光学系は光ヘッド3に対物レンズ4及び集光レンズ5
等を一体的に設け、情報を記録する場合の例について説
明したが、光学系の構成はこれに限定されるものではな
く、対物レンズを有しない集光レンズだけの光ヘッドで
あってもよい。また、例えば記録及び再生が可能な光ヘ
ッドであってももちろんよい。また、光ヘッドは光磁気
ディスクだけでなく、例えば各種Te系合金から成る光
記録層を有する相変化型の光ディスクであるDVD−R
AMでも使用可能である。また、集光レンズの形状は一
般的な半球状に限定されるものではなく、曲面部の面積
が広いいわゆる超半球状のような形状等でもよく、所望
のスポット径が得られるものであれば、その形状等につ
いては本発明の要旨を逸脱しない範囲内で適宜変更し実
施が可能である。
As shown in FIGS. 1 and 2, the optical system for optical recording includes an objective lens 4 and a condenser lens 5 on an optical head 3.
Although an example in which information and the like are provided integrally and the information is recorded has been described, the configuration of the optical system is not limited to this, and an optical head including only a condensing lens without an objective lens may be used. . Also, for example, an optical head capable of recording and reproducing may be used. The optical head is not only a magneto-optical disk but also a DVD-R which is a phase-change type optical disk having an optical recording layer made of, for example, various Te-based alloys.
AM can also be used. In addition, the shape of the condensing lens is not limited to a general hemisphere, and may be a shape such as a so-called super hemisphere having a large curved surface area, as long as a desired spot diameter can be obtained. The shape and the like can be appropriately changed and implemented without departing from the gist of the present invention.

【0019】[0019]

【実施例】以下に、本発明に係わるより具体的な実施例
について説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, more specific embodiments according to the present invention will be described.

【0020】〔実施例1〕次に、さらに具体的な実施例
について説明する。抵抗加熱方式の育成炉を用いたチョ
クラルスキー法により、約3インチ径のルチル単結晶体
を得て、このルチル単結晶体を1.2mm角のウエハーに
切断した後に、ルチル単結晶の光軸(Z軸(C軸))を
光磁気ディスクの記録面に対して垂直になるように(常
光屈折率と異常光屈折率が一致するので屈折率は2.6
1となる)、半径約1mmの半球に研磨加工を施した。こ
の研磨加工は一般的な光学ガラス用研削砥石を用いて行
った。なお、上記ルチル単結晶の屈折率変動は1×10
-5以下であった。
[Embodiment 1] Next, a more specific embodiment will be described. A rutile single crystal having a diameter of about 3 inches was obtained by the Czochralski method using a resistance heating type growth furnace, and the rutile single crystal was cut into 1.2 mm square wafers. The axis (Z axis (C axis)) is perpendicular to the recording surface of the magneto-optical disk (the refractive index is 2.6 because the ordinary light refractive index and the extraordinary light refractive index match).
1), and a hemisphere having a radius of about 1 mm was polished. This polishing was performed using a general grinding wheel for optical glass. Note that the refractive index variation of the rutile single crystal is 1 × 10
-5 or less.

【0021】次に、波長529nmの半導体レーザーか
らのレーザー光を図1に示すような光ヘッドの対物レン
ズにより集光させ、さらに上記単結晶体で構成されたS
ILにより絞ることにより、光磁気ディスクの記録面と
半球のSILの平面側との距離を使用光波長の1/4以
内である100nm程度に近接させて、その記録スポッ
ト径を測定したところ、約180nm程度のスポットが
得られた。
Next, a laser beam from a semiconductor laser having a wavelength of 529 nm is condensed by an objective lens of an optical head as shown in FIG.
When the distance between the recording surface of the magneto-optical disk and the plane side of the SIL of the hemisphere was brought close to about 100 nm, which is within 1/4 of the wavelength of the used light, the diameter of the recording spot was measured. A spot of about 180 nm was obtained.

【0022】これに対して、屈折率1.8のホウ珪酸ガ
ラスを用いた半球状のSILを用いて、同様な条件で記
録スポット径を測定したところ約260nmであり、上
記実施例より非常に大きなスポット径であった。なお、
ガラスの屈折率変動は5×10-4以上であった。
On the other hand, when a hemispherical SIL using a borosilicate glass having a refractive index of 1.8 was used and the recording spot diameter was measured under the same conditions under the same conditions, it was about 260 nm. The spot diameter was large. In addition,
The change in the refractive index of the glass was 5 × 10 −4 or more.

【0023】〔実施例2〕また、実施例1と同様にして
抵抗加熱方式の育成炉を用いたチョクラルスキー法によ
り、径が3インチ程度のニオブ酸リチウム単結晶体を得
た。このとき、単結晶育成原料中にマグネシアを添加
し、育成後のマグネシア量が5モル%となるようにし
た。
Example 2 In the same manner as in Example 1, a single crystal of lithium niobate having a diameter of about 3 inches was obtained by the Czochralski method using a growth furnace of a resistance heating system. At this time, magnesia was added to the single crystal growing raw material so that the amount of magnesia after the growth was 5 mol%.

【0024】このニオブ酸リチウム単結晶の光誘起屈折
率の変化についてセナルモン法により測定したところ、
2.0×10-5以下であり、上記ガラスに比べ非常に小
さいものであった。
The change in the photo-induced refractive index of this lithium niobate single crystal was measured by the Senarmont method.
It was 2.0 × 10 −5 or less, which was much smaller than the above glass.

【0025】上記ニオブ酸リチウム単結晶体を0.7mm
角のウエハーに切断した後に、ニオブ酸リチウム単結晶
の光軸(Z軸(C軸))を光磁気ディスクの記録面に対
して垂直になるように(常光屈折率と異常光屈折率が一
致するので屈折率2.29となる)、半径約0.5mmの
半球に研磨加工を施した。この研磨加工は実施例1と同
様に光学ガラス用研削砥石を用いて行った。
The lithium niobate single crystal is 0.7 mm
After cutting into square wafers, the optical axis (Z-axis (C-axis)) of the lithium niobate single crystal is perpendicular to the recording surface of the magneto-optical disk (the ordinary light refractive index and the extraordinary light refractive index match). A hemisphere having a radius of about 0.5 mm was polished. This polishing was performed using a grinding wheel for optical glass as in Example 1.

【0026】次に、実施例1と同様にして波長529n
mのレーザー光を対物レンズにより集光させ、さらに上
記単結晶体で構成されたSILにより絞ることにより、
光磁気ディスクの記録面と半球のSILの平面側との距
離を100nm程度に近接させて、その記録スポット径
を測定したところ、約205nm程度の上記ガラスより
も小さなスポット径が得られた。
Next, in the same manner as in the first embodiment,
m laser beam is condensed by an objective lens, and further converged by the SIL composed of the single crystal body,
When the distance between the recording surface of the magneto-optical disk and the plane of the hemisphere SIL was made close to about 100 nm, and the recording spot diameter was measured, a spot diameter of about 205 nm smaller than that of the glass was obtained.

【0027】〔実施例3〕また、実施例1と同様にして
抵抗加熱方式の育成炉を用いたチョクラルスキー法によ
り、径が3インチ程度のタンタル酸リチウム単結晶体を
得た。
Example 3 In the same manner as in Example 1, a lithium tantalate single crystal having a diameter of about 3 inches was obtained by the Czochralski method using a resistance heating type growth furnace.

【0028】上記タンタル酸リチウム単結晶体を約1.
0mm角のウエハーに切断した後に、ニオブ酸リチウム単
結晶の光軸(Z軸(C軸))を光磁気ディスクの記録面
に対して垂直になるように(常光屈折率と異常光屈折率
が一致するので屈折率2.18となる)、半径約0.8
mmの半球に研磨加工を施した。この研磨加工は実施例1
と同様に光学ガラス用研削砥石を用いて行った。
The above lithium tantalate single crystal was used for about 1.
After cutting the wafer into 0 mm square wafers, the optical axis (Z axis (C axis)) of the lithium niobate single crystal is perpendicular to the recording surface of the magneto-optical disk (the ordinary light refractive index and the extraordinary light refractive index are different). Since they match, the refractive index is 2.18), and the radius is about 0.8.
The hemisphere of mm was polished. This polishing is performed in Example 1.
In the same manner as described above, the grinding was performed using a grinding wheel for optical glass.

【0029】次に、実施例1と同様にして波長529n
mの半導体レーザーからのレーザー光を対物レンズによ
り集光させ、さらに上記単結晶体で構成されたSILに
より絞ることにより、光磁気ディスクの記録面と半球の
SILの平面側との距離を100nm程度に近接させ
て、その記録スポット径を測定したところ、実施例2と
同程度の約210nmの小さなスポット径であった。
Next, in the same manner as in the first embodiment,
The laser light from the semiconductor laser of m is focused by an objective lens and further narrowed by the SIL composed of the single crystal body, so that the distance between the recording surface of the magneto-optical disk and the plane side of the hemispherical SIL is about 100 nm. The spot diameter of the recording spot was measured in close proximity to the above.

【0030】[0030]

【発明の効果】以上説明したように、本発明の光記録装
置によれば、ニオブ酸リチウム、タンタル酸リチウム、
ルチル、モリブデン酸鉛、二酸化テルル、チタン酸スト
ロンチウム、酸化ジルコニウムのいずれかの単結晶を集
光レンズ(ソリッド・イマージョン・レンズ)として使
用したので、これら単結晶が使用光波長に対して透過率
に優れ、しかも製造が容易で加工性が良好な集光レンズ
を有する非常に優れた光記録装置を提供できる。
As described above, according to the optical recording apparatus of the present invention, lithium niobate, lithium tantalate,
A single crystal of rutile, lead molybdate, tellurium dioxide, strontium titanate, or zirconium oxide was used as a converging lens (solid immersion lens). It is possible to provide a very excellent optical recording apparatus having a condenser lens which is excellent, easy to manufacture, and has good workability.

【0031】また、上記単結晶が屈折率が2.0以上で
あるので、レーザー光のビーム・スポット径を非常に小
さくすることができ、現状の記録ピットサイズを大幅に
縮小することができ、光記録媒体へ現状の数倍以上もの
高密度で記録が可能となる優れた光記録装置を提供でき
る。
Since the single crystal has a refractive index of 2.0 or more, the beam spot diameter of the laser beam can be made very small, and the current recording pit size can be greatly reduced. It is possible to provide an excellent optical recording device that can record on an optical recording medium at a density that is several times or more the current density.

【0032】また、集光レンズとしてがマグネシアを3
〜7モル%、より好適には4〜5モル%含有するニオブ
酸リチウム単結晶を採用することにより、耐光損傷性が
大きく、屈折率の変動が非常に小さい優れた集光レンズ
を有する光記録装置を提供できる。
Further, magnesia is used as a condenser lens.
By adopting a single crystal of lithium niobate containing up to 7 mol%, more preferably 4 to 5 mol%, an optical recording having an excellent light-collecting lens having high light damage resistance and a very small change in refractive index. Equipment can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る光学系の実施形態を説明する斜視
図である。
FIG. 1 is a perspective view illustrating an embodiment of an optical system according to the present invention.

【図2】図1におけるA−A線概略一部断面図である。FIG. 2 is a schematic partial cross-sectional view taken along line AA in FIG.

【符号の説明】[Explanation of symbols]

1:基板 2:記録層 3:光ヘッド(光記録装置) 4:対物レンズ 5:SIL(集光レンズ) 6:磁界印加用コイル D:光磁気ディスク 1: substrate 2: recording layer 3: optical head (optical recording device) 4: objective lens 5: SIL (condensing lens) 6: magnetic field applying coil D: magneto-optical disk

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 光記録媒体に情報記録を行うためのレー
ザー光を照射させる集光レンズを具備して成る光記録装
置であって、前記集光レンズがニオブ酸リチウム、タン
タル酸リチウム、ルチル、モリブデン酸鉛、二酸化テル
ル、チタン酸ストロンチウム、酸化ジルコニウムのいず
れかの単結晶から成ることを特徴とする光記録装置。
1. An optical recording apparatus comprising a condenser lens for irradiating a laser beam for recording information on an optical recording medium, wherein the condenser lens is composed of lithium niobate, lithium tantalate, rutile, An optical recording device comprising a single crystal of any of lead molybdate, tellurium dioxide, strontium titanate, and zirconium oxide.
【請求項2】 前記集光レンズがマグネシアを3〜7モ
ル%含有するニオブ酸リチウム単結晶から成ることを特
徴とする請求項1に記載の光記録装置。
2. The optical recording apparatus according to claim 1, wherein the condenser lens is made of a single crystal of lithium niobate containing 3 to 7 mol% of magnesia.
JP31377297A 1997-11-14 1997-11-14 Optical recording device Expired - Fee Related JP3485456B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP31377297A JP3485456B2 (en) 1997-11-14 1997-11-14 Optical recording device
US09/193,111 US6043940A (en) 1997-11-14 1998-11-16 Optical system for optical recording

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31377297A JP3485456B2 (en) 1997-11-14 1997-11-14 Optical recording device

Publications (2)

Publication Number Publication Date
JPH11149655A true JPH11149655A (en) 1999-06-02
JP3485456B2 JP3485456B2 (en) 2004-01-13

Family

ID=18045348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31377297A Expired - Fee Related JP3485456B2 (en) 1997-11-14 1997-11-14 Optical recording device

Country Status (1)

Country Link
JP (1) JP3485456B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100601628B1 (en) * 2000-01-12 2006-07-14 삼성전자주식회사 Magneto-optical head for near field recording and/or reading and method for manufacturing thereof
US7378050B2 (en) 2000-12-20 2008-05-27 Murata Manufacturing Co., Ltd. Method of producing translucent ceramic

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100601628B1 (en) * 2000-01-12 2006-07-14 삼성전자주식회사 Magneto-optical head for near field recording and/or reading and method for manufacturing thereof
US7378050B2 (en) 2000-12-20 2008-05-27 Murata Manufacturing Co., Ltd. Method of producing translucent ceramic

Also Published As

Publication number Publication date
JP3485456B2 (en) 2004-01-13

Similar Documents

Publication Publication Date Title
US6043940A (en) Optical system for optical recording
US7142365B2 (en) Optical lens, condenser lens, optical pickup, and optical recording/reproducing apparatus
US7368146B2 (en) Magneto-optical recording medium, manufacturing method thereof and magneto-optical data recording and playback device
JPS60177446A (en) Optical disk recording medium
JP2001014633A (en) Information recording medium and magnetic storage device and magneto-optical storage device using the same
JP3654053B2 (en) Information recording medium and information recording apparatus
JPH11149655A (en) Optical recorder
JP2000019301A (en) Optical lens and optical recording device using that
JP2966937B2 (en) Magneto-optical memory manufacturing method
JPH09138974A (en) Phase transition type optical disk
JP3522105B2 (en) Method of manufacturing optical device for optical recording
JP3791509B2 (en) Optical reproducing apparatus and optical reproducing method
JP2000191398A (en) Barium titanate single crystal, and optical part and optical recording and reproducing device using the same
JPH07129952A (en) Substrate for magnetic disk and its production
CN1333268C (en) Optical lens, condenser lens, optical pickup, and optical recording/reproducing apparatus
JP2002230840A (en) High density optical disk using amorphous reflection film
JPH1116150A (en) Recording medium and its manufacture and recording device using the same
JP2553100B2 (en) Information operation method of information recording medium
JPS6189604A (en) Metal oxide magnetic substance and magnetic film
KR100598571B1 (en) Fabrication method of optical pick-up head using photonic crystal
JP2006039210A (en) Optical lens, condensing lens, optical pickup device and optical recording and reproducing device
JP3655121B2 (en) Magneto-optical information recording / reproducing apparatus, magneto-optical recording medium, and method of manufacturing magneto-optical recording medium
JP2000268408A (en) Optical recording medium
JP2001216685A (en) Recording medium
JPS61194652A (en) Optical information recording tape

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees