JP2000191398A - Barium titanate single crystal, and optical part and optical recording and reproducing device using the same - Google Patents

Barium titanate single crystal, and optical part and optical recording and reproducing device using the same

Info

Publication number
JP2000191398A
JP2000191398A JP10371740A JP37174098A JP2000191398A JP 2000191398 A JP2000191398 A JP 2000191398A JP 10371740 A JP10371740 A JP 10371740A JP 37174098 A JP37174098 A JP 37174098A JP 2000191398 A JP2000191398 A JP 2000191398A
Authority
JP
Japan
Prior art keywords
single crystal
optical
barium titanate
titanate single
optical recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10371740A
Other languages
Japanese (ja)
Inventor
Hiroyuki Kinoshita
博之 木下
Osamu Tsubokura
理 坪倉
Takashi Uto
隆司 宇都
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP10371740A priority Critical patent/JP2000191398A/en
Publication of JP2000191398A publication Critical patent/JP2000191398A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Optical Head (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a barium titanate single crystal having excellent characteristics such as high refractive index and high transmittance. SOLUTION: A condenser lens 5 consisting of a barium titanate single crystal expressed by the compsn. formula of (Nax,Bay)(Nbx,Tiy)O3 (wherein (x) and (y) satisfy 0.35<=x<=0.40 and y=1-x) is produced and assembled into an optical head 3. In this method, the spot diameter can be decreased to about 1/n×λ/NA (wherein (n) is the refractive index of the condenser lens 5), and the recording density of an optical disk D can be increased by about n2 times.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光学部品、圧電素
子等の電子デバイス等に用いられるチタン酸バリウム単
結晶、それを用いた光学部品、及び光ディスク、光磁気
ディスク及びDVD(デジタルビデオディスク)等の光
記録媒体に情報を記録再生する光記録再生装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a barium titanate single crystal used for an electronic device such as an optical component and a piezoelectric element, an optical component using the same, an optical disk, a magneto-optical disk and a DVD (digital video disk). The present invention relates to an optical recording / reproducing apparatus for recording / reproducing information on / from an optical recording medium such as an optical recording medium.

【0002】[0002]

【従来の技術】従来、チタン酸バリウム(BaTi
3 )単結晶は、高い圧電性や電気光学効果を有する電
子デバイス、高屈折率を有する光学部品への応用が検討
されてきたが、チタン酸バリウム単結晶は1600℃を
超える高い融点を持っており、また融点直下、120℃
付近、0℃付近及び−120℃付近でそれぞれ相転移を
するため、単純な溶融法での単結晶化ができず、多結晶
での応用がなされてきた。また、チタン酸バリウム単結
晶の製造方法として、相転移を避けるために、融点の組
成ずれに伴う融点降下現象を利用したフラックス法や気
相法が検討されている。
2. Description of the Related Art Conventionally, barium titanate (BaTi)
O 3 ) single crystals have been studied for application to electronic devices having high piezoelectricity and electro-optic effect, and optical components having high refractive index. However, barium titanate single crystals have a high melting point exceeding 1600 ° C. 120 ° C just below the melting point
Because of the phase transition around 0 ° C. and −120 ° C., single crystallization cannot be performed by a simple melting method, and application to polycrystals has been made. Further, as a method for producing a barium titanate single crystal, a flux method or a vapor phase method utilizing a melting point drop phenomenon caused by a composition shift of a melting point has been studied in order to avoid a phase transition.

【0003】そして、光ディスク、光磁気ディスク及び
DVD等の光記録媒体の記録密度を向上させるために
は、記録再生用のレーザビームのスポット径をできるだ
け小さくする必要があり、一般に前記スポット径は光源
の光波長λと対物レンズの開口数NAで決定され、ほぼ
0.8×λ/NA程度とされている。従って、光源の短
波長化が考えられるが、従来の赤色半導体レーザに比べ
青色半導体レーザ等の短波長タイプは未だ長時間の連続
発振可能なものが普及しておらず、短波長化された安価
な光源を使用するのは困難である。また、対物レンズの
開口数NAは0.7程度が上限であり、それ以上に大き
くすると光学系としては不安定になる。即ち、レーザ光
が平らな基板に入射したときに発生する球面収差はNA
の4乗に比例して増大し、球面収差が大きくなると、対
物レンズのフォーカスを制御し難くなる。同様に、光軸
に対して傾斜した基板にレーザ光が入射したときに発生
するコマ収差はNAの3乗に比例して大きくなり、コマ
収差が大きくなると信号の変調度が急速に低下する。
In order to improve the recording density of an optical recording medium such as an optical disk, a magneto-optical disk, and a DVD, it is necessary to reduce the spot diameter of a recording / reproducing laser beam as much as possible. And the numerical aperture NA of the objective lens, and is approximately 0.8 × λ / NA. Therefore, it is conceivable to shorten the wavelength of the light source. However, compared to the conventional red semiconductor laser, short-wavelength lasers such as a blue semiconductor laser that can continuously oscillate for a long time have not yet become widespread. It is difficult to use a suitable light source. The upper limit of the numerical aperture NA of the objective lens is about 0.7, and if it is larger than that, the optical system becomes unstable. That is, the spherical aberration generated when a laser beam is incident on a flat substrate is NA
When the spherical aberration increases, it becomes difficult to control the focus of the objective lens. Similarly, coma aberration generated when laser light is incident on a substrate inclined with respect to the optical axis increases in proportion to the cube of NA, and when the coma aberration increases, the modulation degree of a signal rapidly decreases.

【0004】そこで、上記方法以外に記録密度を向上さ
せる方法として、ソリッドイマージョンレンズ(Solid
Immersion Lensで、以下、SILとする)という半球状
のレンズを光記録媒体と対物レンズとの間に設置させる
ことにより、スポット径を1/n(nはSILの屈折
率)に絞ることが提案されている。この場合、SILの
屈折率nは2.4程度以上のものが必要となる。
In order to improve the recording density in addition to the above method, a solid immersion lens (Solid Immersion Lens) has been proposed.
It is proposed to reduce the spot diameter to 1 / n (n is the refractive index of the SIL) by installing a hemispherical lens called an Immersion Lens (hereinafter referred to as SIL) between the optical recording medium and the objective lens. Have been. In this case, the refractive index n of the SIL needs to be about 2.4 or more.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、チタン
酸バリウム単結晶の製造方法ついて、その融点が160
0℃を超える高融点のため、化学的に安定な白金るつぼ
を使用した溶融ができず、高融点のイリジウム製のるつ
ぼを使用しなければならない。しかし、イリジウム製の
るつぼは、使用中に成分が揮発してしまうため雰囲気成
分が限定される事、また高価であるといった問題があっ
た。
However, the method for producing a barium titanate single crystal has a melting point of 160.
Due to the high melting point exceeding 0 ° C., melting using a chemically stable platinum crucible cannot be performed, and a high melting point iridium crucible must be used. However, the crucible made of iridium has problems that components are volatilized during use, so that atmospheric components are limited, and the crucible is expensive.

【0006】また、チタン酸バリウム単結晶は酸素分圧
が低い状態で溶融するとチタン成分が融点付近で還元さ
れ、酸化物から金属が析出し結晶化の妨げとなるため、
酸素分圧を上げる必要があるが、イリジウム製のるつぼ
を使用することにより雰囲気成分が限定され、その結果
酸素分圧を上げることができず単結晶化が困難であっ
た。更に、チタン酸バリウム単結晶は、融点直下、12
0℃付近、0℃付近及び−120℃付近での相転移のた
め、単純な溶融法による単結晶化ができず、フラックス
法や気相法による製造が検討されているが、いずれの製
法においても数mm程度の大きさにしかならず、安定し
て大型の単結晶を得ることは困難であった。また、数m
m程度のチタン酸バリウム単結晶も室温での相転移のた
め容易に白濁したり割れるという問題があった。
In addition, when barium titanate single crystal is melted at a low oxygen partial pressure, the titanium component is reduced near the melting point, and metal is precipitated from the oxide to hinder crystallization.
Although it is necessary to increase the oxygen partial pressure, the use of a crucible made of iridium limits the atmospheric components. As a result, the oxygen partial pressure cannot be increased, and single crystallization is difficult. Further, the barium titanate single crystal has a melting point of just below the melting point of 12%.
Due to the phase transition around 0 ° C, 0 ° C, and -120 ° C, single crystallization by a simple melting method cannot be performed, and production by a flux method or a gas phase method is being studied. Therefore, it was difficult to obtain a large single crystal stably. Also, several meters
A barium titanate single crystal of about m also has a problem that it easily becomes cloudy or cracked due to phase transition at room temperature.

【0007】上記SIL用の材料として一般的にガラス
が検討されているが、ガラスの屈折率は1.8程度が上
限であり、これ以上の屈折率とするには希土類元素を添
加した希土類ガラスを使用する必要があるが、この希土
類ガラスにしても屈折率は2.0程度が上限であった。
このため、屈折率2.0程度が光記録媒体の記録密度の
光学的な限界を与えていた。
[0007] Glass is generally considered as a material for the SIL, but the upper limit of the refractive index of glass is about 1.8, and rare earth glass to which a rare earth element is added in order to obtain a refractive index higher than 1.8. However, even with this rare earth glass, the upper limit of the refractive index was about 2.0.
For this reason, the refractive index of about 2.0 gives an optical limit to the recording density of the optical recording medium.

【0008】従って、本発明は上記事情に鑑みて完成さ
れたものであり、その目的はきわめて高い屈折率を有し
且つ光透過率に優れたチタン酸バリウム単結晶及びそれ
を用いた光学部品並びに光記録再生装置を提供すること
にある。
Accordingly, the present invention has been completed in view of the above circumstances, and an object of the present invention is to provide a barium titanate single crystal having an extremely high refractive index and excellent light transmittance, an optical component using the same, and An object of the present invention is to provide an optical recording / reproducing apparatus.

【0009】[0009]

【課題を解決するための手段】本発明のチタン酸バリウ
ム単結晶は、組成式が(Nax ,Bay )(Nbx ,T
y )O3 (0.35≦x≦0.45,y=1−x)で
表されることを特徴とする。
Barium titanate single crystal of the present invention According to an aspect of the composition formula (Na x, Ba y) ( Nb x, T
i y) O 3 (0.35 ≦ x ≦ 0.45, characterized by being represented by y = 1-x).

【0010】本発明は、チタン酸バリウムとニオブ酸ナ
トリウムの固溶関係を利用してチタン酸バリウムにニオ
ブ酸ナトリウムを添加し上記組成範囲とすることによ
り、融点が1350℃程度と低いため白金るつぼが使用
でき、相転移が起こりにくく、その結果相転移によるク
ラックの発生を防止するものである。
The present invention provides a platinum crucible because the melting point is as low as about 1350 ° C. by adding sodium niobate to barium titanate and making the above composition range utilizing the solid solution relationship between barium titanate and sodium niobate. Can be used, and the phase transition hardly occurs, and as a result, the occurrence of cracks due to the phase transition is prevented.

【0011】本発明の光学部品は、上記チタン酸バリウ
ム単結晶から成ることを特徴とする。これにより、きわ
めて高い屈折率を有し且つ光透過率に優れた光学部品と
なる。
An optical component according to the present invention is characterized by comprising the above-mentioned barium titanate single crystal. This results in an optical component having an extremely high refractive index and excellent light transmittance.

【0012】また、本発明の光記録再生装置は、光記録
媒体に記録再生用の光を照射する光源装置と、上記チタ
ン酸バリウム単結晶から成る集光レンズを有する光ヘッ
ドと、光記録媒体とを具備したことを特徴とする。前記
構成により、集光レンズをSILとしてスポット径を1
/n(nはSILの屈折率)に絞ることで、光記録媒体
の記録密度をn2 倍程度に高めることができる。
An optical recording / reproducing apparatus according to the present invention comprises: a light source device for irradiating an optical recording medium with recording / reproducing light; an optical head having a converging lens made of the above barium titanate single crystal; And characterized in that: According to the above configuration, the spot diameter is set to 1 with the condenser lens as the SIL.
By narrowing to / n (n is the refractive index of the SIL), the recording density of the optical recording medium can be increased to about n 2 times.

【0013】[0013]

【発明の実施の形態】本発明について以下に説明する。
本発明のチタン酸バリウム単結晶(以下、単結晶と略
す)は、組成式が(Nax ,Bay )(Nbx ,T
y )O3 (0.35≦x≦0.45,y=1−x)で
表される。x<0.35では相転移のため白濁し、x>
0.45では育成した単結晶上部と下部で屈折率差が
0.01を超え、均質性が失われる。また、好ましく
は、0.37≦x≦0.43である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below.
Barium titanate single crystal of the present invention (hereinafter, abbreviated as single crystals), the compositional formula (Na x, Ba y) ( Nb x, T
i y ) O 3 (0.35 ≦ x ≦ 0.45, y = 1−x). When x <0.35, it becomes cloudy due to phase transition, and x>
At 0.45, the difference in refractive index between the upper and lower portions of the grown single crystal exceeds 0.01, and homogeneity is lost. Also, preferably, 0.37 ≦ x ≦ 0.43.

【0014】上記組成は以下のような分析方法により測
定できる。湿式の化学定量分析法によって、Na/Ba
比及びNb/Ti比を特定し組成比を決定できる。ま
た、高純度のK2 4 7 融液に本発明の単結晶を溶解
させ、それをアルカリ溶解し、原子吸光及びICP発光
分析により主成分比率を特定することができる。
The above composition can be measured by the following analytical method. Na / Ba by wet chemical quantitative analysis
The composition ratio can be determined by specifying the ratio and the Nb / Ti ratio. Further, the single crystal of the present invention is dissolved in a high-purity K 2 B 4 O 7 melt, which is dissolved in an alkali, and the main component ratio can be specified by atomic absorption and ICP emission analysis.

【0015】また、本発明の単結晶は以下のようにして
製造される。所定量のチタン酸バリウムの原料粉末A
と、ニオブ酸ナトリウムの原料粉末Bを混合し、(Na
x ,Bay )(Nbx ,Tiy )O3 においてx=0.
40となるように調製して、これらの原料粉末を900
℃以上3時間程度焼成し、多結晶状の原料粉末を作製す
る。次いで、得られた原料粉末を白金るつぼに充填し、
大気雰囲気中で1350℃で溶融し、チョクラルスキー
法(回転引き上げ法)により単結晶の育成を行う。この
とき、単結晶の回転数は5〜10rpm、1時間当たり
1mm以下の引き上げ速度で引き上げる。引き上げに際
して、溶融した液面と液面から2cmの高さとの間の温
度ギャップが60℃以上となるように温度勾配を設定
し、種結晶は〈111〉方向が引き上げ方向となるよう
に設置する。
Further, the single crystal of the present invention is manufactured as follows. Raw material powder A of predetermined amount of barium titanate
And raw material powder B of sodium niobate,
x, Ba y) (Nb x , in Ti y) O 3 x = 0 .
40 and these raw material powders were 900
Firing at a temperature of not less than 3 ° C. for about 3 hours to produce a polycrystalline raw material powder. Next, the obtained raw material powder is filled in a platinum crucible,
It is melted at 1350 ° C. in an air atmosphere, and a single crystal is grown by the Czochralski method (rotary pulling method). At this time, the single crystal is pulled at a rotation speed of 5 to 10 rpm and a pulling speed of 1 mm or less per hour. At the time of pulling, the temperature gradient is set so that the temperature gap between the molten liquid surface and the height of 2 cm from the liquid surface is 60 ° C. or more, and the seed crystal is set so that the <111> direction is the pulling direction. .

【0016】引き上げ速度を1mm/時間超及び/又は
温度ギャップを60℃未満とすると、いずれも単結晶中
に大量の気泡が発生し白濁するため、引き上げ速度1m
m/時間以下及び/又は温度ギャップ60℃以上が好ま
しい。前記チタン酸バリウムとニオブ酸ナトリウムは連
続固溶体であるため、広い温度範囲にわたって単結晶化
が可能であるが、本発明の組成範囲とすることにより室
温以上では相転移が起こらない安定したものとなる。
When the pulling speed is more than 1 mm / hour and / or the temperature gap is less than 60 ° C., a large amount of bubbles are generated in the single crystal and the single crystal becomes cloudy.
m / hour or less and / or a temperature gap of 60 ° C. or more are preferred. Since the barium titanate and sodium niobate are continuous solid solutions, single crystallization can be performed over a wide temperature range.However, by setting the composition range of the present invention, a stable phase transition does not occur at room temperature or higher. .

【0017】本発明の単結晶から成る集光レンズを用い
た光ヘッド3及び光記録再生装置の基本構成を図1に、
前記光ヘッド3及び光記録媒体としての光ディスクDの
A−A線断面図を図2に示す。基板1面に記録層2とし
て所定の反射層、相変化型記録層、又は光磁気記録層等
を形成した光ディスクDに、光波長約400〜約800
nmのレーザ光Lを光ヘッド3により集光し、所望のス
ポット径に絞り照射する。これにより、光ディスクDの
記録層2に情報の書込及び読出を行う。
FIG. 1 shows a basic structure of an optical head 3 and an optical recording / reproducing apparatus using a condensing lens made of a single crystal according to the present invention.
FIG. 2 is a sectional view taken along line AA of the optical head 3 and an optical disk D as an optical recording medium. An optical disc D having a predetermined reflective layer, a phase-change type recording layer, a magneto-optical recording layer, or the like as the recording layer 2 formed on the surface of the substrate 1 has an optical wavelength of about 400 to about 800.
The laser beam L of nm is condensed by the optical head 3 and is radiated to a desired spot diameter. Thus, information is written to and read from the recording layer 2 of the optical disc D.

【0018】例えば、光磁気ディスクにおいては、情報
の書込は以下のように行う。レーザ光Lは、凸レンズで
ある対物レンズ4により集光され、更に下面5aに焦点
を結ぶ半球状の集光レンズ(SIL)5により所定のス
ポット径(1/n×λ/NA程度)に絞られる。そし
て、光ディスクDに照射されたレーザ光Lのスポット内
の記録層2を加熱し、加熱領域が冷却されるまでの間に
磁界変調コイル6で変調磁界を印加し、例えば基板1面
に垂直方向において、記録層2の磁極性を上下方向のい
ずれかに変化させることによりデジタル情報(0,1)
の記録を行う。尚、図1において7は光ヘッド3保持用
のアームである。
For example, in a magneto-optical disk, information is written as follows. The laser beam L is condensed by an objective lens 4 which is a convex lens, and is further narrowed down to a predetermined spot diameter (about 1 / n × λ / NA) by a hemispherical condenser lens (SIL) 5 which focuses on a lower surface 5a. Can be Then, the recording layer 2 in the spot of the laser beam L applied to the optical disk D is heated, and a modulation magnetic field is applied by the magnetic field modulation coil 6 until the heated area is cooled. In the above, digital information (0, 1) is obtained by changing the magnetic polarity of the recording layer 2 in either the up or down direction.
Record. In FIG. 1, reference numeral 7 denotes an arm for holding the optical head 3.

【0019】本発明の集光レンズ5は上記組成範囲の単
結晶から構成する。これにより、2.10〜2.15程
度の高屈折率が得られ、スポット径を1/n×λ/NA
程度に絞ることができ、光ディスクDの記録密度をn2
倍程度に高めることが可能になる。また、集光レンズ5
を半球よりも真球に近い超半球状とすることで、スポッ
ト径をλ/n2 程度に絞り、光ディスクDの記録密度を
4 倍程度に高めることもできる。
The condenser lens 5 of the present invention is made of a single crystal having the above composition range. Thereby, a high refractive index of about 2.10 to 2.15 is obtained, and the spot diameter is reduced to 1 / n × λ / NA.
And the recording density of the optical disc D can be reduced to n 2
It is possible to increase it about twice. Also, the condenser lens 5
Is made to be a super hemisphere closer to a true sphere than a hemisphere, the spot diameter can be reduced to about λ / n 2 , and the recording density of the optical disc D can be increased to about n 4 times.

【0020】本発明の単結晶は、プリズム,三角プリズ
ム,ビームスプリッタ,偏光ビームスプリッタ,ミラー
等の各種光学部品、その他光導波路基板、圧電素子、又
は光方向制御素子,光位相制御素子,光屈折率制御素子
等の各種光変調素子に応用できる。
The single crystal of the present invention includes various optical components such as a prism, a triangular prism, a beam splitter, a polarizing beam splitter, a mirror, an optical waveguide substrate, a piezoelectric element, an optical direction control element, an optical phase control element, and a light refraction. It can be applied to various light modulation elements such as a rate control element.

【0021】本発明の光記録媒体は、CD(コンパクト
ディスク)、相変化型光ディスク、DVD等の光ディス
ク、又は光磁気ディスク等の、光学的又は光磁気的にデ
ジタル情報を記録再生するものである。また、光記録再
生装置の光源としては半導体レーザ、その他YAGレー
ザ等の各種固体レーザ装置、液体レーザ装置、Arレー
ザ,炭酸ガスレーザ,He−Neレーザ等のガスレーザ
装置等が使用できる。
The optical recording medium of the present invention is for recording or reproducing digital information optically or magneto-optically, such as an optical disk such as a CD (compact disk), a phase change optical disk, a DVD, or a magneto-optical disk. . As a light source of the optical recording / reproducing apparatus, a semiconductor laser, various solid-state laser devices such as a YAG laser, a liquid laser device, a gas laser device such as an Ar laser, a carbon dioxide gas laser, and a He—Ne laser can be used.

【0022】かくして、本発明は、きわめて高い屈折率
を有し且つ光透過率に優れた単結晶及び光学部品とな
り、その結果高記録密度の光記録媒体を有する光記録再
生装置が得られるという作用効果を有する。
Thus, the present invention provides a single crystal and an optical component having an extremely high refractive index and excellent light transmittance, and as a result, an optical recording / reproducing apparatus having an optical recording medium with a high recording density can be obtained. Has an effect.

【0023】尚、本発明は上記の実施形態に限定される
ものではなく、本発明の要旨を逸脱しない範囲内で種々
の変更は何等差し支えない。
It should be noted that the present invention is not limited to the above embodiment, and various changes may be made without departing from the scope of the present invention.

【0024】[0024]

【実施例】本発明の実施例を以下に説明する。Embodiments of the present invention will be described below.

【0025】(実施例1)本発明の単結晶を以下の工程
〔1〕、〔2〕によって製造した。
Example 1 A single crystal of the present invention was produced by the following steps [1] and [2].

【0026】〔1〕チタン酸バリウムの原料粉末Aを9
34.4gと、ニオブ酸ナトリウムの原料粉末Bを43
7.6gとを混合し、(Nax ,Bay )(Nbx ,T
y )O3 においてx=0.40となるように調製し
て、これらの原料粉末を950℃で焼成し、多結晶状の
原料粉末を作製した。
[1] A raw material powder A of barium titanate is mixed with 9
34.4 g and 43 parts of raw material powder B of sodium niobate
Were mixed with 7.6g, (Na x, Ba y ) (Nb x, T
i y ) Prepared so that x = 0.40 in O 3 , and fired these raw material powders at 950 ° C. to produce polycrystalline raw material powders.

【0027】〔2〕得られた原料粉末を白金るつぼに充
填し、大気雰囲気中で1350℃で溶融し、チョクラル
スキー法(回転引き上げ法)により単結晶の育成を行っ
た。このとき、単結晶の回転数は5rpm、1時間当た
り1mmの引き上げ速度で引き上げた。引き上げに際し
て、溶融した液面と液面から2cmの高さとの間の温度
ギャップが60℃以上となるように温度勾配を設定し、
種結晶は〈111〉方向が引き上げ方向となるように設
置した。得られた単結晶はφ(直径)50mm、長さ1
00mmであった。この場合、引き上げ速度を1mm/
時間超及び/又は温度ギャップを60℃未満とすると、
いずれも単結晶中に大量の気泡が発生し白濁した。
[2] The obtained raw material powder was filled in a platinum crucible, melted at 1350 ° C. in the air atmosphere, and a single crystal was grown by the Czochralski method (rotary pulling method). At this time, the single crystal was pulled at a rotation speed of 5 rpm and a pulling speed of 1 mm per hour. At the time of lifting, a temperature gradient is set so that the temperature gap between the molten liquid surface and a height of 2 cm from the liquid surface is 60 ° C. or more,
The seed crystal was set so that the <111> direction was the pulling direction. The obtained single crystal is φ (diameter) 50 mm, length 1
00 mm. In this case, the lifting speed is 1 mm /
If over time and / or the temperature gap is less than 60 ° C.,
In each case, a large amount of air bubbles were generated in the single crystal and became cloudy.

【0028】この単結晶のインゴットをスライスして
1.2mm×1.2mm×1.2mm角の立方体に切り
出した後、SiC砥粒を用いて球面研磨加工を施し、直
径0.1mm半球状のSILを作製した。次に、光波長
633nmの半導体レーザのレーザ光を、図2の対物レ
ンズ4及び本実施例のSILから成る光ヘッド3に入射
したところ、焦点のスポット径は光波長の約半分の30
0nm以下になった。
This single crystal ingot is sliced and cut into a cube of 1.2 mm × 1.2 mm × 1.2 mm square, and then subjected to spherical polishing using SiC abrasive grains to form a hemispherical 0.1 mm diameter. SIL was prepared. Next, when a laser beam of a semiconductor laser having an optical wavelength of 633 nm is incident on the optical head 3 composed of the objective lens 4 and the SIL of the present embodiment, the spot diameter of the focal point is 30 which is about half of the optical wavelength.
It became 0 nm or less.

【0029】(実施例2)実施例1の工程〔1〕におい
て、原料粉末Aと原料粉末Bとを混合するに際し、チタ
ン酸バリウムに対するニオブ酸ナトリウムのモル比を3
0〜50モル%の間で1モル%おきに設定した、20種
類の原料粉末を作製した。次に、実施例1の工程〔2〕
と同様にして20種類の単結晶を育成した。これらの単
結晶について、単結晶上部と下部における屈折率差を測
定した結果を図3に示す。
(Example 2) In step [1] of Example 1, when mixing the raw material powder A and the raw material powder B, the molar ratio of sodium niobate to barium titanate was 3
Twenty types of raw material powders were prepared at 0 mol% to 50 mol% and set at every 1 mol%. Next, the process [2] of Example 1
In the same manner as described above, 20 types of single crystals were grown. FIG. 3 shows the results of measuring the difference in the refractive index between the upper part and the lower part of these single crystals.

【0030】同図に示すように、前記モル比が40±5
モル%を超えると単結晶上部と下部で屈折率差が0.0
1を超え、均質性が失われた。また、モル比が35モル
%未満では相転移のため単結晶が白濁し易く、30モル
%以下では全体が完全に白濁した。
As shown in the figure, the molar ratio is 40 ± 5.
If it exceeds mol%, the refractive index difference between the upper and lower portions of the single crystal becomes 0.0
Above 1, homogeneity was lost. Further, when the molar ratio is less than 35 mol%, the single crystal is easily turbid due to phase transition, and when the molar ratio is 30 mol% or less, the whole becomes completely turbid.

【0031】[0031]

【発明の効果】本発明は、所定の組成範囲のチタン酸バ
リウム単結晶とすることにより、従来製造困難であった
純粋なチタン酸バリウム単結晶とほぼ同等の特性を有す
るものを容易に製造することができ、高屈折率及び高光
透過率を有するチタン酸バリウム単結晶が得られる。ま
た、本発明のチタン酸バリウム単結晶は高い圧電性及び
電気光学効果を有すると共に、融点から室温まで相転移
が無く、一般的なチョクラルスキー法によって容易に製
造できるため量産性に優れており、更に立方晶であるた
め光学的異方性が無いので光学部品用として適した材料
である。
According to the present invention, by using a barium titanate single crystal having a predetermined composition range, a barium titanate single crystal which has almost the same characteristics as a pure barium titanate single crystal, which has been difficult to produce conventionally, can be easily produced. Thus, a barium titanate single crystal having a high refractive index and a high light transmittance can be obtained. In addition, the barium titanate single crystal of the present invention has high piezoelectricity and electro-optical effect, has no phase transition from the melting point to room temperature, and can be easily manufactured by a general Czochralski method, and thus has excellent mass productivity. Further, since it is cubic, there is no optical anisotropy, so that it is a material suitable for optical components.

【0032】また本発明のチタン酸バリウム単結晶は
2.10以上の高い屈折率nを有しており、その結果本
発明のチタン酸バリウム単結晶から成る集光レンズを用
いた光ヘッドを有する光記録再生装置の場合、光記録媒
体の記録密度をn2 倍程度に高めることができるという
作用効果を有する。
Further, the barium titanate single crystal of the present invention has a high refractive index n of 2.10 or more, and as a result, it has an optical head using a converging lens made of the barium titanate single crystal of the present invention. In the case of the optical recording / reproducing apparatus, there is an operational effect that the recording density of the optical recording medium can be increased to about n 2 times.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の光記録再生装置の基本構成の斜視図で
ある。
FIG. 1 is a perspective view of a basic configuration of an optical recording / reproducing apparatus according to the present invention.

【図2】本発明の光ヘッド及び光記録媒体の断面図であ
る。
FIG. 2 is a sectional view of an optical head and an optical recording medium of the present invention.

【図3】本発明のチタン酸バリウム単結晶について、N
a,Nb添加量と屈折率との関係を示すグラフである。
FIG. 3 shows the barium titanate single crystal of the present invention using N
5 is a graph showing the relationship between the amounts of a and Nb added and the refractive index.

【符号の説明】[Explanation of symbols]

1:基板 2:記録層 3:光ヘッド 4:対物レンズ 5:集光レンズ(SIL) 5a:集光レンズの下面 6:磁界変調コイル 7:光ヘッド保持用のアーム D:光ディスク L:レーザ光 1: substrate 2: recording layer 3: optical head 4: objective lens 5: condenser lens (SIL) 5a: lower surface of the condenser lens 6: magnetic field modulation coil 7: arm for holding the optical head D: optical disk L: laser beam

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G077 AA02 BC42 5D075 CD17 5D119 AA22 AA43 JA02 JA43 JB03 NA05 NA10  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4G077 AA02 BC42 5D075 CD17 5D119 AA22 AA43 JA02 JA43 JB03 NA05 NA10

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】組成式が(Nax ,Bay )(Nbx ,T
y )O3 (0.35≦x≦0.45,y=1−x)で
表されることを特徴とするチタン酸バリウム単結晶。
1. A composition formula (Na x, Ba y) ( Nb x, T
i y ) A barium titanate single crystal represented by O 3 (0.35 ≦ x ≦ 0.45, y = 1−x).
【請求項2】請求項1のチタン酸バリウム単結晶から成
ることを特徴とする光学部品。
2. An optical component comprising the barium titanate single crystal according to claim 1.
【請求項3】光記録媒体に記録再生用の光を照射する光
源装置と、請求項1のチタン酸バリウム単結晶から成る
集光レンズを有する光ヘッドと、光記録媒体とを具備し
たことを特徴とする光記録再生装置。
3. A light source device for irradiating recording / reproducing light to an optical recording medium, an optical head having a converging lens made of barium titanate single crystal according to claim 1, and an optical recording medium. An optical recording / reproducing apparatus characterized by the following.
JP10371740A 1998-12-28 1998-12-28 Barium titanate single crystal, and optical part and optical recording and reproducing device using the same Pending JP2000191398A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10371740A JP2000191398A (en) 1998-12-28 1998-12-28 Barium titanate single crystal, and optical part and optical recording and reproducing device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10371740A JP2000191398A (en) 1998-12-28 1998-12-28 Barium titanate single crystal, and optical part and optical recording and reproducing device using the same

Publications (1)

Publication Number Publication Date
JP2000191398A true JP2000191398A (en) 2000-07-11

Family

ID=18499224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10371740A Pending JP2000191398A (en) 1998-12-28 1998-12-28 Barium titanate single crystal, and optical part and optical recording and reproducing device using the same

Country Status (1)

Country Link
JP (1) JP2000191398A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002029450A1 (en) * 2000-10-04 2002-04-11 Sony Corporation Optical element, metal mold for producing optical element and production method for optical element
SG96617A1 (en) * 2000-04-27 2003-06-16 Sony Corp Optical device, optical system, method of production of same, and mold for production of same
CN100399058C (en) * 2004-06-22 2008-07-02 日本电信电话株式会社 An optical medium, an optical lens and a prism

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG96617A1 (en) * 2000-04-27 2003-06-16 Sony Corp Optical device, optical system, method of production of same, and mold for production of same
WO2002029450A1 (en) * 2000-10-04 2002-04-11 Sony Corporation Optical element, metal mold for producing optical element and production method for optical element
US6717738B2 (en) 2000-10-04 2004-04-06 Sony Corporation Optical element, metal mold for producing optical element and production method for optical element
CN100399058C (en) * 2004-06-22 2008-07-02 日本电信电话株式会社 An optical medium, an optical lens and a prism

Similar Documents

Publication Publication Date Title
JPS60177446A (en) Optical disk recording medium
US6043940A (en) Optical system for optical recording
EP0444209B1 (en) Thin film of lithium niobate single crystal and production thereof
JP2000191398A (en) Barium titanate single crystal, and optical part and optical recording and reproducing device using the same
JPS60179954A (en) Recording medium for optical disk
CN100399058C (en) An optical medium, an optical lens and a prism
JP2001287999A (en) Lithium tantalate single crystal, optical element thereof and method for producing the same
JP2860800B2 (en) Method for producing lithium niobate single crystal thin film
JP3485456B2 (en) Optical recording device
JP2838803B2 (en) Method for producing lithium niobate single crystal thin film
JP3121361B2 (en) Ti-containing lithium niobate thin film and method for producing the same
JP3152481B2 (en) Lithium niobate single crystal thin film and method for producing the same
CN1333268C (en) Optical lens, condenser lens, optical pickup, and optical recording/reproducing apparatus
JP3448714B2 (en) Return light preventing magneto-optical element for LD-excited SHG optical head
JPH0412095A (en) Production of thin film of lithium niobate single crystal
JP2546131B2 (en) Lithium niobate single crystal thick film and method for producing the same
JPH09178942A (en) Polarizing element and optical isolator
JP2893212B2 (en) Lithium niobate single crystal thin film
JPH04260689A (en) Method of forming thin film of single crystal on substrate
JPS60179952A (en) Optical disk medium
JP3346176B2 (en) Manufacturing method of polarizer
JPH1130945A (en) Hologram memory element
JPH11191239A (en) Hologram mfmory device and manufacture therefor
JPH05286796A (en) Manufacture of lithium niobate single crystal thin film
JPH07234427A (en) Production of nonlinear optical material