JPH07234427A - Production of nonlinear optical material - Google Patents

Production of nonlinear optical material

Info

Publication number
JPH07234427A
JPH07234427A JP2656694A JP2656694A JPH07234427A JP H07234427 A JPH07234427 A JP H07234427A JP 2656694 A JP2656694 A JP 2656694A JP 2656694 A JP2656694 A JP 2656694A JP H07234427 A JPH07234427 A JP H07234427A
Authority
JP
Japan
Prior art keywords
single crystal
thin film
substrate
lattice constant
ndgao
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2656694A
Other languages
Japanese (ja)
Inventor
Toru Ebihara
徹 海老原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2656694A priority Critical patent/JPH07234427A/en
Publication of JPH07234427A publication Critical patent/JPH07234427A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To form a waveguide by depositing a thin film of a single crystal of KNbO3, LiNbO3, a solid soln. of them, etc., on a substrate without restriction on the faces of the substrate. CONSTITUTION:A thin film of a single crystal represented by the general formula XYO3 (where X is at least one kind of element selected from among potassium, sodium, lithium and silver and Y is at least one kind of element selected from among niobium, tantalum and antimony) is deposited and grown on a substrate to product the objective nonlinear optical material. At this time, the substrate has a lattice constant close to that of the single crystal represented by the general formula and does not cause phase transition under conditions of the deposition and growth of the thin film of the single crystal.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、単結晶薄膜を基板上に
析出育成する非線型光学材料の製造方法に関する。本発
明によれば、800nm領域の波長変換能に優れたニオ
ブ酸カリウム系の結晶構造を有する単結晶薄膜を用いた
非線型光学材料を提供することができる。本発明の非線
型光学材料を用いて光導波型波長変換素子を提供するこ
とができ、この素子は、高効率の変換が可能な波長変換
素子であって、近年各方面から要望の多い光ディスク記
録用、各種可視光センサー用、理化学計測用などの光源
として充分に利用され得るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a non-linear optical material in which a single crystal thin film is deposited and grown on a substrate. According to the present invention, it is possible to provide a non-linear optical material using a single crystal thin film having a potassium niobate crystal structure excellent in wavelength conversion ability in the 800 nm region. An optical waveguide type wavelength conversion element can be provided by using the non-linear optical material of the present invention. This element is a wavelength conversion element capable of highly efficient conversion, and in recent years, optical disc recording has been highly demanded from various fields. It can be sufficiently used as a light source for applications, various visible light sensors, physicochemical measurement, and the like.

【0002】[0002]

【従来の技術】近年、光記録媒体の記録の高密度化、各
種可視光センサー等の要請により、緑色から青色、さら
に紫外領域のより短い波長のコヒーレント光が求められ
ている。こうような光を得るための一つの方法として、
二次の非線型光学効果を利用して、レーザーの基本波長
を1/2 にする方法がある。この効果を利用する際、多く
の場合、二次の非線型光学効果を持つ無機及び有機の結
晶を用いる。
2. Description of the Related Art In recent years, coherent light of a shorter wavelength in the green to blue to ultraviolet region has been required due to the demand for higher density recording on optical recording media and various visible light sensors. One way to get this kind of light is
There is a method of halving the fundamental wavelength of the laser by using the second-order nonlinear optical effect. In utilizing this effect, in many cases, inorganic and organic crystals having a second-order nonlinear optical effect are used.

【0003】現在、用いられている無機非線型光学結晶
としては、例えば、KNbO3 、LiNbO3 、KTi
OPO4 、β−BaB2 4 、Ba2 NaNb5 15
どがある。これらの結晶の中で、KNbO3 (KN)は
二次の非線型光学効果が大きく、また800nm台の半
導体レーザーの直接波長変換が可能な結晶として重要で
ある(Appl.Phys.Lett.35(6),15 September 1979,461 〜
463)。さらにKNbO3 は機械的強度にも優れている。
また、LiNbO3 (LN)は非線型光学定数が大き
く、育成も比較的容易である(J.Cry.Grout
h.99(1990)832〜836)。
Currently used inorganic non-linear optical crystals include, for example, KNbO 3 , LiNbO 3 and KTi.
Examples include OPO 4 , β-BaB 2 O 4 , and Ba 2 NaNb 5 O 15 . Among these crystals, KNbO 3 (KN) has a large second-order nonlinear optical effect and is important as a crystal capable of direct wavelength conversion of a semiconductor laser on the order of 800 nm (Appl.Phys.Lett.35 ( 6), 15 September 1979,461〜
463). Furthermore, KNbO 3 is also excellent in mechanical strength.
In addition, LiNbO 3 (LN) has a large nonlinear optical constant and is relatively easy to grow (J. Cry. Grout).
h. 99 (1990) 832-836).

【0004】[0004]

【発明が解決しようとする課題】さらに、高い効率で可
視、紫外領域の光を得るために、上記のような無機非線
型光学結晶をファイバー化又は導波路化した素子構造の
研究、工夫も同時に進行している。
Further, in order to obtain light in the visible and ultraviolet regions with high efficiency, research and devising of a device structure in which the inorganic non-linear optical crystal as described above is made into a fiber or a waveguide is performed at the same time. Is in progress.

【0005】例えば、LiNbO3 単結晶薄膜をLiT
aO3 基板上に形成するに際して、各単結晶のa軸の格
子定数を整合させることで薄膜導波路を形成する方法が
知られている〔特開平3−218997号〕。ところ
が、LiNbO3 はそれ自身では、800nm台の半導
体レーザーの波長変換に適さず、LiNbO3 に他の元
素をドープする等の工夫を加える必要があった。しか
し、他の元素をドープしたLiNbO3 を基板に析出さ
せようとすると、他の元素をドープしたLiNbO3
結晶構造が微妙に変化することから、再現性良く単結晶
薄膜を育成できないという問題があった。
For example, a LiNbO 3 single crystal thin film is formed into LiT.
There is known a method of forming a thin film waveguide by matching the lattice constants of the a-axes of each single crystal when forming it on an aO 3 substrate [JP-A-3-218997]. However, LiNbO 3 by itself is not suitable for wavelength conversion of a semiconductor laser on the order of 800 nm, and it is necessary to add a device such as doping LiNbO 3 with another element. However, if an attempt is made to deposit LiNbO 3 doped with another element on the substrate, the crystal structure of LiNbO 3 doped with another element will change subtly, so that a single crystal thin film cannot be grown with good reproducibility. there were.

【0006】一方、KNbO3 やNaNbO3 、さらに
はそれらの固溶体の単結晶は、LiNbO3 とは異な
り、他の元素をドープすることなく、800nm台の半
導体レーザーの波長変換を行うことができる。ところ
が、これまでのところ、これらKNbO3 系の単結晶薄
膜を基板上に形成した非線型光学材料は知られていな
い。また、一般に、基板上に単結晶薄膜を析出させる場
合、基板の結晶面が薄膜となる単結晶の結晶構造により
制限される。例えば、前出の特開平3−218997号
に記載の導波路の場合、望まして面はLiTaO3 基板
の(0001)面である。ところが、導波路の用途によ
り、要求される物性が異なり、そのため単結晶薄膜も用
途により最適な面が異なる場合がある。ところが、これ
までは特定の基板の特定の面の上にしか単結晶薄膜を形
成することができず、別の面の単結晶薄膜を形成するに
は、新たな基板を選択する必要があった。
On the other hand, KNbO 3 , NaNbO 3 , and further, single crystals of solid solutions thereof, unlike LiNbO 3 , can perform wavelength conversion of a semiconductor laser on the order of 800 nm without doping with other elements. However, so far, a non-linear optical material in which these KNbO 3 -based single crystal thin films are formed on a substrate is not known. Further, generally, when a single crystal thin film is deposited on a substrate, the crystal plane of the substrate is limited by the crystal structure of the single crystal that forms the thin film. For example, in the case of the waveguide described in JP-A-3-218997, the desired plane is the (0001) plane of the LiTaO 3 substrate. However, the required physical properties differ depending on the application of the waveguide, and thus the optimum surface of the single crystal thin film may differ depending on the application. However, until now, a single crystal thin film could be formed only on a specific surface of a specific substrate, and a new substrate had to be selected to form a single crystal thin film on another surface. .

【0007】そこで、本発明の目的は、非線型光学定数
が大きく、レーザーダメージが少なく室温で使用可能な
KNbO3 、LiNbO3 及びこれらの固溶体等の単結
晶の薄膜を、基板の面に制限されることなく析出させ
て、導波路を形成する方法を提供することにある。
Therefore, the object of the present invention is to limit the single crystal thin film of KNbO 3 , LiNbO 3 and solid solutions thereof, which have a large nonlinear optical constant and a small laser damage and can be used at room temperature, to the surface of the substrate. The object is to provide a method for forming a waveguide by depositing the waveguide without any treatment.

【0008】[0008]

【課題を解決するための手段】本発明は、一般式XYO
3 〔但し、Xはカリウム、ナトリウム、リチウム及び銀
からなる群から選ばれる少なくとも1種の元素であり
(但し、Xとしてリチウムを含む場合、リチウムの含有
量は20モル%以下であり、残りの80モル%以上はカ
リウム、ナトリウム及び銀からなる群から選ばれる少な
くとも1種の元素である)、Yはニオブ、タンタル及び
アンチモンからなる群から選ばれる少なくとも1種の元
素である(但し、Yとしてアンチモンを含む場合、アン
チモンの含有量は10モル%以下であり、残りの90モ
ル%以上はニオブ及びタンタルからなる群から選ばれる
少なくとも1種の元素である)〕で示される単結晶薄膜
を基板上に析出育成する非線型光学材料の製造方法であ
って、前記基板が、前記一般式で表される単結晶の格子
定数と近い格子定数を有し、かつ単結晶薄膜の析出育成
条件下において、相転移を起こさない単結晶であること
を特徴とする前記製造方法に関する。
The present invention is directed to the general formula XYO.
3 [wherein X is at least one element selected from the group consisting of potassium, sodium, lithium and silver (provided that when lithium is contained as X, the content of lithium is 20 mol% or less, 80 mol% or more is at least one element selected from the group consisting of potassium, sodium and silver), Y is at least one element selected from the group consisting of niobium, tantalum and antimony (provided that Y is Y In the case of containing antimony, the content of antimony is 10 mol% or less, and the remaining 90 mol% or more is at least one element selected from the group consisting of niobium and tantalum)]. A method for manufacturing a non-linear optical material in which precipitation growth is performed on the substrate, wherein the substrate has a lattice constant close to that of the single crystal represented by the general formula. A, and the precipitated growing conditions of the single crystal thin film, to the manufacturing method, which is a phase transition does not cause a single crystal.

【0009】本発明において薄膜とする単結晶は、一般
式XYO3 で示される。Xはカリウム、ナトリウム、リ
チウム及び銀からなる群から選ばれる少なくとも1種の
元素である。Xがこれらの元素の2種以上を含む固溶体
であることもできるが、但し、Xとしてリチウムを含む
場合、リチウムの含有量は20モル%以下である。これ
は、リチウムが20モル%を超えると、結晶構造が変化
してしまい、波長変換素子として機能が損なわれるから
である。
The single crystal used as the thin film in the present invention is represented by the general formula XYO 3 . X is at least one element selected from the group consisting of potassium, sodium, lithium and silver. X may be a solid solution containing two or more of these elements, provided that when X contains lithium, the content of lithium is 20 mol% or less. This is because when the lithium content exceeds 20 mol%, the crystal structure changes and the function as a wavelength conversion element is impaired.

【0010】Yはニオブ、タンタル及びアンチモンから
なる群から選ばれる少なくとも1種の元素である。Yが
これらの元素の2種以上を含む固溶体であることもでき
るが、Yとしてアンチモンを含む場合、アンチモンの含
有量は10モル%以下である。アンチモンが10モル%
を超えると固溶体を形成しにくくなるからである。
Y is at least one element selected from the group consisting of niobium, tantalum and antimony. Y may be a solid solution containing two or more of these elements, but when antimony is included as Y, the content of antimony is 10 mol% or less. Antimony is 10 mol%
This is because if it exceeds, it becomes difficult to form a solid solution.

【0011】図1及び2に、(Na1-x x )NbO3
においてカリウムとナトリウムの量比を変化させたとき
の、格子定数の変化(実測値)を示す。図1には、a軸
及びb軸の格子定数の変化を示し、図2には、c軸の格
子定数の変化を示す。このように、薄膜とする単結晶に
要求される物性に応じてカリウムとナトリウムの量比を
変化させることで、格子定数を調整することができる。
Xがカリウムとナトリウムとの組合せ以外の場合でも同
様に行うことができる。また、Yについても、適宜2種
以上の元素を組み合わせることで、単結晶薄膜の格子定
数を調整することもできる。尚、本発明において格子定
数は、粉末X線法により得られた結果から、ブラッグの
回折条件に合うピークから求めた。
1 and 2, (Na 1-x K x ) NbO 3
The change (measured value) of the lattice constant when the amount ratio of potassium to sodium is changed is shown. FIG. 1 shows changes in the lattice constants of the a-axis and the b-axis, and FIG. 2 shows changes in the lattice constant of the c-axis. In this way, the lattice constant can be adjusted by changing the amount ratio of potassium and sodium according to the physical properties required for the single crystal to be a thin film.
The same can be done when X is other than a combination of potassium and sodium. Regarding Y, the lattice constant of the single crystal thin film can be adjusted by appropriately combining two or more kinds of elements. In the present invention, the lattice constant was determined from the peak that matches the Bragg diffraction condition from the result obtained by the powder X-ray method.

【0012】一方、本発明の製造方法には、基板とし
て、前記薄膜とする単結晶の格子定数と近い格子定数を
有し、かつ単結晶薄膜の析出育成条件下において、相転
移を起こさない単結晶を用いる。薄膜とする単結晶の格
子定数と基板の格子定数とが近いとは、具体的には、基
板の格子定数と薄膜を構成する単結晶の格子定数との格
子不整合が11%以内、好ましくは5%以内、より好ま
しくは3%以内の場合を意味する。ここで、格子不整合
とは、基板を薄膜を構成する各単結晶のabcの各軸に
ついて、格子定数の差の絶対値を基板の格子定数で割っ
た値をパーセント表示した値を意味する。但し、基板と
薄膜との組み合わせによっては、格子定数の1周期のみ
ならず、2周期以上の複数周期との間の差の絶対値であ
っても良い。
On the other hand, according to the manufacturing method of the present invention, the substrate has a lattice constant close to that of the single crystal to be the thin film, and does not cause a phase transition under the precipitation growth condition of the single crystal thin film. Use crystals. The closeness of the lattice constant of the single crystal that forms the thin film and the lattice constant of the substrate means that the lattice mismatch between the lattice constant of the substrate and the single crystal that forms the thin film is within 11%, preferably It means within 5%, more preferably within 3%. Here, the lattice mismatch means a value obtained by dividing a value obtained by dividing an absolute value of a difference in lattice constant by a lattice constant of the substrate for each axis of abc of each single crystal forming a thin film on the substrate by a percentage display. However, depending on the combination of the substrate and the thin film, not only one cycle of the lattice constant but also the absolute value of the difference between two or more cycles may be used.

【0013】さらに、本発明では、単結晶薄膜の析出育
成条件下において、相転移を起こさない単結晶を基板と
して用いる。単結晶薄膜の析出育成の条件は、単結晶薄
膜の組成と薄膜析出のために用いる溶液又は融液の組成
により異なる。特に、薄膜析出のために用いる溶液にフ
ラックスを用いる場合には、析出温度は大幅に低下でき
る。一般には、析出温度は550〜1500℃、好まし
くは900〜1200℃の範囲である。そこで、本発明
では、室温から1500℃の範囲で、相転移を起こさな
い単結晶を基板として用いる。
Further, in the present invention, a single crystal that does not cause a phase transition under the conditions of precipitation growth of a single crystal thin film is used as a substrate. The conditions for depositing and growing the single crystal thin film differ depending on the composition of the single crystal thin film and the composition of the solution or melt used for depositing the thin film. In particular, when a flux is used in the solution used for thin film deposition, the deposition temperature can be significantly reduced. Generally, the deposition temperature is in the range of 550 to 1500 ° C, preferably 900 to 1200 ° C. Therefore, in the present invention, a single crystal that does not cause a phase transition in the range of room temperature to 1500 ° C. is used as the substrate.

【0014】以上のような条件を満足する、基板として
使用できる単結晶とその格子定数(文献値)を以下に例
示する。 ─────────────────────────────────── 単結晶 格子定数:a軸 b軸 c軸 (Å) ─────────────────────────────────── SmAlO3 5.285 5.290 7.473 EuAlO3 5.271 5.292 7.458 GdAlO3 5.247 5.304 7.417 YAlO3 5.179 5.329 7.370 NdGaO3 5.431 5.499 7.710 PrGaO3 5.465 5.495 7.729 LaCrO3 5.477 5.514 7.755 PrCrO3 5.444 5.484 7.710 NdCrO3 5.412 5.494 7.695 SmCrO3 5.372 5.502 7.650 EuCrO3 5.330 5.500 7.610 GaCrO3 5.312 5.514 7.611 DyCrO3 5.260 5.510 7.500 YCrO3 5.247 5.518 7.540 ErCrO3 5.220 5.510 7.510 YbCrO3 5.180 5.490 7.510 LuCrO3 5.170 5.490 7.460 LaFeO3 5.545 5.562 7.851 PrFeO3 5.495 5.578 7.810 NdFeO3 5.441 5.573 7.753 SmFeO3 5.394 5.592 7.711 EuFeO3 5.371 5.611 7.686 GdFeO3 5.346 5.616 7.668 YFeO3 5.279 5.590 7.609 ErFeO3 5.260 5.590 7.580 YbFeO3 5.220 5.580 7.560 LuFeO3 5.210 5.550 7.550 LaScO3 5.678 5.787 8.098 PrScO3 5.615 5.776 8.027 NdScO3 5.574 5.771 7.998 SmScO3 5.530 5.760 7.950 EuScO3 5.510 5.760 7.940 GdScO3 5.487 5.756 7.925 DyScO3 5.430 5.710 7.890 LaInO3 5.723 5.914 8.207 NdInO3 5.627 5.891 8.121 SmInO3 5.589 5.886 8.082 ───────────────────────────────────
The single crystal which can be used as a substrate and the lattice constant (reference value) thereof satisfying the above conditions are exemplified below. ─────────────────────────────────── Single crystal lattice constant: a axis b axis c axis (Å) ─ ────────────────────────────────── SmAlO 3 5.285 5.290 7.473 EuAlO 3 5.271 5.292 7.458 GdAlO 3 5.247 5.304 7.417 YAlO 3 5.179 5.329 7.370 NdGaO 3 5.431 5.499 7.710 PrGaO 3 5.465 5.495 7.729 LaCrO 3 5.477 5.514 7.755 PrCrO 3 5.444 5.484 7.710 NdCrO 3 5.412 5.494 7.695 SmCrO 3 5.372 5.502 7.650 EuCrO 3 5.330 5 .500 7.610 GaC rO 3 5.312 5.514 7.611 DyCrO 3 5.260 5.510 7.500 YCrO 3 5.247 5.518 7.540 ErCrO 3 5.220 5.510 7.510 YbCrO 3 5.180 5 .490 7.510 LuCrO 3 5.170 5.490 7.460 LaFeO 3 5.545 5.562 7.851 PrFeO 3 5.495 5.578 7.810 NdFeO 3 5.441 5.573 7.753 SmFe. 3 5.394 5.592 7.711 EuFeO 3 5.371 5.611 7.686 GdFeO 3 5.346 5.616 7.668 YFeO 3 5.279 5.590 7.609 ErFeO 3 5.2260 5. 590 7.580 YbFeO 3 5.220 5.580 7.560 LuFeO 3 5. 10 5.550 7.550 LaScO 3 5.678 5.787 8.098 PrScO 3 5.615 5.776 8.027 NdScO 3 5.574 5.771 7.998 SmScO 3 5.530 5.760 7. 950 EuScO 3 5.510 5.760 7.940 GdScO 3 5.487 5.756 7.925 DyScO 3 5.430 5.710 7.890 LaInO 3 5.723 5914 8.207 NdInO 3 5.891 8.121 SmInO 3 5.589 5.886 8.082 ───────────────────────────────── ──

【0015】本発明においては、薄膜と基板との格子不
整合がabc軸のいずれの軸についても11%以内であ
る単結晶を用いているため、基板のどの面を用いても、
単結晶薄膜を再現性良く作製することができる。例え
ば、NdGaO3 基板とKNbO3 単結晶薄膜との格子
不整合を以下に示す。 ─────────────────────────────────── 格子定数:a軸 b軸 c軸 (Å) ─────────────────────────────────── NdGaO3 基板 5.431 5.499 7.710 KNbO3 単結晶薄膜* 5.689 5.7256 3.9692 (7.9384) 格子不整合(%) 4.75 4.12 2.96 (2周期) ─────────────────────────────────── *実測値
In the present invention, since a single crystal in which the lattice mismatch between the thin film and the substrate is within 11% on any of the abc axes is used, no matter which surface of the substrate is used,
A single crystal thin film can be produced with good reproducibility. For example, the lattice mismatch between the NdGaO 3 substrate and the KNbO 3 single crystal thin film is shown below. ─────────────────────────────────── Lattice constant: a axis b axis c axis (Å) ─── ──────────────────────────────── NdGaO 3 substrate 5.431 5.499 7.710 KNbO 3 single crystal thin film * 5.689 5.7256 3.9692 (7.9384) Lattice mismatch (%) 4.75 4.12 2.96 (2 cycles) ─────────────────────────────────── * Actual measurement value

【0016】同様に、NdGaO3 基板とNaNbO3
単結晶薄膜との格子不整合を以下に示す。 ─────────────────────────────────── 格子定数:a軸 b軸 c軸 (Å) ─────────────────────────────────── NdGaO3 基板 5.431 5.499 7.710 NaNbO3 単結晶薄膜* 5.523 5.575 3.833 (7.666) 格子不整合(%) 1.69 1.38 0.57 (2周期) ─────────────────────────────────── *実測値
[0016] Similarly, NdGaO 3 substrate and NaNbO 3
The lattice mismatch with the single crystal thin film is shown below. ─────────────────────────────────── Lattice constant: a axis b axis c axis (Å) ─── ──────────────────────────────── NdGaO 3 substrate 5.431 5.499 7.710 NaNbO 3 single crystal thin film * 5.523 5.575 3.833 (7.666) Lattice mismatch (%) 1.69 1.38 0.57 (2 cycles) ─────────────────────────────────── * Actual measurement value

【0017】薄膜の作製法としては、液相エピタキシャ
ル法を用いることができる。液相エピタキシャル法は、
基板となる単結晶の所望の面を切り出し、研磨して得ら
れた単結晶基板面を単結晶薄膜と同じ組成を有する融液
又は所望の組成の単結晶を析出する溶液に浸漬して、基
板表面に所望の単結晶薄膜を成膜することにより行うこ
とができる。例えば、NdGaO3 基板上にKNbO3
単結晶薄膜を形成する場合、NdGaO3 基板をKNb
3 を析出する溶液に浸漬して、基板上にKNbO3
結晶薄膜をエピタキシャル成長させることにより形成す
ることができる。融液の組成、温度及び浸漬時間等は、
単結晶薄膜の組成や厚さ等を考慮して適宜決定すること
ができる。尚、薄膜形成後、所望により単分域処理を施
すこともできる。
As a method for producing the thin film, a liquid phase epitaxial method can be used. The liquid phase epitaxial method is
The desired surface of the single crystal to be the substrate is cut out, the single crystal substrate surface obtained by polishing is immersed in a melt having the same composition as the single crystal thin film or a solution for depositing a single crystal of the desired composition, and the substrate This can be performed by forming a desired single crystal thin film on the surface. For example, KNbO 3 on an NdGaO 3 substrate
When forming a single crystal thin film, use NdGaO 3 substrate with KNb.
It can be formed by immersing in a solution for depositing O 3 and epitaxially growing a KNbO 3 single crystal thin film on the substrate. Melt composition, temperature, immersion time, etc.
It can be appropriately determined in consideration of the composition and thickness of the single crystal thin film. Incidentally, after forming the thin film, a single domain treatment may be performed if desired.

【0018】以上のようにして作製した本発明の非線型
光学材料は、光導波型光学素子等を構成することが可能
である。本発明の薄膜単結晶は、その物性にあわせて多
くの光導波型光学素子(例えば、非線型光学、電気光学
素子)として使用可能である。特に本発明の単結晶は、
大きな二次の非線型性があり、波長変換用光学素子とし
て使用することができる。
The non-linear optical material of the present invention produced as described above can constitute an optical waveguide type optical element or the like. The thin film single crystal of the present invention can be used as many optical waveguide type optical elements (for example, non-linear optics and electro-optical elements) according to its physical properties. In particular, the single crystal of the present invention is
Since it has a large second-order nonlinearity, it can be used as an optical element for wavelength conversion.

【0019】[0019]

【実施例】以下、実施例により本発明をさらに具体的に
説明する。基板として、NdGaO3 、LaInO3
はYAlO3 を用いて、各種の薄膜単結晶の作製を行っ
た。作製時の溶融体組成は、KNbO3 系の単結晶につ
ついては、KNbO3 −KVO3 系相図(P.Bohac, P.Bu
chamnn and H.Melchior, Japanese Journal of Applied
Physics., Vol.24(1985), 24-2, 613〜615)上のKNb
3 :KVO3 =1:1又はKNbO3 :KVO3
1:4を参考にして、KNbO3 を析出結晶が所望の結
晶組成である(Ag1-x x )NbO3 や(Ag1-x
x )(Nb1-ySby )O3 となるように組成を変化さ
せるか、又はAgNO3 やSb2 5 等を加えることに
より決定した。作製装置は坩堝炉(発熱体カンタル線、
最高使用温度:1200℃)を用いた。坩堝として白金
製75mmφ×25mmh.×0.2mmt.の大きさ
のものを使用し、各組成を約180g充填した。作製温
度は組成1:1の場合、950〜1000℃付近、1:
4の場合、850〜900℃付近であり、過冷却度の違
いにより50℃ほどの間で温度を調節した。基板の四隅
を白金製の治具に水平に固定し、回転させながら溶融体
内に浸し、種々条件を変えて成膜を行った。作製条件
は、回転数50〜100rpm、作製時間10〜60分
とし、得たい膜厚により作製時間を調節した。また作製
直後に坩堝表面上で基板の高速回転(500〜1000
rpm)を30〜60秒間行い、付着した溶剤を除去し
た。作製後の温度降下は50℃/時間(作製温度〜60
0℃)、5℃/時間(600℃〜室温)とした。
EXAMPLES The present invention will be described in more detail below with reference to examples. Various thin film single crystals were produced using NdGaO 3 , LaInO 3 or YAlO 3 as the substrate. Melt composition at the time of manufacturing, the nudged the single crystal of KNbO 3 based, KNbO 3 -KVO 3 system phase diagram (P.Bohac, P.Bu
chamnn and H. Melchior, Japanese Journal of Applied
Physics., Vol.24 (1985), 24-2, 613-615) KNb
O 3 : KVO 3 = 1: 1 or KNbO 3 : KVO 3 =
With reference to 1: 4, KNbO 3 is precipitated and the desired crystal composition is (Ag 1-x K x ) NbO 3 or (Ag 1-x K).
x ) (Nb 1-y Sb y ) O 3 or the composition was changed or AgNO 3 or Sb 2 O 5 was added. The manufacturing equipment is a crucible furnace (heating element Kanthal wire,
Maximum use temperature: 1200 ° C.) was used. Made of platinum as a crucible 75 mmφ × 25 mm h. × 0.2 mmt. About 180 g of each composition was used. When the composition temperature is 1: 1, the manufacturing temperature is around 950 to 1000 ° C., 1:
In the case of No. 4, the temperature was around 850 to 900 ° C., and the temperature was adjusted to about 50 ° C. depending on the difference in the degree of supercooling. The four corners of the substrate were horizontally fixed to a jig made of platinum, immersed in the melt while being rotated, and various conditions were changed to form a film. The production conditions were a rotation speed of 50 to 100 rpm and a production time of 10 to 60 minutes, and the production time was adjusted according to the desired film thickness. Immediately after the production, the substrate was rotated on the crucible surface at high speed (500 to 1000).
(rpm) was performed for 30 to 60 seconds to remove the adhered solvent. The temperature drop after production is 50 ° C / hour (production temperature ~ 60
0 ° C.), 5 ° C./hour (600 ° C. to room temperature).

【0020】実施例2−1 基板として面方位が(100)であり、大きさが11.
0×9.5×0.5mmのNdGaO3 を用いた。KN
bO3 :KVO3 =1:4の溶融体を用いて、上記に示
す条件によりNdGaO3 基板上にKNbO3 単結晶薄
膜を作製した。その結果、光学用途の光導波路として充
分な品質の膜厚が約0.5〜10.0μmの範囲のKN
bO3 薄膜単結晶を、析出時間を変化させることにより
形成して本発明の光学材料を作製した。得られた光学材
料の両端面を研磨した後、導波路層である単結晶薄膜の
端面からTi:Al2 3 レーザーの870nmの光を
入射した結果、図3に示すように、光の導波及び端面よ
り870nmの光と第二高周波435nmの光のでる射
出が確認された。その際の伝播損失は約1.0dB/c
mであった。尚、NdGaO3 とKNbO3 とは、a
軸、b軸及びc軸の格子不整合が、それぞれ4.75%、4.
12%及び2.96(2周期)%である。基板をNdGaO3
の(110)面または(010)面にして同様に薄膜単
結晶の作製を行った。それぞれ方位の異なるKNbO3
単結晶薄膜を有する光学材料を得ることが出来た。
Example 2-1 The substrate has a plane orientation of (100) and a size of 11.
NdGaO 3 of 0 × 9.5 × 0.5 mm was used. KN
Using the melt of bO 3 : KVO 3 = 1: 4, a KNbO 3 single crystal thin film was formed on the NdGaO 3 substrate under the conditions shown above. As a result, a KN having a film thickness of sufficient quality as an optical waveguide for optical use is in the range of about 0.5 to 10.0 μm.
A bO 3 thin film single crystal was formed by changing the deposition time to prepare an optical material of the present invention. After polishing both end faces of the obtained optical material, the light of 870 nm of Ti: Al 2 O 3 laser was incident from the end face of the single crystal thin film which is the waveguide layer. As a result, as shown in FIG. It was confirmed that the light of 870 nm and the light of second high frequency 435 nm were emitted from the wave and the end face. The propagation loss at that time is about 1.0 dB / c
It was m. In addition, NdGaO 3 and KNbO 3 are a
4.75% of lattice misalignment of axis, b-axis and c-axis, 4.
12% and 2.96 (2 cycles)%. The substrate is NdGaO 3
A thin film single crystal was similarly prepared with the (110) plane or the (010) plane. KNbO 3 with different directions
An optical material having a single crystal thin film could be obtained.

【0021】実施例2−2 基板として面方位が(110)であり、大きさが10.
0×9.0×0.5mmのNdGaO3 を用いた。作製
溶液としてNa2 O:Nb2 5 =33:67〜69:
31の範囲の溶融体を使用した。温度は組成にあわせ
て、約1000〜1430℃の範囲で過冷却度を変化さ
せて設定した。本例では特に、Na2 O:Nb2 5
65:35と45:55の2点の溶融体を使用し、温度
は65:35の場合、1150〜1200℃、45:5
5の場合、1350〜1400℃の範囲で設定し、過冷
却度を変化させた。他の条件は上記に示す条件とほぼ同
じ条件により、NdGaO3 基板上にNaNbO3 単結
晶薄膜を作製した。その結果、光学用途の光導波路とし
て充分な品質の膜厚が約0.5〜10.0μmの範囲の
NaNbO3 薄膜単結晶を、析出時間を変化させること
により形成して本発明の光学材料を作製した。尚、Nd
GaO3 とNaNbO3 とは、a軸、b軸及びc軸の格
子不整合が、それぞれ1.69%、1.38%及び0.57(2周
期)%である。基板をNdGaO3 の(100)面また
は(010)面にして同様に薄膜単結晶の作製を行っ
た。それぞれ方位の異なるNaNbO3 単結晶薄膜を有
する光学材料を得ることが出来た。
Example 2-2 A substrate having a plane orientation of (110) and a size of 10.
NdGaO 3 of 0 × 9.0 × 0.5 mm was used. As a preparation solution, Na 2 O: Nb 2 O 5 = 33: 67 to 69:
A melt in the range of 31 was used. The temperature was set according to the composition by changing the degree of supercooling in the range of about 1000 to 1430 ° C. Particularly in this example, Na 2 O: Nb 2 O 5 =
When using a two-point melt of 65:35 and 45:55 and the temperature is 65:35, 1150 to 1200 ° C, 45: 5
In the case of 5, the temperature was set in the range of 1350 to 1400 ° C and the degree of supercooling was changed. Other conditions were almost the same as the above conditions, and a NaNbO 3 single crystal thin film was formed on the NdGaO 3 substrate. As a result, a NaNbO 3 thin film single crystal having a film thickness of sufficient quality as an optical waveguide for optical use in a range of about 0.5 to 10.0 μm is formed by changing the deposition time to obtain the optical material of the present invention. It was made. Incidentally, Nd
GaO 3 and NaNbO 3 have lattice mismatches of 1.69%, 1.38%, and 0.57 (2 cycles)% on the a-axis, the b-axis, and the c-axis, respectively. A thin film single crystal was similarly prepared by using the substrate as a (100) face or a (010) face of NdGaO 3 . An optical material having a NaNbO 3 single crystal thin film having different directions could be obtained.

【0022】実施例2−3 溶融体にxが0.5である結晶が析出するようにAgを
添加した以外は、実施例1と同様にして(Ag
1-x x )NbO3 (x=0.5)単結晶薄膜を、面方
位が(100)のNdGaO3 上にの作製を行った。そ
の結果、光学用途の光導波路として充分な品質の膜厚が
約0.5〜10.0μmの範囲の(Ag1-x x)Nb
3 薄膜単結晶を、析出時間を変化させることにより形
成して本発明の光学材料を作製した。基板をNdGaO
3 の(110)面または(010)面にして同様に単結
晶薄膜を作製したところ、それぞれ方位の異なる(Ag
1-x x )NbO3 単結晶薄膜を有する光学材料が得ら
れた。尚、NdGaO3 と(Ag1-x x )NbO
3 (x=0.5)とは、a軸、b軸及びc軸の格子不整
合が、それぞれ3.77%、3.24%及び2.20(2周期)%で
ある。本例のようにKNbO3 にAg元素を固溶させた
場合、Agのイオン半径から格子定数は小さくなり、N
dGaO3 の格子定数に近くなるため、整合が取りやす
くなり、より良質の薄膜単結晶を得ることが出来る。
Example 2-3 The procedure of Example 1 was repeated except that Ag was added to the melt so that crystals having x of 0.5 were precipitated (Ag
A 1-x K x ) NbO 3 (x = 0.5) single crystal thin film was prepared on NdGaO 3 having a plane orientation of (100). As a result, (Ag 1-x K x ) Nb having a film thickness of sufficient quality as an optical waveguide for optical use is in the range of about 0.5 to 10.0 μm.
An O 3 thin film single crystal was formed by changing the deposition time to prepare an optical material of the present invention. Substrate is NdGaO
When a single crystal thin film was similarly prepared with the (110) plane or the (010) plane of 3 (Ag),
1-x K x) NbO 3 optical material having a single-crystal thin film was obtained. In addition, NdGaO 3 and (Ag 1-x K x ) NbO
3 (x = 0.5) means that the lattice mismatches of the a-axis, the b-axis, and the c-axis are 3.77%, 3.24%, and 2.20 (2 cycles)%, respectively. When the Ag element is dissolved in KNbO 3 as in this example, the lattice constant becomes smaller from the ionic radius of Ag, and N
Since the lattice constant is close to that of dGaO 3 , matching is facilitated and a higher quality thin film single crystal can be obtained.

【0023】実施例2−4 溶融体にxが0.3である結晶が析出するようにAg
を、さらにyが0.05となるようにSbをそれぞれ添
加した以外は、実施例1と同様にして(Ag1-xx
(Nb1-y Sby )O3 単結晶薄膜を、面方位が(10
0)のNdGaO3 上にの作製を行った。その結果、光
学用途の光導波路として充分な品質の膜厚が約0.5〜
10.0μmの範囲の(Ag1-x x )(Nb1-y Sb
y )O3 薄膜単結晶を、析出時間を変化させることによ
り形成して本発明の光学材料を作製した。基板をNdG
aO3 の(110)面または(010)面にして同様に
単結晶薄膜を作製したところ、それぞれ方位の異なる
(Ag1-x x )(Nb1-y Sby)O3 単結晶薄膜を
有する光学材料が得られた。尚、NdGaO3 と(Ag
1-x x )(Nb1-y Sby )NbO3 (x=0.3、
y=0.05)とは、a軸、b軸及びc軸の格子不整合
が、それぞれ4.14%、3.58%及び2.49(2周期)%であ
る。本例のようにKNbO3 にAg元素及びSb元素を
同時に固溶させた場合、そのイオン半径から格子定数は
小さくなり、NdGaO3 の格子定数に近くなるため、
整合が取りやすくなり、より良質の薄膜単結晶を得るこ
とが出来る。
Example 2-4 Ag so that crystals with x of 0.3 are precipitated in the melt.
In the same manner as in Example 1 except that Sb was added so that y was 0.05 (Ag 1-x K x ).
The (Nb 1-y Sb y) O 3 single crystal thin film, the plane orientation of (10
0) was prepared on NdGaO 3 . As a result, a film of sufficient quality as an optical waveguide for optical use is about 0.5 to
(Ag 1-x K x ) (Nb 1-y Sb in the range of 10.0 μm
y ) O 3 thin film single crystals were formed by changing the deposition time to produce the optical material of the present invention. Substrate is NdG
When a single crystal thin film was similarly prepared using the (110) plane or the (010) plane of aO 3, a (Ag 1-x K x ) (Nb 1-y Sb y ) O 3 single crystal thin film having different orientations was obtained. An optical material having was obtained. In addition, NdGaO 3 and (Ag
1-x K x) (Nb 1-y Sb y) NbO 3 (x = 0.3,
y = 0.05) means that the lattice mismatches of the a-axis, the b-axis and the c-axis are 4.14%, 3.58% and 2.49 (2 cycles)%, respectively. When the Ag element and the Sb element are simultaneously dissolved in KNbO 3 as in this example, the lattice constant becomes small from the ionic radius thereof and becomes close to the lattice constant of NdGaO 3 .
Matching becomes easier, and a higher quality thin film single crystal can be obtained.

【0024】実施例2−5 溶融体にyが0.05である結晶が析出するようにSb
をそれぞれ添加した以外は、実施例1と同様にしてK
(Nb1-y Sby )O3 単結晶薄膜を、面方位が(10
0)のNdGaO3 上に作製を行った。その結果、光学
用途の光導波路として充分な品質の膜厚が約0.5〜1
0.0μmの範囲のK(Nb1-y Sby )O3 薄膜単結
晶を、析出時間を変化させることにより形成して本発明
の光学材料を作製した。基板をNdGaO3 の(11
0)面または(010)面にして同様に薄膜単結晶を作
製したところ、それぞれ方位の異なるK(Nb1-y Sb
y )O3 単結晶薄膜を有する光学材料が得られた。尚、
NdGaO3 とK(Nb1-y Sby )NbO3 (y=
0.05)とは、a軸、b軸及びc軸の格子不整合が、
それぞれ4.73%、4.10%及び2.95(2周期)%である。
本例のようにKNbO3 にSb元素を同時に固溶させた
場合、そのイオン半径から格子定数は小さくなり、Nd
GaO3 の格子定数に近くなるため、整合が取りやすく
なり、より良質の薄膜単結晶を得ることが出来る。
Example 2-5 Sb was prepared so that crystals having y of 0.05 were precipitated in the melt.
In the same manner as in Example 1 except that
The (Nb 1-y Sb y) O 3 single crystal thin film, the plane orientation of (10
Preparation was performed on NdGaO 3 of 0). As a result, a film thickness of sufficient quality as an optical waveguide for optical use is about 0.5 to 1
A K (Nb 1-y Sb y ) O 3 thin film single crystal in the range of 0.0 μm was formed by changing the deposition time to produce the optical material of the present invention. The substrate is made of NdGaO 3 (11
When thin film single crystals were similarly prepared with the (0) plane or the (010) plane, K (Nb 1 -y Sb) with different orientations was obtained.
y ) An optical material having an O 3 single crystal thin film was obtained. still,
NdGaO 3 and K (Nb 1-y Sb y ) NbO 3 (y =
0.05) means that the lattice mismatch of a-axis, b-axis and c-axis is
They are 4.73%, 4.10% and 2.95 (2 cycles)%, respectively.
When the Sb element is simultaneously dissolved in KNbO 3 as in this example, the lattice constant decreases from the ionic radius,
Since it is close to the lattice constant of GaO 3 , matching can be easily achieved, and a higher quality thin film single crystal can be obtained.

【0025】実施例2−6 基板として面方位が(110)であり、大きさが10.
0×15.0×0.5mmのLaInO3 を用いた。K
NbO3 :KVO3 =1:4の溶融体を用いて、上記に
示す条件によりLaInO3 基板上にKNbO3 単結晶
薄膜を作製した。その結果、光学用途の光導波路として
充分な品質の膜厚が約0.5〜10.0μmの範囲のK
NbO3 薄膜単結晶を、析出時間を変化させることによ
り形成して本発明の光学材料を作製した。尚、LaIn
3 とKNbO3 とは、a軸、b軸及びc軸の格子不整
合が、それぞれ0.06%、3.19%及び3.27%である。基板
をLaInO3 の(100)面または(010)面にし
て同様に単結晶薄膜の作製を行った。それぞれ方位の異
なるKNbO3 単結晶薄膜を有する光学材料を得ること
が出来た。
Example 2-6 A substrate having a plane orientation of (110) and a size of 10.
LaInO 3 of 0 × 15.0 × 0.5 mm was used. K
Using the melt of NbO 3 : KVO 3 = 1: 4, a KNbO 3 single crystal thin film was formed on the LaInO 3 substrate under the conditions described above. As a result, a film having a sufficient quality as an optical waveguide for optical use has a K value in the range of about 0.5 to 10.0 μm.
NbO 3 thin film single crystals were formed by changing the deposition time to produce the optical material of the present invention. In addition, LaIn
O 3 and KNbO 3 have lattice mismatches of 0.06%, 3.19%, and 3.27% on the a-axis, the b-axis, and the c-axis, respectively. A single crystal thin film was similarly prepared by using the substrate as LaInO 3 (100) plane or (010) plane. An optical material having KNbO 3 single crystal thin films having different orientations could be obtained.

【0026】実施例2−7 基板として面方位が(110)であり、大きさが10.
0×15.0×0.5mmのYAlO3 を用いた。KN
bO3 :KVO3 =1:4の溶融体を用いて、上記に示
す条件によりYAlO3 基板上にKNbO3 単結晶薄膜
を作製した。その結果、光学用途の光導波路として充分
な品質の膜厚が約0.5〜10.0μmの範囲のKNb
3 薄膜単結晶を、析出時間を変化させることにより形
成して本発明の光学材料を作製した。尚、YAlO3
KNbO3 とは、a軸、b軸及びc軸の格子不整合が、
それぞれ10.6%、6.77%及び7.71%である。基板をYA
lO3 の(100)面または(010)面にして同様に
単結晶薄膜の作製を行った。それぞれ方位の異なるKN
bO3 単結晶薄膜を有する光学材料を得ることが出来
た。
Example 2-7 A substrate having a plane orientation of (110) and a size of 10.
YAlO 3 of 0 × 15.0 × 0.5 mm was used. KN
Using the melt of bO 3 : KVO 3 = 1: 4, a KNbO 3 single crystal thin film was formed on the YAlO 3 substrate under the above conditions. As a result, a KNb having a film thickness of sufficient quality as an optical waveguide for optical use is in the range of about 0.5 to 10.0 μm.
An O 3 thin film single crystal was formed by changing the deposition time to prepare an optical material of the present invention. In addition, YAlO 3 and KNbO 3 have a lattice mismatch of a-axis, b-axis and c-axis,
10.6%, 6.77% and 7.71% respectively. YA board
A single crystal thin film was similarly prepared with the (100) plane or the (010) plane of 10 3 . KN with different directions
An optical material having a bO 3 single crystal thin film could be obtained.

【0027】[0027]

【発明の効果】本発明の製造方法によれば、非線型光学
定数が大きく、レーザーダメージが少なく室温で使用可
能なKNbO3 、LiNbO3 及びこれらの固溶体等の
単結晶の薄膜を、基板の面に制限されることなく析出さ
せて、導波路を形成する方法を提供することができる。
本発明の製造方法により得られた非線型光学材料は、光
導波型光学素子、例えば非線型光学素子として有用であ
る。
According to the manufacturing method of the present invention, a single crystal thin film such as KNbO 3 , LiNbO 3 or a solid solution thereof having a large nonlinear optical constant and a small laser damage and usable at room temperature is formed on a substrate surface. Without limitation, it is possible to provide a method for forming a waveguide by deposition.
The nonlinear optical material obtained by the manufacturing method of the present invention is useful as an optical waveguide type optical element, for example, a nonlinear optical element.

【図面の簡単な説明】[Brief description of drawings]

【図1】(Na1-x x )NbO3 においてカリウムと
ナトリウムの量比を変化させたときの、a軸及びb軸の
格子定数(実測値)の変化を示す。
FIG. 1 shows changes in lattice constants (measured values) on the a-axis and the b-axis when the amount ratio of potassium and sodium in (Na 1-x K x ) NbO 3 was changed.

【図2】(Na1-x x )NbO3 においてカリウムと
ナトリウムの量比を変化させたときの、c軸の格子定数
(実測値)の変化を示す。
FIG. 2 shows changes in the lattice constant (actually measured value) of the c-axis when the amount ratio of potassium and sodium in (Na 1-x K x ) NbO 3 was changed.

【図3】実施例1の単結晶薄膜にTi:Al2 3 レー
ザーの870nmの光を照射した際の第二高調波である
435nmの光の発生を示す。
FIG. 3 shows generation of light of 435 nm, which is a second harmonic, when the single crystal thin film of Example 1 was irradiated with light of Ti: Al 2 O 3 laser of 870 nm.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 一般式XYO3 〔但し、Xはカリウム、
ナトリウム、リチウム及び銀からなる群から選ばれる少
なくとも1種の元素であり(但し、Xとしてリチウムを
含む場合、リチウムの含有量は20モル%以下であり、
残りの80モル%以上はカリウム、ナトリウム及び銀か
らなる群から選ばれる少なくとも1種の元素である)、
Yはニオブ、タンタル及びアンチモンからなる群から選
ばれる少なくとも1種の元素である(但し、Yとしてア
ンチモンを含む場合、アンチモンの含有量は10モル%
以下であり、残りの90モル%以上はニオブ及びタンタ
ルからなる群から選ばれる少なくとも1種の元素であ
る)〕で示される単結晶薄膜を基板上に析出育成する非
線型光学材料の製造方法であって、 前記基板が、前記一般式で表される単結晶の格子定数と
近い格子定数を有し、かつ単結晶薄膜の析出育成条件下
において、相転移を起こさない単結晶であることを特徴
とする前記製造方法。
1. The general formula XYO 3 [wherein X is potassium,
It is at least one element selected from the group consisting of sodium, lithium and silver (provided that when X is lithium, the content of lithium is 20 mol% or less,
The remaining 80 mol% or more is at least one element selected from the group consisting of potassium, sodium and silver),
Y is at least one element selected from the group consisting of niobium, tantalum and antimony (provided that when Y is antimony, the content of antimony is 10 mol%).
And the remaining 90 mol% or more is at least one element selected from the group consisting of niobium and tantalum)] in the method for producing a non-linear optical material in which a single crystal thin film is deposited and grown on a substrate. The substrate is a single crystal that has a lattice constant close to that of the single crystal represented by the general formula and that does not cause a phase transition under the conditions of precipitation and growth of the single crystal thin film. Said manufacturing method.
【請求項2】 基板の格子定数と薄膜を構成する単結晶
の格子定数との格子不整合が11%以内である請求項1
記載の製造方法。
2. The lattice mismatch between the lattice constant of the substrate and the lattice constant of the single crystal constituting the thin film is within 11%.
The manufacturing method described.
【請求項3】 基板が、SmAlO3 、EuAlO3
GdAlO3 、YAlO3 、NdGaO3 、PrGaO
3 、LaCrO3 、PrCrO3 、NdCrO3 、Sm
CrO3 、EuCrO3 、GaCrO3 、DyCr
3 、YCrO3、ErCrO3 、YbCrO3 、Lu
CrO3 、LaFeO3 、PrFeO3 、NdFeO
3 、SmFeO3 、EuFeO3 、GdFeO3 、YF
eO3 、ErFeO3 、YbFeO3 、LuFeO3
LaScO3 、PrScO3 、NdScO3 、SmSc
3 、EuScO3 、GdScO3 、DyScO3 、L
aInO3 、NdInO3 及びSmInO3 からなる群
から選ばれる薄単結晶である請求項1又は2記載の製造
方法。
3. The substrate is SmAlO 3 , EuAlO 3 ,
GdAlO 3 , YAlO 3 , NdGaO 3 , PrGaO
3 , LaCrO 3 , PrCrO 3 , NdCrO 3 , Sm
CrO 3 , EuCrO 3 , GaCrO 3 , DyCr
O 3 , YCrO 3 , ErCrO 3 , YbCrO 3 , Lu
CrO 3 , LaFeO 3 , PrFeO 3 , NdFeO
3 , SmFeO 3 , EuFeO 3 , GdFeO 3 , YF
eO 3 , ErFeO 3 , YbFeO 3 , LuFeO 3 ,
LaScO 3 , PrScO 3 , NdScO 3 , SmSc
O 3 , EuScO 3 , GdScO 3 , DyScO 3 , L
The manufacturing method according to claim 1 or 2, which is a thin single crystal selected from the group consisting of aInO 3 , NdInO 3, and SmInO 3 .
【請求項4】 基板がNdGaO3 単結晶である請求項
3記載の製造方法。
4. The manufacturing method according to claim 3, wherein the substrate is an NdGaO 3 single crystal.
JP2656694A 1994-02-24 1994-02-24 Production of nonlinear optical material Pending JPH07234427A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2656694A JPH07234427A (en) 1994-02-24 1994-02-24 Production of nonlinear optical material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2656694A JPH07234427A (en) 1994-02-24 1994-02-24 Production of nonlinear optical material

Publications (1)

Publication Number Publication Date
JPH07234427A true JPH07234427A (en) 1995-09-05

Family

ID=12197098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2656694A Pending JPH07234427A (en) 1994-02-24 1994-02-24 Production of nonlinear optical material

Country Status (1)

Country Link
JP (1) JPH07234427A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000278084A (en) * 1999-03-24 2000-10-06 Yamaha Corp Surface acoustic wave element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000278084A (en) * 1999-03-24 2000-10-06 Yamaha Corp Surface acoustic wave element

Similar Documents

Publication Publication Date Title
JP3148896B2 (en) Lithium niobate single crystal thin film
JP3424125B2 (en) Optical functional device using ferroelectric polarization reversal of lithium tantalate single crystal
JP4107365B2 (en) Lithium tantalate single crystal, optical element thereof, and manufacturing method thereof
JPH07234427A (en) Production of nonlinear optical material
JPH1135393A (en) Lithium tantalate single crystal having stoichiometric composition, its production and optical element using the same
JPH05313033A (en) Optical waveguide, manufacture thereof and optical element
JP2860800B2 (en) Method for producing lithium niobate single crystal thin film
JP3121361B2 (en) Ti-containing lithium niobate thin film and method for producing the same
JP3213907B2 (en) Lithium niobate single crystal and optical functional device
JP2850045B2 (en) Method for producing lithium niobate single crystal thin film
JP2838803B2 (en) Method for producing lithium niobate single crystal thin film
JP2951583B2 (en) Optical waveguide component, second harmonic generation device, and method of manufacturing optical waveguide component
JP2965644B2 (en) Manufacturing method of wavelength conversion optical element
JPH07234426A (en) Single crystal for nonlinear optical material and nonlinear optical material
JPH05896A (en) Thin lithium niobate single crystal film
JPH05310500A (en) Lithium tantalate single crystal, its production and optics
JPH11322497A (en) Lithium niobate single crystal film and its production
JPH05229897A (en) Lithium niobate single crystal thin film and its production
JP3191018B2 (en) Method for producing lithium niobate single crystal thin film
JPH06191996A (en) Method for producing lithium niobate single crystal and optical element
JPH05310499A (en) Lithium niobate single crystal, its production and optics
JPH08333199A (en) Kltn single crystal, its production and optical element
JPH04260689A (en) Method of forming thin film of single crystal on substrate
JPH0782089A (en) Lithium niobate single crystal thin film and its production
JPH0412094A (en) Thin film of lithium niobate single crystal