JPH1114913A - Telescope using concave spherical reflector as 1st surface - Google Patents

Telescope using concave spherical reflector as 1st surface

Info

Publication number
JPH1114913A
JPH1114913A JP20372897A JP20372897A JPH1114913A JP H1114913 A JPH1114913 A JP H1114913A JP 20372897 A JP20372897 A JP 20372897A JP 20372897 A JP20372897 A JP 20372897A JP H1114913 A JPH1114913 A JP H1114913A
Authority
JP
Japan
Prior art keywords
optical axis
telescope
reflector
parallel
concave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20372897A
Other languages
Japanese (ja)
Inventor
Kazuo Kosho
和生 古庄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP20372897A priority Critical patent/JPH1114913A/en
Publication of JPH1114913A publication Critical patent/JPH1114913A/en
Pending legal-status Critical Current

Links

Landscapes

  • Telescopes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a telescope which has a large diameter by lowering the cost and increasing the precision by using the concave spherical reflector as the 1st surface of a reflection type telescope, constituting the reflection type telescope on one side of the optical axis so that neither diffraction nor dimming is caused before incident luminance flux parallel to the optical axis reaches the composite focus position, and actualizing an image with high contrast. SOLUTION: The cost is lowered and the precision is increased by using the concave spherical reflector 1 which can be inspected precisely and polished easily. At the focus position 6 of the concave reflector 1 on the optical axis, the focus of a convex oblate spherical reflector 2 is put and thin luminous flux is used as the incident luminous flux parallel to the optical axis 7. The luminous flux is converged on the composite focus position 5 through a concave hyperbolic reflector 3 and a convex hyperbolic reflector 4. Aberrational corrections are made by >=3 reflectors. The sphericity of the 1st surface is applied to constitute the reflection type telescope on only one side of the optical axis 7 and the incident luminous flux parallel to the optical axis 7 is allowed to reach the composite focus position 5 without causing diffraction or dimming. Further, reflection type binoculars can be constituted by arranging two telescopes like this in parallel to each other.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、反射式望遠鏡の最
大の口径である第1面の凹面反射鏡に、検査及び研磨の
難しい非球面を使わず、球面を使用することで大口径を
低コストで製作できるようにしたものであり、収差は3
面以上の反射鏡を使用する事で高度の補正も可能にした
ものである。また、第1面の凹面反射鏡が球面であるこ
とを応用して、光学系の光軸の片側だけで、光軸に平行
な大口径の反射式望遠鏡を構成することが可能になった
ものである。この場合に、光軸に平行な入射光束が合成
焦点位置に届くまでの間に回折や減光が起こらないよう
に構成して、高コントラストの像の実現を可能にしたも
のである。さらに、このように光軸の片側だけで構成し
た同一仕様の反射式望遠鏡を平行に2本配置すること
で、大口径の反射式双眼望遠鏡を可能にしたものなど、
望遠鏡に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a concave telescope having a maximum diameter of the first surface of a reflective telescope, which uses a spherical surface instead of an aspheric surface which is difficult to inspect and polish. It can be manufactured at low cost.
The use of reflectors above the surface enables altitude correction. In addition, it is possible to configure a large-diameter reflective telescope parallel to the optical axis by using only one side of the optical axis of the optical system by applying the fact that the concave reflector of the first surface is spherical. It is. In this case, the configuration is such that diffraction or dimming does not occur until the incident light beam parallel to the optical axis reaches the combined focal position, thereby realizing a high-contrast image. Furthermore, by arranging two reflective telescopes of the same specifications, which are configured on only one side of the optical axis, in parallel, a large-diameter reflective binocular telescope has been made possible.
It is about telescopes.

【0002】[0002]

【従来の技術】従来、実用されている反射式望遠鏡に
は、ニュートン式、カセグレン式、グレゴリー式、リッ
チー・クレチャン式、ドール・カーカム式があり、全て
第1面に非球面を使用した物だけである。この他に、第
1面に球面の反射鏡を使用したプレスマン・キャミシェ
ル式とシーフ・シュピーグラー式があるが、前者は実用
性が無いため使用されていないし、後者は光軸に対して
斜めの入射光束のみを使用しているため実用上無理があ
り、ほとんど使用されていない。この様に、従来の反射
式望遠鏡は、そのほとんどが第1面に非球面の反射鏡を
使用している。さらに、第1面と第2面の鏡面の中心を
光軸が通っているため、第2面及びそれを支える金具が
入射光束の一部をさえぎり、回折や減光を起こしてコン
トラストを低下させるなど焦点位置の像に悪影響を及ぼ
している。また、反射式望遠鏡を2本平行に並べて双眼
望遠鏡としたものは皆無に等しい状態である。
2. Description of the Related Art Conventionally, there are Newton type, Cassegrain type, Gregory type, Ritchie Clechan type, and Doll Carcam type in the reflection type telescopes which are practically used. It is. In addition, there are a Pressman-Camichel type and a Thief-Spiegler type using a spherical reflecting mirror on the first surface, but the former is not used because it is not practical, and the latter is oblique to the optical axis. Is practically impossible because only the incident light beam is used, and is hardly used. As described above, most of the conventional reflecting telescopes use an aspherical reflecting mirror on the first surface. Further, since the optical axis passes through the center of the mirror surface between the first surface and the second surface, the second surface and the metal fittings supporting the second surface block a part of the incident light beam, causing diffraction and light reduction to lower the contrast. This has an adverse effect on the image at the focal position. Also, there is no binocular telescope in which two reflection telescopes are arranged in parallel.

【0003】[0003]

【発明が解決しようとする課題】従来、反射式望遠鏡は
第1面の凹面反射鏡に検査及び研磨の困難な非球面を使
用していたために、高精度に仕上げるには非常にコスト
が高くなっていた。収差については第1面の反射鏡のみ
を使用するニュートン式や、第1面及び第2面の2つの
反射鏡を使用するカセグレン式あるいはリッチークレチ
ャン式などのように、1つの面又は2つの面にて補正す
る場合がほとんどであった。また、従来の反射式望遠鏡
は第1面の凹面反射鏡が、面の中心を光軸と回転軸が垂
直に通る、放物面や双曲面等の回転非球面であるため
に、光軸位置を反射鏡面内から外した状態で研磨する事
は技術的に不可能である。従って、光軸に平行な入射光
束が合成焦点位置に届くまでの間に、第2面及びそれを
支える金具によって回折や減光が起こらない様に構成し
た大口径の反射式望遠鏡は不可能であった。第1面反射
鏡を球面としたプレスマン・キャミシェル式はコマ収差
が極端に大きく実用性は全く無いものである。また、入
射光束が合成焦点位置に届くまでの間に、第2面及びそ
れを支える金具によって回折や減光が起こらない様に構
成したシーフ・シュピーグラー式は、光軸に対し斜めの
入射光束のみを使用するため焦点位置の像の全面にコマ
収差が発生し実用性は無いものである。また、従来、同
一仕様の反射式望遠鏡を2本平行に並べて双眼望遠鏡と
して使用する場合、第1面の中心に光軸があるため、大
口径では光軸の間隔が離れすぎて目の間隔に合わせるこ
とが困難であった。
Conventionally, the reflection type telescope uses an aspherical surface, which is difficult to inspect and grind, for the concave reflector of the first surface, so that the cost is extremely high for finishing with high precision. I was As for aberrations, one surface or two surfaces such as Newton's type using only the first surface reflecting mirror, Cassegrain type or Ritchie-Crechan type using two reflecting mirrors of the first and second surfaces, etc. In most cases, correction was performed. Further, in the conventional reflection type telescope, since the concave reflecting mirror on the first surface is a rotating aspherical surface such as a paraboloid or a hyperboloid which passes through the center of the surface perpendicularly to the optical axis and the rotation axis, the optical axis position is reduced. It is technically impossible to polish the glass while it is removed from the reflecting mirror surface. Therefore, a large-diameter reflective telescope configured so that diffraction and dimming do not occur by the second surface and the brackets supporting the second surface until the incident light beam parallel to the optical axis reaches the combined focal position is impossible. there were. The Pressman-Camichel type in which the first surface reflecting mirror has a spherical surface has extremely large coma aberration and has no practical use. In addition, the Thief-Spiegler type, which is configured so that diffraction and dimming do not occur by the second surface and the brackets supporting the second surface until the incident light beam reaches the combined focal position, only the incident light beam oblique to the optical axis is used. Is used, coma occurs on the entire surface of the image at the focal position, and is not practical. Conventionally, when two reflecting telescopes of the same specification are arranged in parallel and used as a binocular telescope, the optical axis is located at the center of the first surface. It was difficult to match.

【0004】[0004]

【課題を解決するための手段】本発明は、第1面の凹面
反射鏡にコストの高い非球面の代わりにコストの低い球
面を使用したことで、大口径の反射式望遠鏡が低コスト
で、しかも、高精度のものが製作可能になった。球面の
反射鏡は非球面に比べてフーコーテストのような簡便な
球心テストでも十分に精密な検査が可能であり、どの部
分でも同一曲率の球面は機械的研磨運動に向き、中心か
ら周辺にかけて連続して曲率が変化する非球面よりも研
磨が容易である。従って、検査設備の簡素化や研磨時間
の短縮が可能である。しかも、口径が大きくなればなる
ほど、口径比が小さくなればなるほど、非球面の製作は
困難度を増し球面とのコストの差は大きくなる。又、本
発明の第2面の反射鏡は、入射光束が第1面の焦点位置
に収束する前は凸面を、収束した後発散する位置では凹
面を使用する。そして、第1面の反射鏡の焦点と第2面
の反射鏡の焦点との光軸上の位置関係によって、第2面
により反射された光束が、収束または発散あるいは光軸
に平行するように構成することが可能である。例えば、
第1面の焦点位置に第2面の焦点を重ねると光軸に平行
な光束となる。そして、3面以上の反射鏡によって高度
な収差補正も可能となる。さらに、本発明は、一つの球
面上においては位置や大きさに関わらず同一曲率の球面
であることを応用して、光軸から離れた位置に球面の第
1面を持つ反射式望遠鏡を可能にした。この場合に、第
2面以下に、非球面であっても比較的容易に研磨できる
大きさの反射鏡を使用して光学系を構成してやると、光
軸の片側のみで望遠鏡を構成するときは、その部分をカ
ットして取り出すことが可能になる。これにより、光軸
に平行な入射光束が光軸から離れた位置にある第1面に
反射して光軸上の合成焦点位置に届くまでの間に、第2
面以下の反射鏡やその支持金具などによって回折や減光
が起こらないように光学系を構成する事が可能になっ
た。従って、焦点位置の像にコントラストを低下させる
などの悪影響を及ぼすことが無い反射式望遠鏡を可能に
した。さらに、本発明は、このように光軸の片側だけで
構成した同一仕様の反射式望遠鏡を2本横に並べ、第1
面の反射鏡を外側に、光軸位置を内側にした状態で配置
し、お互いの光軸を平行にし、光軸間隔を目の間隔に合
わる様にすることで反射式双眼望遠鏡を可能にした。従
来の反射式望遠鏡は第1面の中心に光軸を持つため、口
径がある程度以上大きくなると、同一仕様の2本の反射
式望遠鏡はお互いの平行な光軸の間隔が目の間隔よりも
大きくなり過ぎ、反射式双眼望遠鏡として構成すること
が困難であった。これに対して、本発明の場合は、第1
面の大きさに関係なくお互いの光軸の間隔を目の間隔に
合わせる事ができるため、より大口径の反射式双眼望遠
鏡を可能にした。
SUMMARY OF THE INVENTION The present invention uses a low-cost spherical surface in place of a high-cost aspherical surface for a concave concave mirror on the first surface, so that a large-diameter reflective telescope can be manufactured at low cost. Moreover, high-precision products can be manufactured. Spherical reflectors can be inspected with sufficient precision even with a simple spherical center test such as Foucault test, compared to aspherical surfaces.A spherical surface with the same curvature in any part is suitable for mechanical polishing movement, from the center to the periphery Polishing is easier than an aspherical surface having a continuously changing curvature. Therefore, the inspection equipment can be simplified and the polishing time can be reduced. In addition, the larger the aperture and the smaller the aperture ratio, the more difficult it becomes to manufacture the aspherical surface and the greater the cost difference from the spherical surface. Further, the reflecting mirror of the second surface of the present invention uses a convex surface before the incident light beam converges to the focal position of the first surface, and uses a concave surface at a position where it diverges after the convergence. Then, depending on the positional relationship on the optical axis between the focal point of the first surface reflecting mirror and the focal point of the second surface reflecting mirror, the luminous flux reflected by the second surface is converged or diverged or parallel to the optical axis. It is possible to configure. For example,
When the focal point of the second surface is superimposed on the focal position of the first surface, the light flux becomes parallel to the optical axis. Then, advanced aberration correction can be performed by three or more reflecting mirrors. Furthermore, the present invention makes it possible to provide a reflection type telescope having a spherical first surface at a position away from the optical axis by applying a spherical surface having the same curvature regardless of position and size on one spherical surface. I made it. In this case, if an optical system is configured using a reflecting mirror having a size that can be relatively easily polished even if it is an aspheric surface below the second surface, when a telescope is formed only on one side of the optical axis, , It is possible to cut out the part and take it out. Thereby, the second light beam is reflected by the first surface located at a position distant from the optical axis and reaches the combined focal position on the optical axis.
It has become possible to configure an optical system so that diffraction and dimming do not occur due to a reflector below the surface or its supporting bracket. Therefore, it is possible to provide a reflection telescope that does not adversely affect the image at the focal position, such as lowering the contrast. Further, the present invention arranges two reflection telescopes of the same specification, which are constituted only on one side of the optical axis, side by side, and
The reflective binocular telescope is made possible by arranging the reflecting mirrors on the outside with the optical axis position inside, making the optical axes parallel to each other, and adjusting the optical axis interval to the eye interval. did. Since the conventional reflecting telescope has an optical axis at the center of the first surface, if the aperture becomes larger than a certain size, the two reflecting telescopes of the same specification will have a larger distance between the parallel optical axes than the distance between the eyes. It was too difficult to construct a reflective binocular telescope. On the other hand, in the case of the present invention, the first
Since the distance between the optical axes can be adjusted to the distance between the eyes regardless of the size of the surface, a larger-diameter reflective binocular telescope has been made possible.

【0005】[0005]

【発明の実施の形態】本発明は、望遠鏡の第1面の反射
鏡に製作が容易な凹球面を使用してコストを下げ、さら
に精度を上げたものである。そして、第1面の反射鏡と
第2面の反射鏡で入射光束を収束または発散あるいは光
軸に平行または近似平行する細い光束とし、収差補正を
3面以上の反射鏡で行う望遠鏡である。さらに、本発明
は、この望遠鏡の光学系は第1面の反射鏡が球面である
ことを応用して、光軸から離れた位置に第1面の球面反
射鏡を持ち、光軸に平行な入射光束が回折や減光を起こ
すことなく合成焦点位置に届くように構成した反射式望
遠鏡である。そして、本発明は、この様に光軸から離れ
た位置に第1面の反射鏡を持つ望遠鏡を2本平行に並べ
た反射式双眼望遠鏡である。第1面の反射鏡と第2面の
反射鏡で入射光束を光軸に平行する細い光束とし、収差
補正を4面の反射鏡で行う光学系及び望遠鏡を図面につ
いて説明する。光軸7上の第1面の凹球面反射鏡1の焦
点位置6に、第2面の凸偏球面反射鏡2の焦点を重ね、
光軸7に平行な入射光束を、第1面と第2面により光軸
7に平行な細い光束とする。さらに、第3面の凹双曲面
反射鏡3と第4面の凸双曲面反射鏡4とによって合成焦
点位置5に収束させる。又、この光学系の光軸7の片側
だけで構成され、光軸7から離れた位置にある第1面の
凹球面反射鏡8によって光軸7に平行な入射光束が反射
され、光軸7の片側用にカットされた反射鏡9及び反射
鏡10さらに反射鏡11を通り途中で支持金具等に影響
されず、従って回折や減光を起こすことも無く光軸7上
の合成焦点位置5に届くように構成した反射式望遠鏡で
ある。そして、第1面の反射鏡1の中心と第2面の反射
鏡2以下の反射鏡面の中心を通る光軸7を持つ反射式望
遠鏡と、光軸7から離れた位置にある第1面の凹球面反
射鏡8と光軸7の片側用にカットした第2面の凸偏球面
反射鏡9以下を持つ反射式望遠鏡のそれぞれの光軸7を
一つに重ねて、お互いの位置関係を正面から見た状態で
示したものである。さらに、このように光軸7の片側だ
けで構成した同一仕様の2本の反射式望遠鏡を平行に並
べ、お互いの第1面の反射鏡8を外側に、光軸7を内側
にして間隔を目の間隔に合わせ構成した反射式双眼望遠
鏡である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention uses a concave spherical surface, which is easy to manufacture, as the reflecting mirror on the first surface of the telescope to reduce the cost and further increase the accuracy. This is a telescope in which the incident light beam is converged or diverged by the reflecting mirror on the first surface and the reflecting light beam on the second surface is converted into a thin light beam parallel or nearly parallel to the optical axis, and aberration correction is performed by three or more reflecting mirrors. Further, the present invention applies the fact that the optical system of this telescope has a spherical reflector on the first surface at a position away from the optical axis by applying that the reflective mirror on the first surface is a spherical surface. This is a reflection type telescope configured so that an incident light beam reaches a combined focal position without causing diffraction or dimming. The present invention is a reflection type binocular telescope in which two telescopes having the first surface reflector at positions away from the optical axis are arranged in parallel. An optical system and a telescope, in which an incident light beam is converted into a thin light beam parallel to the optical axis by a first surface reflecting mirror and a second surface reflecting mirror, and aberration correction is performed by four surface reflecting mirrors, will be described with reference to the drawings. The focal point of the convex spherical reflecting mirror 2 of the second surface is superimposed on the focal position 6 of the concave spherical reflecting mirror 1 of the first surface on the optical axis 7,
The incident light beam parallel to the optical axis 7 is converted into a thin light beam parallel to the optical axis 7 by the first surface and the second surface. Further, the light is converged to the combined focal position 5 by the concave hyperboloid reflecting mirror 3 on the third surface and the convex hyperboloid reflecting mirror 4 on the fourth surface. Further, the optical system is constituted by only one side of the optical axis 7, and the incident light beam parallel to the optical axis 7 is reflected by the concave spherical reflecting mirror 8 of the first surface located at a position distant from the optical axis 7. The reflection mirror 9 and the reflection mirror 10, which are cut for one side, are not affected by the support fittings and the like on the way through the reflection mirror 11, and therefore do not cause diffraction or dimming. It is a reflective telescope that is configured to reach. Then, a reflection type telescope having an optical axis 7 passing through the center of the first surface reflecting mirror 1 and the center of the reflecting mirror surface below the second surface reflecting mirror 2, and a first telescope having a first surface located at a position distant from the optical axis 7. Each of the optical axes 7 of the reflecting telescope having the concave spherical reflecting mirror 8 and the second convex convex spherical reflecting mirror 9 or less on the second surface cut for one side of the optical axis 7 are superimposed on one another, and the positional relationship between the optical axes 7 is determined. It is shown in a state viewed from the front. Further, two reflecting telescopes of the same specification, which are constituted only on one side of the optical axis 7 in this manner, are arranged in parallel, and the reflecting mirrors 8 on the first surface are outside and the optical axis 7 is inside. This is a reflection type binocular telescope configured according to the distance between eyes.

【0006】[0006]

【発明の効果】このように、第1面の反射鏡に球面を使
用することで高精度な大口径の反射式望遠鏡を低コスト
で生産する事が可能になる。収差は3面以上の反射鏡を
使用することで高度の補正が可能になる。又、この光学
系を応用して、光軸の片側に、光軸から離れた位置に第
1面の球面反射鏡を持ち、光軸に平行な入射光束が第2
面以下の反射鏡やそれらの支持金具によって、回折や減
光を起こさずに合成焦点位置に届くような反射式望遠鏡
を構成する。この反射式望遠鏡は入射光束が途中で乱さ
れることも無く合成焦点位置に届くため、回折像や減光
などの乱れによる悪影響が無く、像のコントラストを飛
躍的に高める事も、限度いっぱいの分解能を発揮する事
も可能にする。さらに、このようにして光軸の片側だけ
で構成された同一仕様の2本の反射式望遠鏡を平行に並
べ、お互いの第1面の反射鏡位置を外側に、光軸位置を
内側にして、光軸の間隔を目の間隔にあわせて構成する
事で大口径の反射式双眼望遠鏡が可能になる。
As described above, by using a spherical surface for the first surface reflecting mirror, it is possible to produce a high-precision large-diameter reflecting telescope at low cost. Aberration can be highly corrected by using three or more reflecting mirrors. By applying this optical system, a spherical reflecting mirror on the first surface is provided on one side of the optical axis at a position distant from the optical axis, and an incident light beam parallel to the optical axis
A reflecting telescope that reaches the combined focal point without diffracting or dimming is constituted by a sub-surface reflecting mirror and their supporting hardware. This reflective telescope reaches the combined focal point without the incident light beam being disturbed on the way, so there is no adverse effect due to disturbances such as diffraction images or dimming, and the contrast of the image can be dramatically increased, and the limit is full. It also makes it possible to demonstrate resolution. Further, two reflecting telescopes of the same specification constituted only on one side of the optical axis in this way are arranged in parallel, the reflecting mirror positions on the first surface of each other are outside, and the optical axis positions are inside, By configuring the distance between the optical axes to match the distance between the eyes, a large-diameter reflective binocular telescope becomes possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】反射鏡で構成された望遠鏡の光学系の縦断面図
である。
FIG. 1 is a longitudinal sectional view of an optical system of a telescope constituted by a reflecting mirror.

【図2】光軸の片側だけで構成した反射式望遠鏡の縦断
面図である。
FIG. 2 is a longitudinal sectional view of a reflection type telescope constituted by only one side of an optical axis.

【図3】反射鏡面の中心に光軸を持つ反射式望遠鏡の正
面図と、光軸の片側だけで構成した反射式望遠鏡の正面
図を光軸位置を重ねて相互関係を示した図である。
FIG. 3 is a diagram showing a mutual relationship between a front view of a reflection type telescope having an optical axis at the center of a reflection mirror surface and a front view of a reflection type telescope formed only on one side of the optical axis with the optical axis position superimposed. .

【図4】光軸の片側だけで構成した反射式望遠鏡を2本
平行に並べた反射式双眼望遠鏡の縦断面図である。
FIG. 4 is a longitudinal sectional view of a reflective binocular telescope in which two reflective telescopes configured on only one side of the optical axis are arranged in parallel.

【符号の説明】[Explanation of symbols]

1 第1面の凹球面反射鏡 2 第2面の凸偏球面反射鏡 3 第3面の凹双曲面反射鏡 4 第4面の凸双曲面反射鏡 5 この光学系の合成焦点位置 6 第1面の凹球面反射鏡の焦点位置 7 光軸 8 光軸の片側に構成した反射式望遠鏡の第1面用の凹
球面反射鏡 9 光軸の片側用にカットした第2面の凸偏球面反射鏡 10 光軸の片側用にカットした第3面の凹双曲面反射
鏡 11 光軸の片側用にカットした第4面の凸双曲面反射
鏡 12 接眼レンズ 13 光軸の片側に構成した反射式望遠鏡の鏡筒 14 反射鏡面の中心に光軸を持つ反射式望遠鏡の鏡筒 15 反射鏡面の中心に光軸を持つ反射式望遠鏡の第2
面支持金具 16 左右の望遠鏡を双眼鏡とするための連結金具
DESCRIPTION OF SYMBOLS 1 Concave spherical reflector on the first surface 2 Convex spherical reflector on the second surface 3 Concave hyperboloid reflector on the third surface 4 Convex hyperboloid reflector on the fourth surface 5 Composite focal position of this optical system 6 First Focus position of concave spherical reflector on surface 7 Optical axis 8 Concave spherical reflector for first surface of reflective telescope constructed on one side of optical axis 9 Convex spherical reflection on second surface cut for one side of optical axis Mirror 10 Concave hyperboloid reflector of third surface cut for one side of optical axis 11 Convex hyperboloid reflector of fourth surface cut for one side of optical axis 12 Eyepiece 13 Reflection type configured on one side of optical axis Telescope barrel 14 Reflective telescope barrel with optical axis at center of reflective mirror surface 15 Second type of reflective telescope with optical axis at center of reflective mirror surface
Surface support bracket 16 Connection bracket for turning left and right telescopes into binoculars

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】第1面に凹球面反射鏡を使用して、入射光
束を第1面と第2面とで細い光束とし、3面以上の反射
鏡で収差補正した望遠鏡。
1. A telescope in which an incident light beam is made thin on a first surface and a second surface using a concave spherical reflecting mirror on a first surface, and aberration is corrected by three or more reflecting mirrors.
【請求項2】光学系の光軸位置と、光軸に平行な入射光
束の中心軸とを合致しないように構成した請求項1の望
遠鏡。
2. The telescope according to claim 1, wherein the optical axis position of the optical system does not coincide with the central axis of the incident light beam parallel to the optical axis.
【請求項3】双眼望遠鏡として構成した請求項2の望遠
鏡。
3. The telescope according to claim 2, wherein the telescope is configured as a binocular telescope.
JP20372897A 1997-06-23 1997-06-23 Telescope using concave spherical reflector as 1st surface Pending JPH1114913A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20372897A JPH1114913A (en) 1997-06-23 1997-06-23 Telescope using concave spherical reflector as 1st surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20372897A JPH1114913A (en) 1997-06-23 1997-06-23 Telescope using concave spherical reflector as 1st surface

Publications (1)

Publication Number Publication Date
JPH1114913A true JPH1114913A (en) 1999-01-22

Family

ID=16478878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20372897A Pending JPH1114913A (en) 1997-06-23 1997-06-23 Telescope using concave spherical reflector as 1st surface

Country Status (1)

Country Link
JP (1) JPH1114913A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6617022B2 (en) 2000-02-22 2003-09-09 Sumitomo Rubber Industries, Ltd. Rubber thread for golf ball
US7450299B2 (en) 2001-12-27 2008-11-11 Riken Broadband telescope
WO2011026412A1 (en) * 2009-09-01 2011-03-10 Huang Chien-Wen Parabolic mirror light-converging system having partially displaceable reflective surface
KR20140043732A (en) * 2011-05-31 2014-04-10 칼 짜이스 에스엠티 게엠베하 Imaging optical unit
JP2015519616A (en) * 2012-06-13 2015-07-09 レイセオン カンパニー A real-eye telecentric imager with total reflection
WO2017061263A1 (en) * 2015-10-08 2017-04-13 富士フイルム株式会社 Lens device, imaging unit and imaging device
CN107783277A (en) * 2017-11-28 2018-03-09 张天羽 Newton reflects binoculars and scope
CN114236797A (en) * 2021-12-28 2022-03-25 中国科学院长春光学精密机械与物理研究所 Catadioptric afocal optical system
JP2022078331A (en) * 2018-05-07 2022-05-24 ペルキネルマー ヘルス サイエンシーズ, インコーポレイテッド Spectrometers and instruments including them
WO2022230416A1 (en) * 2021-04-26 2022-11-03 合同会社北海道環境・エネルギー研究所 Offset optical system including primary mirror and positionally-offset sub-mirror

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6617022B2 (en) 2000-02-22 2003-09-09 Sumitomo Rubber Industries, Ltd. Rubber thread for golf ball
US7450299B2 (en) 2001-12-27 2008-11-11 Riken Broadband telescope
WO2011026412A1 (en) * 2009-09-01 2011-03-10 Huang Chien-Wen Parabolic mirror light-converging system having partially displaceable reflective surface
KR20140043732A (en) * 2011-05-31 2014-04-10 칼 짜이스 에스엠티 게엠베하 Imaging optical unit
JP2014517349A (en) * 2011-05-31 2014-07-17 カール・ツァイス・エスエムティー・ゲーエムベーハー Imaging optical unit
JP2015519616A (en) * 2012-06-13 2015-07-09 レイセオン カンパニー A real-eye telecentric imager with total reflection
WO2017061263A1 (en) * 2015-10-08 2017-04-13 富士フイルム株式会社 Lens device, imaging unit and imaging device
CN107783277A (en) * 2017-11-28 2018-03-09 张天羽 Newton reflects binoculars and scope
JP2022078331A (en) * 2018-05-07 2022-05-24 ペルキネルマー ヘルス サイエンシーズ, インコーポレイテッド Spectrometers and instruments including them
WO2022230416A1 (en) * 2021-04-26 2022-11-03 合同会社北海道環境・エネルギー研究所 Offset optical system including primary mirror and positionally-offset sub-mirror
JP2022168552A (en) * 2021-04-26 2022-11-08 合同会社北海道環境・エネルギー研究所 Offset optical system having primary mirror and secondary mirror whose position is offset
CN114236797A (en) * 2021-12-28 2022-03-25 中国科学院长春光学精密机械与物理研究所 Catadioptric afocal optical system

Similar Documents

Publication Publication Date Title
EP0660155B1 (en) Image display apparatus
JP4516114B2 (en) Imaging optical system
US6008948A (en) Prism optical system
US5706136A (en) Optical system, and image observing apparatus and image pickup apparatus using it
US4804258A (en) Four mirror afocal wide field of view optical system
US2378301A (en) Optical system
US5638219A (en) Ultracompact complex optical device
JPH11231115A (en) Optical element
US20070177261A1 (en) Catadioptric telescopes
US2306679A (en) Optical system
JPH1114913A (en) Telescope using concave spherical reflector as 1st surface
US2817270A (en) Telescope objective systems
CN101995661A (en) Visual display device
US4097141A (en) Optical objectives using apertured retrodirective reflectors
US6667831B2 (en) Compact telescope
JP2003167196A (en) Cata-dioptric system
US3632190A (en) Catadioptric telephoto objective lens system
JP2008298866A (en) Imaging optical system
JP2000352668A (en) Wide-angle catoptric system
GB2269024A (en) Optical system having at least one tilted Mangin mirror
US4266849A (en) Optical objectives
US6362918B1 (en) Compact keplerian telescope
JPH10505432A (en) High-speed optical system
US3494688A (en) Color corrected mangin mirror
EP0809780B1 (en) Compact keplerian telescope