JP2008298866A - Imaging optical system - Google Patents

Imaging optical system Download PDF

Info

Publication number
JP2008298866A
JP2008298866A JP2007142176A JP2007142176A JP2008298866A JP 2008298866 A JP2008298866 A JP 2008298866A JP 2007142176 A JP2007142176 A JP 2007142176A JP 2007142176 A JP2007142176 A JP 2007142176A JP 2008298866 A JP2008298866 A JP 2008298866A
Authority
JP
Japan
Prior art keywords
plane
optical system
reflecting
incident
imaging optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007142176A
Other languages
Japanese (ja)
Inventor
Yoshitaka Nakano
貴敬 中野
Yukihisa Tamagawa
恭久 玉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007142176A priority Critical patent/JP2008298866A/en
Publication of JP2008298866A publication Critical patent/JP2008298866A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a high speed and wide angle imaging optical system by reducing astigmatism and improving imaging performance. <P>SOLUTION: The imaging optical system has three reflection mirrors of a first reflection mirror 1, a second reflection mirror 2 and a third reflection mirror 3, which are arranged in the described order on the optical path of incident light, and the light beams reflected on the three reflection mirrors form an imaging plane 4, wherein a plane including the incident center main light beam to the first reflection mirror and the reflection center main light beam to the first reflection mirror is defined as a plane A, a plane including the incident center main light beam to the second reflection mirror and the reflection center main light beam to the second reflection mirror is defined as a plane B, a plane including the incident center main light beam to the third reflection mirror and the reflection center main light beam to the third reflection mirror is defined as a plane C, respectively, in terms of the central main light beams defined as the main light beams which are focused on the center of the imaging plane, the plane A and the plane C do not coincide, and the angle difference Δν= ¾ν1-ν2¾ is 45° or smaller, where ν1 stands for the angle between the plane A and the plane B, and ν2 stands for the angle between the plane C and the plane B. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、反射鏡を用いた、広い波長帯にわたって使用可能な光学系に関し、特にカメラなどの被写体の像を撮影する撮像装置に最適な光学系に関するものである。   The present invention relates to an optical system that can be used over a wide wavelength band using a reflecting mirror, and more particularly to an optical system that is optimal for an imaging apparatus that captures an image of a subject such as a camera.

撮像装置に使用する光学系に求められる機能は、被写体から入射する光を屈曲させて集光することにより、被写体の像を像面に結像することである。このような光を屈曲させる作用を持つ光学素子として、例えば屈折率の違いを利用して光を曲げるレンズや、反射を利用して光を曲げる反射鏡が挙げられる。   A function required for an optical system used in an imaging apparatus is to form an image of a subject on an image plane by bending and collecting light incident from the subject. Examples of such an optical element having a function of bending light include a lens that bends light using a difference in refractive index and a reflector that bends light using reflection.

レンズに関しては、内部を光が透過するため、所望の波長帯に対して透過率の十分大きい材料を用いる必要がある。また、紫外線や赤外線など特殊な波長帯によっては材料が高価なものに限られ、コストの面で問題となる。   Regarding the lens, since light is transmitted through the inside, it is necessary to use a material having a sufficiently large transmittance with respect to a desired wavelength band. In addition, depending on special wavelength bands such as ultraviolet rays and infrared rays, the material is limited to an expensive material, which causes a problem in terms of cost.

さらに、レンズの材料の屈折率は一般に光の波長によって大きさが異なることに起因する色収差があるため、広い波長帯にわたって一定の結像性能を得るには波長に対する屈折率変化の違うレンズを2枚以上組み合わせるなどの複雑な補正、いわゆる色消しを行わなければならない。   Furthermore, since the refractive index of the lens material generally has chromatic aberration due to the difference in size depending on the wavelength of light, in order to obtain a constant imaging performance over a wide wavelength band, lenses having different refractive index changes with respect to the wavelength are used. Complicated correction such as combining more than one sheet, so-called achromatic, must be performed.

反射鏡に関しては、反射面を十分な性能を持つ反射材でコーティングすることができればその材料は問わないため、どの波長帯に対しても低価格な光学系を得ることができる。また、反射作用は光の波長に依存しないので、広い波長帯域に対して色収差のない光学系を容易に得ることができる。   With respect to the reflecting mirror, any material can be used as long as the reflecting surface can be coated with a reflecting material having sufficient performance. Therefore, an inexpensive optical system can be obtained for any wavelength band. Further, since the reflection action does not depend on the wavelength of light, an optical system free from chromatic aberration can be easily obtained over a wide wavelength band.

しかし、反射型光学系では反射面への入射光線とその反射光線が反射面に対して同じ側に現れるため、次面の反射鏡位置も入射光線と同じ側になる。このため、次面の反射鏡が入射光線を遮る現象、いわゆるケラレが起こりやすく、ケラレが起こると入射光線の光量が減少するため明るい光学系や広角な光学系が得られない。   However, in the reflection type optical system, the incident light on the reflecting surface and the reflected light appear on the same side with respect to the reflecting surface, so that the position of the reflecting mirror on the next surface is also on the same side as the incident light. For this reason, a phenomenon in which the reflecting mirror on the next surface blocks incident light, that is, so-called vignetting is likely to occur. When vignetting occurs, the amount of incident light is reduced, and thus a bright optical system or a wide-angle optical system cannot be obtained.

ケラレを避けるには、例えば反射鏡に光線を斜めから入射させることで反射光線を入射光線と重ならないように設定するなどの方法が用いられる。   In order to avoid vignetting, for example, a method of setting the reflected light beam so as not to overlap the incident light beam by causing the light beam to enter the reflecting mirror obliquely is used.

従来の反射型の撮像光学系では、反射鏡を偏心させて配置することで各反射鏡への光線入射を斜め入射とし、ケラレの発生しない構造にしている。また、3枚の反射鏡が共通の対称面を持つ面対称な構造で、光学系の内部で中心主光線が2回以上で交差するとともに中間結像点を持つことで小型化を実現している。光学系が面対称であることは、非面対称な特性を持つ収差が発生しないため、収差抑制の効果がある。各反射鏡は対称面上で偏心し、各鏡への中心主光線の入射角は8.5度以上になるよう設定されている。光学系の画角は対称面上の方向でおよそ12度である(例えば、特許文献1参照)。   In the conventional reflection-type imaging optical system, the reflecting mirrors are arranged so as to be decentered so that the incident light rays are obliquely incident so that no vignetting occurs. In addition, the three reflecting mirrors have a plane-symmetric structure with a common symmetry plane, and the central principal ray intersects more than once in the optical system and has an intermediate imaging point to achieve miniaturization. Yes. The fact that the optical system is plane symmetric has the effect of suppressing aberrations because aberrations having non-plane symmetric characteristics do not occur. Each reflecting mirror is decentered on the symmetry plane, and the incident angle of the central chief ray on each mirror is set to be 8.5 degrees or more. The angle of view of the optical system is approximately 12 degrees in the direction on the symmetry plane (see, for example, Patent Document 1).

特開2003−5074号公報JP 2003-5074 A

しかしながら、上述のような従来の反射型の撮像光学系においては、偏心の方向が一面上に限られた面対称構造であるため、反射鏡の配置自由度に制約があった。その結果、明るい光学系や広角な光学系を設計する上でそれが限界となっていた。例えば、特許文献1による反射光学系では、入射光線が第2反射鏡と第3反射鏡、あるいは第2反射鏡と像面に挟まれており、ケラレを発生することなくこれ以上の広角化や大口径化を行うことはできない。   However, the conventional reflective imaging optical system as described above has a plane-symmetric structure in which the direction of decentering is limited to one surface, and thus there is a restriction on the degree of freedom in arranging the reflecting mirrors. As a result, it has been a limit in designing bright optical systems and wide-angle optical systems. For example, in the reflective optical system according to Patent Document 1, incident light is sandwiched between the second and third reflecting mirrors, or the second reflecting mirror and the image plane, and a wider angle can be obtained without causing vignetting. Larger diameters cannot be made.

一方、光学系の構造を非面対称としたときには反射鏡の配置自由度が増加し、ケラレの発生しない方向に反射鏡などを移動することで明るい光学系や広角な光学系の設計が可能となる。例えば、特許文献1による反射光学系では、入射光線を対称面から傾いた光線を用いることでケラレを発生することなく広角化や大口径化を行うことができる。しかし、光学系を非面対称な構造とすることで非面対称な特性を持つ収差が新たに発生するため、実用的な結像性能を持った光学系を得るにはこの収差を抑制することが必要となる。   On the other hand, when the structure of the optical system is non-symmetrical, the degree of freedom in arranging the reflecting mirrors increases, and it is possible to design bright and wide-angle optical systems by moving the reflecting mirrors in a direction where vignetting does not occur. Become. For example, in the reflection optical system according to Patent Document 1, it is possible to widen the angle and increase the diameter without using vignetting by using a light beam inclined from a symmetry plane. However, since aberrations with non-plane symmetry characteristics are newly generated by making the optical system non-plane symmetrical, this aberration must be suppressed to obtain an optical system with practical imaging performance. Is required.

この発明は上述のような問題点を解決するためになされたもので、非点収差を低減して結像性能を向上させ、明るくかつ広角な撮像光学系を得ることを目的とする。   The present invention has been made to solve the above-described problems. It is an object of the present invention to obtain a bright and wide-angle imaging optical system by reducing astigmatism and improving imaging performance.

この発明に係る撮像光学系は、入射光線の光路順で、第1反射鏡、第2反射鏡、及び第3反射鏡の順に配置された3枚の反射鏡を有し、前記3枚の反射鏡で反射された光線が結像面を形成する撮像光学系において、前記結像面の中心に結像する光線の主光線として規定される中心主光線に対して、前記第1反射鏡への入射中心主光線と前記第1反射鏡での反射中心主光線とを含む平面を平面Aとし、前記第2反射面への入射中心主光線と前記第2反射面での反射中心主光線とを含む平面を平面Bとし、前記第3反射面への入射中心主光線と前記第3反射面での反射中心主光線とを含む平面を平面Cとするとき、前記平面Aと前記平面Cとが一致しない構造であり、前記平面Aと前記平面Bとの成す角をν1とし、前記平面Cと前記平面Bとの成す角をν2とするとき、角度の差Δν=|ν1−ν2|が45°以下であることを特徴とする。   The imaging optical system according to the present invention includes three reflecting mirrors arranged in the order of the first reflecting mirror, the second reflecting mirror, and the third reflecting mirror in the order of the optical path of the incident light, and the three reflecting mirrors are arranged. In an imaging optical system in which a light beam reflected by a mirror forms an imaging surface, a central principal ray defined as a principal ray of a light beam that forms an image at the center of the imaging surface is applied to the first reflecting mirror. A plane including the incident center chief ray and the reflection center chief ray at the first reflecting mirror is defined as plane A, and the incident center chief ray on the second reflecting surface and the reflection center chief ray at the second reflecting surface are When the plane including the plane C is a plane including the plane principal ray incident on the third reflecting surface and the center principal ray reflected on the third reflecting surface, the plane A and the plane C are The angle between the plane A and the plane B is ν1, and the plane C and the plane B When the angle formed and .nu.2, the angular difference Δν = | ν1-ν2 | is equal to or is less than 45 °.

この発明によれば、非点収差を低減して結像性能を向上させ、明るくかつ広角な撮像光学系を得ることができる。   According to the present invention, it is possible to improve imaging performance by reducing astigmatism and to obtain a bright and wide-angle imaging optical system.

実施の形態1.
図1は、この発明の実施の形態1に係る撮像光学系を示す概略図である。図1に示すように、被写体より伝搬した光線は、光学系で最初に第1反射鏡1に入射し、第1反射鏡1で反射された光線が次に第2反射鏡2に入射する。第2反射鏡2で反射された光線は、次に第3反射鏡3に入射し、第3反射鏡3で反射した光線が結像面4で被写体の像を形成する。なお、5は結像面4の中心に結像する光線の主光線の光路を示した中心主光線である。
Embodiment 1 FIG.
FIG. 1 is a schematic diagram showing an imaging optical system according to Embodiment 1 of the present invention. As shown in FIG. 1, the light beam propagated from the subject first enters the first reflecting mirror 1 by the optical system, and the light beam reflected by the first reflecting mirror 1 then enters the second reflecting mirror 2. The light beam reflected by the second reflecting mirror 2 then enters the third reflecting mirror 3, and the light beam reflected by the third reflecting mirror 3 forms an image of the subject on the image plane 4. Reference numeral 5 denotes a central principal ray that indicates the optical path of the principal ray of the light beam that forms an image at the center of the imaging plane 4.

本実施の形態1の光学系は、カセグレン型光学系のような反射光学系と異なり、入射光線に対する光学系内部での中心遮蔽を持たないため、入射光線を損失することなく像面に結像することができる。   Unlike the reflective optical system such as the Cassegrain type optical system, the optical system according to the first embodiment does not have a central shielding inside the optical system with respect to the incident light, and therefore forms an image on the image plane without losing the incident light. can do.

また、本実施の形態1の光学系は、中心主光線5が単一平面上にはない。図2に、各反射鏡に入射する中心主光線と各反射鏡で反射する中心主光線とが作る各平面の関係を示す。図2において、光学系に入射する中心主光線5と第1反射鏡1で反射した中心主光線5とが作る平面を平面Aとし、第2反射鏡2に入射し、反射する中心主光線5が作る平面を平面Bとし、第3反射鏡3に入射し、反射する中心主光線5が作る平面を平面Cとする。また、中心主光線5の第1反射鏡1に入射する光線部分を5a、第2反射鏡2に入射する光線部分を5b、第3反射鏡3に入射する光線部分を5c、結像面4に入射する光線部分を5dとする。   In the optical system of the first embodiment, the central principal ray 5 is not on a single plane. FIG. 2 shows the relationship between each plane formed by the central principal ray incident on each reflecting mirror and the central principal ray reflected by each reflecting mirror. In FIG. 2, a plane formed by the central principal ray 5 incident on the optical system and the central principal ray 5 reflected by the first reflecting mirror 1 is defined as plane A, and the central principal ray 5 incident on the second reflecting mirror 2 and reflected. The plane formed by the plane principal plane 5 is defined as plane B, and the plane formed by the central principal ray 5 incident on and reflected by the third reflecting mirror 3 is defined as plane C. Further, the central principal ray 5 is incident on the first reflecting mirror 1 by 5a, the second reflecting mirror 2 by 5b, the third reflecting mirror 3 by 5c, and the image plane 4 Let 5d be the portion of the light beam incident on.

3枚の反射鏡は平面B上にあるが、光学系に入射する中心主光線5aは平面A上にない。つまり、面対称構造をした光学系のように入射光線が反射鏡の間に位置していないため、入射光線が広がってもケラレは発生しにくい。このため、本実施の形態1により光学系の大口径化や広角化が可能となる。   The three reflecting mirrors are on the plane B, but the central principal ray 5a incident on the optical system is not on the plane A. That is, since the incident light beam is not positioned between the reflecting mirrors as in the optical system having a plane-symmetric structure, vignetting hardly occurs even if the incident light beam spreads. For this reason, according to the first embodiment, it is possible to increase the diameter and the angle of the optical system.

本実施の形態1によれば、光学系から結像面4に入射する中心主光線5dも平面B上にはない。したがって、結像面4に入射する光線が広がってもケラレが発生しにくいため、光学系の大口径化や広角化が可能となる。   According to the first embodiment, the central principal ray 5d incident on the imaging plane 4 from the optical system is not on the plane B. Therefore, vignetting is unlikely to occur even when the light rays incident on the imaging surface 4 spread, so that the optical system can have a large aperture and a wide angle.

対称面を持たない構造の光学系は、非面対称な収差が発生する。非面対称な収差のなかで支配的な収差は光学系の瞳面上での方向により焦点位置が変わる収差である。これは、共軸光学系における非点収差の発現作用と類似している。反射鏡に斜入射した光線は対応する焦点面近傍に集光するが、収差を考慮すると瞳面上での直交する方向、いわゆるラジアル方向とタンジェンシャル方向により異なる焦点面で集光すると近似できる。収差を抑制した光学系を得るためには、このラジアル方向とタンジェンシャル方向の各反射鏡での焦点面の違いが互いに相殺され、最終的に2方向の焦点面がほぼ一致することが条件となる。   An optical system having a structure that does not have a symmetric surface generates non-plane symmetric aberration. Among the non-plane-symmetrical aberrations, the dominant aberration is an aberration whose focal position changes depending on the direction on the pupil plane of the optical system. This is similar to the effect of astigmatism in the coaxial optical system. Light rays obliquely incident on the reflecting mirror are collected near the corresponding focal plane, but considering aberrations, it can be approximated by focusing on different focal planes in the orthogonal direction on the pupil plane, so-called radial direction and tangential direction. In order to obtain an optical system in which aberration is suppressed, the difference in focal plane between the reflecting mirrors in the radial direction and the tangential direction cancels each other, and finally the focal planes in the two directions almost coincide with each other. Become.

2つの方向の焦点面の違いが互いに相殺されるためには、各反射鏡における焦点面のラジアル方向とタンジェンシャル方向がほぼ一致している必要がある。これは、平面Bに対する平面Aの傾きと、平面Bに対する平面Cの傾きの差を抑制することで満足することができる。   In order for the difference in focal plane between the two directions to cancel each other, the radial direction and the tangential direction of the focal plane in each reflector need to be substantially coincident. This can be satisfied by suppressing the difference between the inclination of the plane A with respect to the plane B and the inclination of the plane C with respect to the plane B.

平面Aと平面Bの成す角をν1、平面Cと平面Bの成す角をν2とし、その角度の差をΔν=|ν1−ν2|とおく。図3に非面対称構造の反射光学系の設計サンプルについて、傾き角の差Δνに対する結像性能を評価した結果(点像スポット径/(光学系焦点距離・視野角))を示す。結像性能は、像面における点像のrmsスポット直径の平均値を光学系の焦点距離と視野角で正規化した量で表した。この評価値が小さいほど像のボケは小さく、結像性能の高い光学系が得られる。図3より、例えば結像性能をこの評価値において、0.0001以下とすると規定すれば、角度差Δνを45度以下に設定すればいいことが分かる。   An angle formed by the plane A and the plane B is ν1, an angle formed by the plane C and the plane B is ν2, and a difference between the angles is Δν = | ν1−ν2 |. FIG. 3 shows the result (point spot diameter / (optical system focal length / viewing angle)) of the imaging performance with respect to the tilt angle difference Δν of the design sample of the reflection optical system having the non-plane symmetry structure. The imaging performance was expressed as an amount obtained by normalizing the average value of the rms spot diameter of the point image on the image plane by the focal length and the viewing angle of the optical system. The smaller the evaluation value, the smaller the image blur and the higher the imaging performance. As can be seen from FIG. 3, for example, if the imaging performance is defined to be 0.0001 or less in this evaluation value, the angle difference Δν may be set to 45 degrees or less.

また、本実施の形態1において、第2反射鏡2に入射光線の光束径を制限する開口絞りをおくことにより、光学系をコンパクトにすることができる。光学系の内部での光線の広がりは絞りを中心として拡大する。したがって、第1反射鏡1近傍に絞りを配置したときには第3反射鏡3が、第3反射鏡3近傍に絞りを配置したときには第1反射鏡1が大きくなり、光学系は大型となる。   In the first embodiment, the optical system can be made compact by providing the second reflecting mirror 2 with an aperture stop that limits the diameter of the incident light beam. The spread of light within the optical system expands around the stop. Therefore, the third reflecting mirror 3 becomes large when the stop is arranged in the vicinity of the first reflecting mirror 1, and the first reflecting mirror 1 becomes large when the stop is arranged in the vicinity of the third reflecting mirror 3, and the optical system becomes large.

したがって、ほぼ光学系の中間位置にある第2反射鏡2に絞りを配置することで、他の反射鏡の大型化を抑制し、コンパクトな光学系を得ることができる。その結果、反射鏡の大きさを抑制することができるため、光学系全体の大きさをコンパクトにすることができる。このとき、開口絞りは、第2反射鏡2とは別に設けてもいいし、第2反射鏡2の光線反射領域をも用いて開口絞りとしても同様の効果が得られる。   Therefore, by disposing the aperture stop on the second reflecting mirror 2 that is substantially in the middle of the optical system, it is possible to suppress an increase in size of the other reflecting mirror and obtain a compact optical system. As a result, since the size of the reflecting mirror can be suppressed, the size of the entire optical system can be made compact. At this time, the aperture stop may be provided separately from the second reflecting mirror 2, and the same effect can be obtained as an aperture stop using the light reflection area of the second reflecting mirror 2.

また、本実施の形態1において、三枚の反射鏡の一部もしくは全てが回転対称軸を持たない自由曲面形状であってもよい。本実施の形態1の光学系は非回転対称な構造をしている。上記平面A,B,Cに対する条件により非回転対称性に起因する非点収差に類似した収差は抑制することができるが、使用条件によってはさらに高次の収差を低減する必要のある場合がある。このとき、反射鏡の形状として自由曲面形状を用いることで、高次収差として現れる非回転対称な収差を容易に低減することができる。   In the first embodiment, some or all of the three reflecting mirrors may have a free-form surface having no rotational symmetry axis. The optical system of the first embodiment has a non-rotationally symmetric structure. Although aberrations similar to astigmatism due to non-rotational symmetry can be suppressed by the conditions for the planes A, B, and C, higher-order aberrations may need to be further reduced depending on use conditions. . At this time, by using a free-form surface as the shape of the reflecting mirror, it is possible to easily reduce non-rotationally symmetric aberrations that appear as higher-order aberrations.

また、上記の実施の形態1において、反射鏡の作成に金型を用いてその形状を転写することにより成形加工することで、高精度な反射鏡を量産性高く作成することができる。金型の作成には切削・研削などによる高精度な3軸制御を用いた加工が必要となるが、一個の金型を作成すれば多数の反射鏡を作成することが可能であり、低コストで量産することが可能である。このような、金型形状を転写する作成法としては、プレス成形、射出成形、モールド成形などがあげられる。反射鏡の材料として高分子材料を使用することにより成形性も高く、材料のコストも低く抑えることができる。反射面には光学系が対象とする波長帯において反射率が高い金属をコートやメッキすることで、十分な反射率を得ることができる。   Further, in the first embodiment, a high-precision reflector can be produced with high productivity by molding the reflector by using a mold to transfer the shape thereof. Die creation requires high-accuracy 3-axis control such as cutting and grinding. However, if one die is created, many reflectors can be created, resulting in low cost. Can be mass-produced at Examples of the creation method for transferring the mold shape include press molding, injection molding, and mold molding. By using a polymer material as the material of the reflecting mirror, the moldability is high and the cost of the material can be kept low. A sufficient reflectance can be obtained by coating or plating the reflective surface with a metal having a high reflectance in the wavelength band targeted by the optical system.

また、上記の実施の形態1の撮像光学系を、赤外線領域の光学系として用いてもよい。赤外線領域ではレンズ材料として一般にゲルマニウムやシリコンなど特殊で高価な材料を使用するため、本実施の形態1の反射鏡だけで構成された光学系を使用することで低コスト化を行うことができる。赤外線の反射鏡は、アルミニウムなどの反射率が高い金属をコートやメッキすることで作成することができる。このような金属は一般的に入手可能であり、加工も特殊ではないため、低コストに抑えることが可能である。   Further, the imaging optical system of the first embodiment may be used as an optical system in the infrared region. In the infrared region, since a special and expensive material such as germanium or silicon is generally used as a lens material, the cost can be reduced by using an optical system composed only of the reflecting mirror of the first embodiment. An infrared reflecting mirror can be produced by coating or plating a metal having high reflectivity such as aluminum. Since such a metal is generally available and processing is not special, the cost can be reduced.

実施の形態2.
図4は、この発明の実施の形態2に係る撮像光学系を示す概略図である。図4において、図1および図2に示した実施の形態1の撮像光学系と同一または相当部分には同一符号を付し、その説明を省略する。
Embodiment 2. FIG.
FIG. 4 is a schematic diagram showing an imaging optical system according to Embodiment 2 of the present invention. 4, the same or corresponding parts as those in the imaging optical system according to Embodiment 1 shown in FIGS. 1 and 2 are denoted by the same reference numerals, and the description thereof is omitted.

図4において、光学系に入射する中心主光線5aと結像面4に入射する中心主光線5dは、第1反射鏡1から第3反射鏡3までを伝搬する中心主光線5bおよび5cが作る平面に対して同じ方向にオフセットしている。この結果、面対称構造をした光学系のように入射光線が反射鏡の間に位置していないため、入射光線が広がってもケラレは発生しにくい。また、結像面4に入射する光線も反射鏡の間に位置していないため、入射光線が広がってもケラレは発生しにくい。したがって、本実施の形態2により、実施の形態1と同様に光学系の大口径化や広角化が可能となる。   In FIG. 4, a central principal ray 5 b incident on the optical system and a central principal ray 5 d incident on the imaging plane 4 are formed by central principal rays 5 b and 5 c propagating from the first reflecting mirror 1 to the third reflecting mirror 3. Offset in the same direction relative to the plane. As a result, since the incident light beam is not positioned between the reflecting mirrors as in the optical system having a plane-symmetric structure, vignetting hardly occurs even if the incident light beam spreads. In addition, since the light beam incident on the imaging surface 4 is not positioned between the reflecting mirrors, vignetting is not easily generated even if the incident light beam spreads. Therefore, according to the second embodiment, as in the first embodiment, the optical system can have a large aperture and a wide angle.

対称面を持たない構造の光学系は、非面対称な収差が発生する。非面対称な収差のなかで支配的な収差は、実施の形態1と同様に、光学系の瞳面上での方向により焦点位置が変わる収差である。したがって、収差を抑制した光学系を得るためには、このラジアル方向とタンジェンシャル方向の各反射鏡での焦点面の違いが互いに相殺され、最終的に2方向の焦点面がほぼ一致すればいい。   An optical system having a structure that does not have a symmetric surface generates non-plane symmetric aberration. The dominant aberration among the non-plane-symmetrical aberrations is an aberration whose focal position changes depending on the direction on the pupil plane of the optical system, as in the first embodiment. Therefore, in order to obtain an optical system in which aberration is suppressed, the difference in focal plane between the radial and tangential reflecting mirrors cancels each other, and finally the focal planes in the two directions almost coincide with each other. .

2つの方向の焦点面の違いが互いに相殺されるためには、各反射鏡における焦点面のラジアル方向とタンジェンシャル方向がほぼ一致している必要がある。図5に、図2と同じく中心主光線5が作る平面を示す。本実施の形態2で、非点収差に類似した非回転対称収差を抑制するには、平面Bに対する平面Aの傾きと、平面Bに対する平面Cの傾きの差を小さくする必要がある。本実施の形態2における角度差Δνに対しても、図3で示した結像性能と角度差Δνの関係は適用できる。   In order for the difference in focal plane between the two directions to cancel each other, the radial direction and the tangential direction of the focal plane in each reflector need to be substantially coincident. FIG. 5 shows a plane formed by the central principal ray 5 as in FIG. In the second embodiment, in order to suppress non-rotationally symmetric aberration similar to astigmatism, it is necessary to reduce the difference between the inclination of the plane A with respect to the plane B and the inclination of the plane C with respect to the plane B. The relationship between the imaging performance and the angle difference Δν shown in FIG. 3 can also be applied to the angle difference Δν in the second embodiment.

したがって、例えば結像面4における点像のrmsスポット直径の平均値を光学系の焦点距離と視野角で正規化した評価値を0.0001以下とするには、平面Aと平面Bの成す角をν1、平面Cと平面Bの成す角をν2とし、その角度の差をΔν=|ν1−ν2|とおくとき、角度差Δνを45度以下に設定すればいい。   Therefore, for example, in order to make the evaluation value obtained by normalizing the average value of the rms spot diameter of the point image on the imaging plane 4 by the focal length and the viewing angle of the optical system to be 0.0001 or less, the angle formed by the plane A and the plane B Is ν1, the angle between plane C and plane B is ν2, and the difference in angle is Δν = | ν1−ν2 |, the angle difference Δν may be set to 45 degrees or less.

この発明の実施の形態1に係る撮像光学系を示す概略図である。1 is a schematic diagram showing an imaging optical system according to Embodiment 1 of the present invention. 図1に示す各反射鏡に入射する中心主光線と各反射鏡で反射する中心主光線とが作る各平面の関係を示す図である。It is a figure which shows the relationship between each plane which the center chief ray which injects into each reflector shown in FIG. 1, and the center chief ray reflected by each reflector make. 非面対称構造の反射光学系の設計サンプルについて、傾き角の差Δνに対する結像性能を評価した結果(点像スポット径/(光学系焦点距離・視野角))を示す図である。It is a figure which shows the result (point image spot diameter / (optical system focal length * viewing angle)) which evaluated the imaging performance with respect to the inclination-angle difference (DELTA) v about the design sample of the reflection optical system of a non-plane symmetry structure. この発明の実施の形態2に係る撮像光学系を示す概略図である。It is the schematic which shows the imaging optical system which concerns on Embodiment 2 of this invention. 図4に示す各反射鏡に入射する中心主光線と各反射鏡で反射する中心主光線とが作る各平面の関係を示す図である。It is a figure which shows the relationship between each plane which the center chief ray which injects into each reflector shown in FIG. 4 and the center chief ray reflected by each reflector make.

符号の説明Explanation of symbols

1 第1反射鏡、2 第2反射鏡、3 第3反射鏡、4 結像面、5 中心主光線、A 第1反射鏡への入射中心主光線と第1反射鏡での反射中心主光線とを含む平面、B 第2反射面への入射中心主光線と第2反射面での反射中心主光線とを含む平面、C 第3反射面への入射中心主光線と第3反射面での反射中心主光線とを含む平面、ν1 平面Aと平面Bとの成す角、ν2 平面Cと平面Bとの成す角。   DESCRIPTION OF SYMBOLS 1 1st reflective mirror, 2nd reflective mirror, 3rd reflective mirror, 4 imaging surface, 5 center principal ray, A center incident principal ray to 1st reflector, and reflection center principal ray in 1st reflector B, a plane including the incident central chief ray on the second reflecting surface and the reflecting central chief ray on the second reflecting surface, and C, the incident central chief ray on the third reflecting surface and the third reflecting surface. A plane including the reflection center principal ray, an angle formed by ν1 plane A and plane B, and an angle formed by ν2 plane C and plane B.

Claims (5)

入射光線の光路順で、第1反射鏡、第2反射鏡、及び第3反射鏡の順に配置された3枚の反射鏡を有し、
前記3枚の反射鏡で反射された光線が結像面を形成する撮像光学系において、
前記結像面の中心に結像する光線の主光線として規定される中心主光線に対して、
前記第1反射鏡への入射中心主光線と前記第1反射鏡での反射中心主光線とを含む平面を平面Aとし、
前記第2反射面への入射中心主光線と前記第2反射面での反射中心主光線とを含む平面を平面Bとし、
前記第3反射面への入射中心主光線と前記第3反射面での反射中心主光線とを含む平面を平面Cとするとき、
前記平面Aと前記平面Cとが一致しない構造であり、
前記平面Aと前記平面Bとの成す角をν1とし、前記平面Cと前記平面Bとの成す角をν2とするとき、角度の差Δν=|ν1−ν2|が45°以下である
ことを特徴とする撮像光学系。
Having three reflecting mirrors arranged in the order of the first reflecting mirror, the second reflecting mirror, and the third reflecting mirror in the order of the optical path of the incident light beam;
In the imaging optical system in which the light beam reflected by the three reflecting mirrors forms an imaging surface,
With respect to the central principal ray defined as the principal ray of the light beam imaged at the center of the imaging plane,
A plane including the incident central chief ray on the first reflecting mirror and the reflecting central chief ray on the first reflecting mirror is defined as plane A,
The plane including the incident central chief ray on the second reflecting surface and the reflecting central chief ray on the second reflecting surface is defined as plane B,
When a plane including the central light ray incident on the third reflecting surface and the central light ray reflected on the third reflecting surface is a plane C,
The plane A and the plane C do not coincide with each other,
When the angle between the plane A and the plane B is ν1, and the angle between the plane C and the plane B is ν2, the angle difference Δν = | ν1−ν2 | is 45 ° or less. A characteristic imaging optical system.
請求項1に記載の撮像光学系において、
前記第2反射鏡は、入射光線の光束径を制限する開口絞りを有する
ことを特徴とする撮像光学系。
The imaging optical system according to claim 1,
The imaging optical system, wherein the second reflecting mirror has an aperture stop that limits a beam diameter of incident light.
請求項1または2に記載の撮像光学系において、
前記第1反射鏡、前記第2反射鏡、前記第3反射鏡のいずれかまたは全てが回転対称軸を持たない自由曲面形状である
ことを特徴とする撮像光学系。
The imaging optical system according to claim 1 or 2,
Any one or all of said 1st reflective mirror, said 2nd reflective mirror, and said 3rd reflective mirror are the free-form surface shape which does not have a rotational symmetry axis. The imaging optical system characterized by the above-mentioned.
請求項1から3までのいずれか1項に記載の撮像光学系において、
前記3枚の反射鏡を成形加工により製造した
ことを特徴とする撮像光学系。
The imaging optical system according to any one of claims 1 to 3,
An imaging optical system, wherein the three reflecting mirrors are manufactured by molding.
請求項4に記載の撮像光学系において、
前記3枚の反射鏡の材料を高分子材料とした
ことを特徴とする撮像光学系。
The imaging optical system according to claim 4,
An imaging optical system, wherein the material of the three reflecting mirrors is a polymer material.
JP2007142176A 2007-05-29 2007-05-29 Imaging optical system Pending JP2008298866A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007142176A JP2008298866A (en) 2007-05-29 2007-05-29 Imaging optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007142176A JP2008298866A (en) 2007-05-29 2007-05-29 Imaging optical system

Publications (1)

Publication Number Publication Date
JP2008298866A true JP2008298866A (en) 2008-12-11

Family

ID=40172476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007142176A Pending JP2008298866A (en) 2007-05-29 2007-05-29 Imaging optical system

Country Status (1)

Country Link
JP (1) JP2008298866A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008309838A (en) * 2007-06-12 2008-12-25 Mitsubishi Electric Corp Imaging optical system
CN105467569A (en) * 2016-01-08 2016-04-06 苏州大学 Off-axis three-mirror prepositive optic system
CN107065220A (en) * 2017-03-30 2017-08-18 温州医科大学 The personalized free form surface gradual change mirror design method of picture frame matching optimization
CN114280763A (en) * 2021-12-03 2022-04-05 中国科学院西安光学精密机械研究所 Wide-temperature high-pneumatic light-weight type common-shrinkage-beam visible medium wave infrared scanning image stabilizing optical system
CN114879351A (en) * 2021-02-05 2022-08-09 清华大学 Asymmetrical free-form surface optical system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004126510A (en) * 2002-08-06 2004-04-22 Mitsubishi Electric Corp Reflective optical system
WO2006100919A1 (en) * 2005-03-18 2006-09-28 Mitsubishi Denki Kabushiki Kaisha Imaging optical system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004126510A (en) * 2002-08-06 2004-04-22 Mitsubishi Electric Corp Reflective optical system
WO2006100919A1 (en) * 2005-03-18 2006-09-28 Mitsubishi Denki Kabushiki Kaisha Imaging optical system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008309838A (en) * 2007-06-12 2008-12-25 Mitsubishi Electric Corp Imaging optical system
CN105467569A (en) * 2016-01-08 2016-04-06 苏州大学 Off-axis three-mirror prepositive optic system
CN107065220A (en) * 2017-03-30 2017-08-18 温州医科大学 The personalized free form surface gradual change mirror design method of picture frame matching optimization
CN114879351A (en) * 2021-02-05 2022-08-09 清华大学 Asymmetrical free-form surface optical system
CN114280763A (en) * 2021-12-03 2022-04-05 中国科学院西安光学精密机械研究所 Wide-temperature high-pneumatic light-weight type common-shrinkage-beam visible medium wave infrared scanning image stabilizing optical system
CN114280763B (en) * 2021-12-03 2023-02-14 中国科学院西安光学精密机械研究所 Wide-temperature high-pneumatic light-weight type common-shrinkage-beam visible medium wave infrared scanning image stabilizing optical system

Similar Documents

Publication Publication Date Title
JP4516114B2 (en) Imaging optical system
JP7234498B2 (en) Projection optical system unit and projection optical device
US7245443B2 (en) Panoramic attachment optical system, and panoramic optical system
KR20070012371A (en) Catadioptric imaging system for high numerical aperture imaging with deep ultraviolet light
US20070177261A1 (en) Catadioptric telescopes
JP6393906B2 (en) Projection optical system and image projection apparatus
JP6255268B2 (en) Catadioptric optical system with multiple reflection elements for imaging with a large numerical aperture
JP2004126510A (en) Reflective optical system
JPWO2005076049A1 (en) Chromatic aberration correction imaging optical system
JP2008298866A (en) Imaging optical system
JP4212721B2 (en) Wide-angle reflective optics
JP2000235151A (en) Method for correcting optical wave aberration in optical system, and optical system and microscope manufactured based on it
JP2008309838A (en) Imaging optical system
US6985268B1 (en) Image capturing apparatus
JPH1114913A (en) Telescope using concave spherical reflector as 1st surface
WO2014061595A1 (en) Catadioptric photography lens
JPH10333040A (en) Image pickup optical system and image pickup device using it
JP2009265257A (en) Imaging optical system
JP2002287032A (en) Reflection type image pickup unit
JP2003215458A (en) Reflection and diffraction optical system
WO2009107744A1 (en) Projection optical system and projection device
JPH1123971A (en) Image pickup optical system and image pickup device using the same
JP2001174705A (en) Variable power reflecting optical system
JPH10307260A (en) Image pickup optical system and image pickup device using the same
WO2018179607A1 (en) Projection optical system, image projection device, and image projection system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120717