JPH11147755A - Shaped refractory material - Google Patents

Shaped refractory material

Info

Publication number
JPH11147755A
JPH11147755A JP9312227A JP31222797A JPH11147755A JP H11147755 A JPH11147755 A JP H11147755A JP 9312227 A JP9312227 A JP 9312227A JP 31222797 A JP31222797 A JP 31222797A JP H11147755 A JPH11147755 A JP H11147755A
Authority
JP
Japan
Prior art keywords
magnesia
tio
solid solution
mgal
silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9312227A
Other languages
Japanese (ja)
Other versions
JP3833800B2 (en
Inventor
Kiyoshi Goto
潔 後藤
Hisashi Nakamura
壽志 中村
Akihiro Tsuchinari
昭弘 土成
Minoru Koushiyo
実 向所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harima Ceramic Co Ltd
Nippon Steel Corp
Original Assignee
Harima Ceramic Co Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harima Ceramic Co Ltd, Nippon Steel Corp filed Critical Harima Ceramic Co Ltd
Priority to JP31222797A priority Critical patent/JP3833800B2/en
Publication of JPH11147755A publication Critical patent/JPH11147755A/en
Application granted granted Critical
Publication of JP3833800B2 publication Critical patent/JP3833800B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/10Compositions or ingredients thereof characterised by the absence or the very low content of a specific material
    • C04B2111/1075Chromium-free or very low chromium-content materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics

Abstract

PROBLEM TO BE SOLVED: To obtain a Cr-free, high-quality shaped refractory material usable as e.g. a lining refractory such as for metal refining vessels in e.g. steelmaking furnaces, cement kilns and glass melting furnaces, and designed to be highly resistant to corrosion, infiltration and spalling and sufficiently durable even in case of being used in the form of a secondary refining vessel for high-grade steel. SOLUTION: This shaped refractory material consists mainly of MgAl2 O4 -Mg2 TiO4 -based solid solution and magnesia with the weight ratio: [MgAl2 O4 -Mg2 TiO4 ]/magnesia of (10:90) to (40:60), pref. (15:85) to (30:70) and also contains at least one kind of ingredient selected from spinel, chromium ore, dolomite containing <=10 wt.% CaO, alumina, mullite, carbon source(s) such as graphite, SiC, zirconia, zirocon, titania, silica and silica flour, silica rock, and metallic powder.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は製鋼炉などの金属精
錬用容器、セメントキルン、ガラス溶解炉などの内張り
などに使用され、特に溶鋼の二次精錬用容器に適した、
耐食性、耐浸潤性および耐スポーリング性に優れた定形
耐火物に関するものである。
TECHNICAL FIELD The present invention is used for metal refining vessels such as steelmaking furnaces, linings for cement kilns, glass melting furnaces, etc., and is particularly suitable for secondary refining vessels for molten steel.
The present invention relates to a shaped refractory having excellent corrosion resistance, infiltration resistance and spalling resistance.

【0002】[0002]

【従来の技術】近年、高級鋼の精錬などにおいて、酸素
吹き込み、真空脱ガス、アルゴン吹き込み、撹拌などの
各種技術が採用され、溶鋼温度の上昇、滞湯時間の延長
なども伴い、精錬用容器の使用条件は、ますます苛酷な
ものとなっている。このため、金属の溶解炉や取鍋など
の内張り耐火物には、金属精錬中に発生する塩基性スラ
グに対する耐食性、スラグに対する耐浸潤性、および耐
スポーリング性に優れた高品質のものが要求されてい
る。
2. Description of the Related Art In recent years, various techniques such as oxygen blowing, vacuum degassing, argon blowing and stirring have been adopted in refining of high-grade steel. Are becoming more and more severe. For this reason, refractory linings such as metal melting furnaces and ladles must be of high quality with excellent corrosion resistance to basic slag generated during metal refining, infiltration resistance to slag, and spalling resistance. Have been.

【0003】このような高品質の耐火物として、マグネ
シア質原料とクロム鉄鉱を主骨材とするマグネシア−ク
ロム質耐火物が知られており、製鋼プロセスにおいて、
溶鋼の精錬を行うための炉や取鍋などの精錬用容器に広
く採用され、またセメントキルン、ガラス溶解炉などの
内張り材としても使用されている。
[0003] As such high-quality refractories, magnesia-chromium refractories whose main aggregate is a magnesia raw material and chromite are known.
It is widely used in refining vessels such as furnaces and ladles for refining molten steel, and is also used as a lining material in cement kilns and glass melting furnaces.

【0004】しかしマグネシア−クロム質耐火物は、使
用後の廃棄に際してCrを無害化するための処理を必要
とし、その処理コストが高いという問題が顕在化してい
る。このため、Crを含まないで上記のような高品質を
有する耐火物、すなわちCrフリー高品質耐火物の開発
が行われている。
However, magnesia-chromium refractories require a treatment for detoxifying Cr at the time of disposal after use, and the problem that the treatment cost is high has become apparent. For this reason, refractories having high quality as described above without containing Cr, that is, Cr-free high-quality refractories have been developed.

【0005】従来のCrフリー高品質耐火物としては、
マグネシア−スピネル質耐火物が知られている。この耐
火物は、マグネシア(MgO)とスピネル(MgAl2
4)の固溶体からなり、セメントキルン用として広く
採用されている。また、マグネシア(MgO)−チタニ
ア(TiO2 )−アルミナ(Al2 3)質耐火物が、
特開平7−300361号公報により知られている。こ
の耐火物は製鋼炉、セメントキルン、ガラス溶解炉など
の内張り用として、耐食性、耐浸透性および耐スポーリ
ング性に優れているとされている。
[0005] Conventional Cr-free high-quality refractories include:
Magnesia-spinel refractories are known. This refractory is made of magnesia (MgO) and spinel (MgAl 2
It is made of a solid solution of O 4 ) and widely used for cement kilns. Further, magnesia (MgO) -titania (TiO 2 ) -alumina (Al 2 O 3 ) refractories are
It is known from JP-A-7-300361. This refractory is said to be excellent in corrosion resistance, penetration resistance and spalling resistance for lining steel making furnaces, cement kilns, glass melting furnaces and the like.

【0006】[0006]

【発明が解決しようとする課題】上記マグネシア−スピ
ネル質耐火物は、上記のような金属精錬用として使用す
る場合、スラグに対する耐浸潤性が劣るため耐久性に問
題がある。また上記特開平7−300361号公報に記
載されているマグネシア−チタニア−アルミナ質耐火物
は、特に高級鋼の二次精錬容器用として使用する場合、
耐スポーリング性にやや問題があり、十分な耐久性が発
揮され難い。
When the above magnesia-spinel refractory is used for metal refining as described above, there is a problem in durability due to poor infiltration resistance to slag. Further, the magnesia-titania-alumina refractory described in JP-A-7-300361 is particularly suitable for use in secondary refining vessels for high-grade steel.
There is some problem in spalling resistance, and it is difficult to exhibit sufficient durability.

【0007】本発明は、製鋼炉などの金属精錬用容器、
セメントキルン、ガラス溶解炉などの内張りなどに使用
されるCrフリー高品質耐火物であって、高級鋼の二次
精錬容器用として使用する場合でも、耐食性、耐浸潤性
および耐スポーリング性に優れ、十分な耐久性を有する
定形耐火物を提供することを目的とする。
The present invention relates to a metal refining vessel such as a steelmaking furnace,
A Cr-free high-quality refractory used for lining of cement kilns, glass melting furnaces, etc., with excellent corrosion resistance, infiltration resistance and spalling resistance even when used for secondary refining vessels of high-grade steel. It is an object of the present invention to provide a shaped refractory having sufficient durability.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
の本発明は、MgAl2 4 −Mg2 TiO4 系固溶体
とマグネシアを主成分とし、両者の比率が重量比にて、
[MgAl2 4 −Mg2 TiO4 ]:マグネシア=1
0:90〜40:60であることを特徴とする定形耐火
物である。そして、[MgAl2 4 −Mg2 Ti
4 ]:マグネシア=15:85〜30:70であるこ
とが好ましい。また、スピネル、クロム鉱、10重量%
以下のCaOを含有するドロマイト、アルミナ、ムライ
ト、黒鉛などの炭素源、SiC、ジルコニア、ジルコ
ン、チタニア、シリカおよびシリカフラワー、珪石、金
属粉のうちの1種または2種以上を添加したものである
ことが好ましい。
SUMMARY OF THE INVENTION The present invention for achieving the above object comprises a MgAl 2 O 4 —Mg 2 TiO 4 -based solid solution and magnesia as main components, and the ratio between the two is expressed by weight.
[MgAl 2 O 4 -Mg 2 TiO 4]: Magnesia = 1
0:90 to 40:60. Then, [MgAl 2 O 4 —Mg 2 Ti
O 4 ]: Magnesia = 15: 85 to 30:70 is preferred. Also, spinel, chromium ore, 10% by weight
A carbon source containing the following dolomite, alumina, mullite, graphite, etc. containing CaO, one or more of SiC, zirconia, zircon, titania, silica and silica flour, silica stone, and metal powder added. Is preferred.

【0009】[0009]

【発明の実施の形態】本発明の定形耐火物において、主
成分であるMgAl2 4 −Mg2 TiO4系固溶体
は、狭義のスピネル(MgAl2 4 )とクゥォンディ
ライト(Mg2TiO4 )を端成分とする[MgAl2
4 −Mg2 TiO4 ]固溶体に、該固溶体形成時の未
反応物や不純物を含むものである。またマグネシアはM
gOを成分とし、天然のマグネサイトあるいはこれを焼
成したマグネシア、海水を原料とする水酸化マグネシウ
ム、あるいはこれを焼成したマグネシア、または電融マ
グネシアなどである。
BEST MODE FOR CARRYING OUT THE INVENTION In the shaped refractory of the present invention, the main components of MgAl 2 O 4 —Mg 2 TiO 4 based solid solution are spinel (MgAl 2 O 4 ) in a narrow sense and quadrulite (Mg 2 TiO 2 ). 4 ) with [MgAl 2
[O 4 -Mg 2 TiO 4 ] solid solution contains unreacted substances and impurities at the time of forming the solid solution. Magnesia is M
Natural magnesite containing gO, magnesia calcined therefrom, magnesium hydroxide using seawater as a raw material, magnesia calcined therefrom, or electrofused magnesia.

【0010】MgAl2 4 −Mg2 TiO4 系固溶体
は、たとえば、マグネシア源の粒体に、チタニア源およ
びアルミナ源の各粒体を混合した後、溶融または130
0℃以上の温度で焼成することにより製造することがで
きる。このとき各粒体の混合比率は、重量比にてTiO
2 /(TiO2 +Al2 3 )=0.1〜0.9の範囲
とするのが好ましい。
The MgAl 2 O 4 —Mg 2 TiO 4 -based solid solution is prepared, for example, by mixing the particles of a magnesia source with the particles of a titania source and an alumina source and then melting or mixing the particles.
It can be manufactured by firing at a temperature of 0 ° C. or higher. At this time, the mixing ratio of each particle is TiO by weight ratio.
It is preferable that the ratio 2 / (TiO 2 + Al 2 O 3 ) = 0.1 to 0.9.

【0011】上記固溶体を製造する際に使用するマグネ
シア源は、本発明の主成分である上記マグネシアと同様
のものである。チタニア源は天然あるいは人工のルチル
あるいはアナターゼ、アルミナ源は人工の合成アルミ
ナ、あるいは水酸化アルミニウムとすることができる。
これらはいずれも、1000℃で熱処理後の分析での純
度が90重量%以上であることが望ましい。
The magnesia source used for producing the solid solution is the same as the above magnesia which is a main component of the present invention. The titania source can be natural or artificial rutile or anatase, and the alumina source can be artificial synthetic alumina or aluminum hydroxide.
It is desirable that all of these have a purity of 90% by weight or more in analysis after heat treatment at 1000 ° C.

【0012】これらを混合し、そのままあるいは造粒あ
るいは成形して焼成、または溶融することにより、Mg
Al2 4 −Mg2 TiO4 系固溶体を得ることができ
る。マグネシア源、チタニア源およびアルミナ源はいず
れも粒体で、その粒径は直径100μm程度以下とする
のが好ましい。ただし、溶融する場合はこれより大きな
粒でも使用できる。上記固溶体は溶融または焼成するこ
とにより形成され、1300℃以上の温度であれば、固
体反応によっても工業的に安定して容易に形成すること
ができる。
These are mixed, granulated or molded as they are, or fired or melted to obtain Mg.
Al 2 O 4 -Mg 2 TiO 4 based solid solution can be obtained. The magnesia source, titania source, and alumina source are all granules, and the particle diameter is preferably about 100 μm or less in diameter. However, when melting, larger grains can be used. The solid solution is formed by melting or firing, and if the temperature is 1300 ° C. or higher, it can be easily formed industrially stably even by a solid reaction.

【0013】MgOにTiO2 とAl2 3 を添加して
溶融または焼成すると、つぎの反応により[MgAl2
4 −Mg2 TiO4 ]固溶体が形成される。 MgO+Al2 3 →MgO・Al2 3 (1) 2MgO+TiO2 →2MgO・TiO2 (2) MgO・Al2 3 +2MgO・TiO2 →[MgAl2 4 −Mg2 TiO4 ]固溶体 (3)
When TiO 2 and Al 2 O 3 are added to MgO and melted or fired, [MgAl 2
O 4 -Mg 2 TiO 4] solid solution is formed. MgO + Al 2 O 3 → MgO · Al 2 O 3 (1) 2MgO + TiO 2 → 2MgO · TiO 2 (2) MgO · Al 2 O 3 + 2MgO · TiO 2 → [MgAl 2 O 4 -Mg 2 TiO 4 ] solid solution (3)

【0014】ここでMgO、Al2 3 およびTiO2
としては、上述のように、マグネシア源、アルミナ源お
よびチタニア源を採用でき、それぞれ天然の鉱石などの
ほか工業用として製造されているものが該当し、いずれ
も不純物を含んでいる。また、(1)式および(2)式
における反応の、化学当量を超えた未反応のMgO、A
2 3 あるいはTiO2 も含まれる。したがって本発
明においては、これら不純物や未反応物などを含む形と
して、MgAl2 4 −Mg2 TiO4 系固溶体とい
う。不純物としては、SiO2 、CaO、Fe2 3
どの酸化鉄、B23 、MnOなどがある。またこの固
溶体は、必ずしも化学量論的組成を取らず、各成分をプ
ラスマイナス10%程度増減しても固溶体となる。
Here, MgO, Al 2 O 3 and TiO 2
As described above, as described above, a magnesia source, an alumina source, and a titania source can be adopted, each of which is manufactured for industrial use in addition to natural ore, and all contain impurities. In addition, unreacted MgO, A exceeding the chemical equivalent of the reaction in the equations (1) and (2)
l 2 O 3 or TiO 2 is also included. Therefore, in the present invention, as a form including these impurities or unreacted reactants, MgAl 2 O 4 -Mg 2 of TiO 4 based solid solution. Examples of the impurities include iron oxides such as SiO 2 , CaO, and Fe 2 O 3 , B 2 O 3 , and MnO. Further, this solid solution does not always have a stoichiometric composition, and becomes a solid solution even if each component is increased or decreased by about ± 10%.

【0015】MgAl2 4 −Mg2 TiO4 系固溶体
は、MgAl2 4 中の2Alが、MgとTiで置換さ
れることにより形成される固溶体である。化学量論的に
は、チタニウムイオンの数とアルミニウムイオンの数を
2倍したものの和は一定になる。従ってTiO2 の量比
によってAl2 3 の量比が定まる。またMgAl2
4 とMg2 TiO4 の成分量比も定まる。
The MgAl 2 O 4 —Mg 2 TiO 4 -based solid solution is a solid solution formed by replacing 2Al in MgAl 2 O 4 with Mg and Ti. Stoichiometrically, the sum of twice the number of titanium ions and the number of aluminum ions is constant. Therefore, the amount ratio of Al 2 O 3 is determined by the amount ratio of TiO 2 . MgAl 2 O
4 and Mg 2 TiO 4 are also determined.

【0016】そして、重量比にてTiO2 /(TiO2
+Al2 3 )=0.1〜0.9とすることで、耐火物
の使用条件として苛酷な溶鋼の二次精錬容器用として
も、優れた耐食性、耐浸潤性および耐スポーリング性を
有する耐火物用の原料が得られる。
The weight ratio of TiO 2 / (TiO 2
+ Al 2 O 3 ) = 0.1 to 0.9, it has excellent corrosion resistance, infiltration resistance and spalling resistance even when used as a secondary refining vessel for molten steel, which is a severe use condition of refractories. A raw material for refractories is obtained.

【0017】上記のようにして得られるMgAl2 4
−Mg2 TiO4 系固溶体とマグネシアの割合は、重量
比にて、[MgAl2 4 −Mg2 TiO4 ]:マグネ
シア=10:90〜40:60とする。このような比率
とすることにより、耐火物の使用条件として苛酷な溶鋼
の二次精錬容器用としても、優れた耐食性、耐浸潤性お
よび耐スポーリング性を有するものが得られる。MgA
2 4 −Mg2 TiO4 系固溶体の比率が10%未満
だと、耐浸潤性が低下し、40%を超えると耐食性が劣
化する。そして上記比率を15:85〜30:70とす
るのが好ましい。
The MgAl 2 O 4 obtained as described above
-Mg 2 ratio of TiO 4 based solid solution and magnesia, at a weight ratio, [MgAl 2 O 4 -Mg 2 TiO 4]: Magnesia = 10: 90-40: and 60. With such a ratio, a refractory having excellent corrosion resistance, infiltration resistance and spalling resistance can be obtained even for a secondary smelting vessel of molten steel which is used under severe conditions. MgA
If the ratio of l 2 O 4 -Mg 2 TiO 4 -based solid solution is less than 10%, the infiltration resistance decreases, and if it exceeds 40%, the corrosion resistance deteriorates. It is preferable that the above ratio be 15:85 to 30:70.

【0018】なお本発明の定形耐火物は、このようなM
gAl2 4 −Mg2 TiO4 系固溶体とマグネシアを
主成分とし、上記のような不純物、未反応のAl2 3
およびTiO2 などを含有するほか、不可避的な含有物
あるいは意図的な添加物を含有することができる。たと
えばスピネル、クロム鉱、10重量%以下のCaOを含
有するドロマイト、アルミナ、ムライト、黒鉛などの炭
素源、SiC、ジルコニア、ジルコン、チタニア、シリ
カおよびシリカフラワー、珪石、金属粉などの1種また
は2種以上を含有することができる。ただし、耐食性、
耐浸潤性、耐スポーリング性などの特性を悪化させない
ように添加量と粒度を耐火物の使用条件に合わせて調節
するのが望ましい。
The shaped refractory of the present invention has the M
gAl 2 O 4 -Mg 2 as a main component TiO 4 solid solution and magnesia, impurities such as described above, unreacted Al 2 O 3
And TiO 2, etc., as well as unavoidable contents or intentional additives. For example, carbon sources such as spinel, chromite ore, dolomite containing 10% by weight or less of CaO, alumina, mullite, graphite, one or two kinds of SiC, zirconia, zircon, titania, silica and silica flour, silica stone, metal powder, etc. It can contain more than one species. However, corrosion resistance,
It is desirable to adjust the addition amount and the particle size according to the use conditions of the refractory so as not to deteriorate properties such as infiltration resistance and spalling resistance.

【0019】本発明の定形耐火物には焼成れんがおよび
不焼成れんががある。いずれも、粒状あるいは粉状の上
記固溶体とマグネシア、および必要に応じて添加される
添加物に、必要に応じてバインダーを加えて混練し、プ
レス等により成形したのち、100〜500℃で乾燥
し、焼成れんがは1500〜1900℃で焼成し、不焼
成れんがは使用中の高熱を利用して焼成される。
The fixed refractories of the present invention include fired bricks and unfired bricks. In any case, the solid solution and magnesia in the form of granules or powder, and additives to be added as necessary, a binder is added as necessary, kneaded, molded by a press or the like, and then dried at 100 to 500 ° C. The fired brick is fired at 1500 to 1900 ° C., and the unfired brick is fired using high heat during use.

【0020】バインダーは水でもよく、パルプ廃液、フ
ェノール樹脂、フラン樹脂、苦汁、リグニンスルフォン
酸カルシウム、珪酸ソーダ、燐酸アルミニウム、ポリビ
ニルアルコールなどを採用することもできる。成形は、
れんがの用途や使用設備に合わせてフリクションプレ
ス、オイルプレス、ラバープレスなどにより加圧成形す
る。
The binder may be water, and pulp waste liquor, phenol resin, furan resin, bittern, calcium lignin sulfonate, sodium silicate, aluminum phosphate, polyvinyl alcohol, and the like can also be used. Molding is
Pressure molding is performed by a friction press, oil press, rubber press, etc. according to the application and equipment used for the brick.

【0021】本発明の定形耐火物を、金属精錬用容器、
セメントキルン、ガラス溶解炉等の内張りに採用した場
合、耐食性、耐浸潤性および耐スポーリング性に優れて
いる。特に溶鋼の二次精錬において、酸素吹き込み、真
空脱ガス、アルゴン吹込み、撹拌などを行って、溶鋼温
度の上昇、滞湯時間の延長などを伴う苛酷な条件でも十
分な耐久性を有する。
[0021] The shaped refractory of the present invention is used in a metal refining vessel,
When used for lining of cement kilns, glass melting furnaces, etc., it has excellent corrosion resistance, infiltration resistance and spalling resistance. In particular, in the secondary refining of molten steel, oxygen is blown, vacuum degassed, argon is blown, and agitation is performed, so that the steel has sufficient durability even under severe conditions involving an increase in the temperature of the molten steel, a prolonged residence time, and the like.

【0022】MgAl2 4 −Mg2 TiO4 系固溶体
とマグネシアからなる焼成れんがの耐用性が高い理由に
ついて以下に考察する。固溶体中のTiO2 成分は、浸
潤してきたスラグ中のCaOと反応して高融点のCaT
iO3 を生成する。このためスラグの更なる浸潤を抑制
することができると思われる。そしてスラグ浸潤による
変質層厚さを薄く抑えることができ、またスラグ浸潤部
の融点低下も少ないため、耐食性も高いものと考えられ
る。また耐火物組織の面では、同固溶体の粗粒の周囲お
よび内部には空隙が形成される。これは熱応力により生
じる亀裂の進展を効果的に抑制するので、高い耐スポー
リング性が発現するものと考えられる。
The reason why the fired brick made of MgAl 2 O 4 —Mg 2 TiO 4 based solid solution and magnesia has high durability will be considered below. The TiO 2 component in the solid solution reacts with CaO in the infiltrated slag to form a high melting point CaT.
Generate iO 3 . For this reason, it seems that further infiltration of the slag can be suppressed. The thickness of the altered layer due to slag infiltration can be suppressed to a small value, and the melting point of the slag infiltrated portion is small, so that it is considered that the corrosion resistance is high. In the refractory structure, voids are formed around and inside the coarse particles of the solid solution. This effectively suppresses the growth of cracks caused by thermal stress, and is considered to exhibit high spalling resistance.

【0023】[0023]

【実施例】[実施例1]:MgAl2 4 −Mg2 Ti
4 系固溶体を焼成法により作製し、これとマグネシア
を用いてれんがを製造し、その特性を評価した。固溶体
の原料としては、マグネシア源として耐火物用の粒径4
4μm以下の純度99%の海水焼結マグネシア、チタニ
ア源として工業用ルチル粉末、アルミナ源として耐火物
用の粒径100μm以下で純度99%の焼結アルミナ微
粉末を準備した。
[Embodiment 1]: MgAl 2 O 4 —Mg 2 Ti
An O 4 -based solid solution was prepared by a firing method, and a brick was manufactured using this and magnesia, and the characteristics were evaluated. As a raw material of the solid solution, a magnesia source having a particle size of 4
99% pure seawater sintered magnesia having a particle size of 4 μm or less, industrial rutile powder as a titania source, and a sintered alumina fine powder having a particle size of 100 μm or less and a purity of 99% for a refractory as an alumina source were prepared.

【0024】各原料の混合比率は、マグネシア源41.
2重量%、チタニア源29.4重量%、アルミナ源2
9.4重量%とした。これらに混練材として水を2重量
%加え、フレットミキサーで混練した。その後300t
のフリクションプレスで並型に成形し、120℃で24
時間乾燥した。これをトンネルキルンで最高焼成温度1
700℃で焼成することで、MgAl2 4 −Mg2
iO4 系固溶体からなる焼結体を得た。さらにこの焼結
体を粉砕し、耐火物製造に適した粒度に調整した。
The mixing ratio of each raw material depends on the magnesia source 41.
2% by weight, 29.4% by weight of titania source, alumina source 2
It was 9.4% by weight. To these, 2% by weight of water was added as a kneading material and kneaded with a fret mixer. Then 300t
Molded at normal temperature with a friction press
Dried for hours. This is the maximum firing temperature of 1 in a tunnel kiln.
By firing at 700 ° C., MgAl 2 O 4 —Mg 2 T
A sintered body composed of an iO 4 -based solid solution was obtained. Further, this sintered body was pulverized and adjusted to a particle size suitable for refractory production.

【0025】こうして得た原料と純度99%の焼結マグ
ネシアを重量比で0:100〜50:50に混合した。
同固溶体の粒度範囲は1〜3mm、もしくは全粒度域とし
た。なお、れんが全体での粒度構成は、1〜3mmが60
重量%、1mm以下が33重量%、100μm以下のミル
粉が7%となるように、同固溶体とマグネシアの各粒度
範囲での量比を調節した。また前出のチタニア源とアル
ミナ源および粒径100μm以下で純度95%以上の未
安定化ジルコニアを添加したものも準備した。これらを
にがりを混練液として4重量%添加して混練し、350
tフリクションプレスで並型に成形し、120℃24時
間乾燥後、最高焼結温度1750℃のトンネルキルンで
焼成した。
The raw material thus obtained and sintered magnesia having a purity of 99% were mixed in a weight ratio of 0: 100 to 50:50.
The particle size range of the solid solution was 1 to 3 mm, or the entire particle size range. In addition, the particle size composition of the whole brick is
The amount ratio of the solid solution and magnesia in each particle size range was adjusted so that the weight%, 1 mm or less was 33% by weight, and the mill powder of 100 μm or less was 7%. Also prepared were the above-mentioned titania source, alumina source and unstabilized zirconia having a particle size of 100 μm or less and a purity of 95% or more. 4% by weight of these are added as a kneading liquid to knead, and kneaded.
They were molded in a regular shape by a friction press, dried at 120 ° C. for 24 hours, and then fired in a tunnel kiln having a maximum sintering temperature of 1750 ° C.

【0026】完成したれんがを、マグクロダイレクトボ
ンドれんが(試料A,B)、および事前にMgAl2
4 −Mg2 TiO4 系固溶体を作製せずにマグネシアに
チタニア源6.6重量%とアルミナ源8.4重量%を単
純に加えて混練成形焼成したれんが(試料C)との比較
で評価した。結果を表1および表2に示す。表2の試料
D〜Sは、マグネシア源とチタニア源とアルミナ源から
一旦固溶体を作製し、これにマグネシアを加えて製造し
たものである。
[0026] The completed brick was mixed with a magcro direct bond brick (samples A and B) and MgAl 2 O in advance.
4 -Mg 2 magnesia without producing a TiO 4 solid solution simply adding titania source 6.6 wt% and alumina source 8.4 wt% was evaluated in comparison with kneading molding fired bricks (Sample C) . The results are shown in Tables 1 and 2. Samples DS in Table 2 were prepared by temporarily preparing a solid solution from a magnesia source, a titania source, and an alumina source, and adding magnesia thereto.

【0027】評価は、耐食性については酸素−プロパン
バーナーを熱源とする回転ドラム式侵食試験で、また耐
スポーリング性については溶銑浸漬スポール試験でそれ
ぞれ行った。侵食試験条件は、試料表面温度1700
℃、時間5時間、侵食材はCaO−SiO2 系スラグ
で、スラグのC/Sは3、スラグの量は1回あたり40
0gずつとし、30分毎に排滓と投入を繰り返した、冷
却後、試料の最も溶損した位置の残厚と、スラグが浸潤
していない部分の厚さを測定し、あらかじめ測定してお
いた元厚から残厚を差し引いて溶損深さとし、残厚から
スラグが浸潤していない部分の厚さを差し引いてスラグ
浸潤深さとした。耐スポーリング性試験は、40×40
×160mmの大きさの試料を1600℃の溶銑に長手方
向に50mmの深さまで15秒間浸漬してから取り出して
放冷することを繰り返し、試料の浸漬部が欠け落ちるま
での繰り返し回数を調査した。
The corrosion resistance was evaluated by a rotary drum type erosion test using an oxygen-propane burner as a heat source, and the spalling resistance was evaluated by a hot metal immersion spall test. The erosion test conditions were a sample surface temperature of 1700.
℃, time 5 hours, the erosion material is CaO-SiO 2 slag, C / S of slag is 3, the amount of slag is 40 per time
After cooling, the residual thickness at the most eroded position of the sample and the thickness of the portion where the slag was not infiltrated were measured and measured in advance. The residual thickness was subtracted from the original thickness to give the erosion depth, and the thickness of the portion where the slag was not infiltrated was subtracted from the residual thickness to give the slag infiltration depth. The spalling resistance test is 40 × 40
A sample having a size of × 160 mm was immersed in hot metal at 1600 ° C. to a depth of 50 mm in the longitudinal direction for 15 seconds, then taken out and allowed to cool, and the number of repetitions until the immersion portion of the sample was chipped off was examined.

【0028】溶損深さ、スラグ浸潤深さ、欠け落ちるま
での繰り返し数は、それぞれ試料Aの値を100とした
指数、すなわち溶損指数、浸潤指数、スポール指数とし
て表1に示した。溶損指数と浸潤指数は値が小さい程、
またスポール指数は値が大きい程、それぞれの特性が良
好であることを示す。
The erosion depth, the slag infiltration depth, and the number of repetitions before chipping are shown in Table 1 as indices with the value of sample A being 100, that is, the erosion index, the infiltration index, and the Spor index. The smaller the values of the erosion index and the infiltration index,
The larger the value of the Spall index is, the better the characteristics are.

【0029】溶損指数に関しては、MgAl2 4 −M
2 TiO4 系固溶体とマグネシアの配合比が40:6
0を超える試料Fで大きかった。浸潤指数に関しては同
固溶体とマグネシアの配合比が10:90未満のDとE
で悪かった。またスポール指数についても10:90未
満では悪かった。したがって同比は10:90〜40:
60である必要がある。また同比が15:85〜30:
70のH、J、K、L、N、P、Q、R、Sは特に各特
性が優れていた。
Regarding the erosion index, MgAl 2 O 4 -M
g 2 TiO 4 -based solid solution and magnesia in a mixing ratio of 40: 6
Sample F exceeding 0 was large. Regarding the infiltration index, D and E in which the mixing ratio of the same solid solution and magnesia is less than 10:90
Was bad. In addition, the sports index was poor at less than 10:90. Therefore, the ratio is 10: 90-40:
Must be 60. The same ratio is 15:85 to 30:
H, J, K, L, N, P, Q, R, and S of 70 were particularly excellent in each property.

【0030】[実施例2]:実施例1の場合と同様の原
料と方法で、焼成工程のみを省いて不焼成れんがを製造
し、その特性を実施例1の場合と同様にして評価した。
その結果を表3に示す。本発明の不焼成れんがは、比較
例のマグクロれんが(試料A)と耐食性はほとんど同じ
であるものの、耐スラグ浸潤性と耐スポール性は優って
おり、総合的に優れていると言える。
Example 2 An unfired brick was manufactured using the same raw materials and method as in Example 1 except for the firing step, and the characteristics were evaluated in the same manner as in Example 1.
Table 3 shows the results. Although the unfired brick of the present invention has almost the same corrosion resistance as the magcro brick (sample A) of the comparative example, it has excellent slag infiltration resistance and spall resistance, and can be said to be excellent overall.

【0031】[実施例3]:本発明の焼成れんがである
表2の試料Hを、300tRHの側壁に試験張りした。
使用後、槽内に残ったれんがの損耗状況と残寸を調査し
た。その結果、周囲の従来材(表1のA)には亀裂が発
生して剥落ちているのに対して、試料Hには亀裂や剥落
はほとんど認められなかった。また試料Hの損耗速度は
Aよりも25%少なかった。
Example 3 A sample H of the fired brick of the present invention shown in Table 2 was test-stretched on a 300 tRH side wall.
After use, the state of wear and remaining dimensions of the bricks remaining in the tank were investigated. As a result, the surrounding conventional material (A in Table 1) was cracked and peeled off, whereas the sample H was hardly cracked or peeled off. Also, the wear rate of Sample H was 25% less than A.

【0032】[0032]

【表1】 [Table 1]

【0033】[0033]

【表2】 [Table 2]

【0034】[0034]

【表3】 [Table 3]

【0035】[0035]

【発明の効果】本発明の定形耐火物は、製鋼炉などの金
属精錬用容器、セメントキルン、ガラス溶解炉などの内
張りなどに使用され、DH、RH、AODなど、高級鋼
の二次精錬容器用として使用する場合でも、耐食性、耐
浸潤性および耐スポーリング性に優れ、これら容器等の
耐久性向上に貢献する。そして、特にクロム鉱を使用し
ないれんがはCrを含まないため、使用後の廃棄に際し
ては高額の処理コストがかからない。
The shaped refractory of the present invention is used for metal refining vessels such as steelmaking furnaces, linings for cement kilns, glass melting furnaces and the like, and secondary refining vessels for high-grade steels such as DH, RH and AOD. It is excellent in corrosion resistance, infiltration resistance, and spalling resistance even when used for applications, and contributes to improving the durability of these containers and the like. In addition, bricks that do not use chromium ore do not contain Cr, so that disposal after use does not require high processing costs.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 土成 昭弘 兵庫県高砂市荒井町新浜1丁目3番1号 ハリマセラミック株式会社内 (72)発明者 向所 実 兵庫県高砂市荒井町新浜1丁目3番1号 ハリマセラミック株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Akihiro Dosuni 1-3-1, Shinhama, Arai-machi, Takasago City, Hyogo Prefecture Inside Harima Ceramics Co., Ltd. (72) Inventor Minoru 1-3-3, Niihama Araimachi, Takasago City, Hyogo Prefecture No. 1 Harima Ceramics Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 MgAl2 4 −Mg2 TiO4 系固溶
体とマグネシアを主成分とし、両者の比率が重量比に
て、 [MgAl2 4 −Mg2 TiO4 ]:マグネシア=1
0:90〜40:60であることを特徴とする定形耐火
物。
1. A composition comprising a MgAl 2 O 4 —Mg 2 TiO 4 -based solid solution and magnesia as main components, and the ratio of the two is [MgAl 2 O 4 -Mg 2 TiO 4 ]: magnesia = 1.
A fixed refractory having a ratio of 0:90 to 40:60.
【請求項2】[MgAl2 4 −Mg2 TiO4 ]:マ
グネシア=15:85〜30:70であることを特徴と
する請求項1記載の定形耐火物。
2. The fixed refractory according to claim 1, wherein [MgAl 2 O 4 —Mg 2 TiO 4 ]: magnesia = 15: 85 to 30:70.
【請求項3】 スピネル、クロム鉱、10重量%以下の
CaOを含有するドロマイト、アルミナ、ムライト、黒
鉛などの炭素源、SiC、ジルコニア、ジルコン、チタ
ニア、シリカおよびシリカフラワー、珪石、金属粉のう
ちの1種または2種以上を添加したことを特徴とする請
求項1または2記載の定形耐火物。
3. Spinel, chromite ore, carbon sources such as dolomite, alumina, mullite, graphite containing 10% by weight or less of CaO, SiC, zirconia, zircon, titania, silica and silica flour, silica stone, and metal powder 3. The refractory according to claim 1, wherein one or more of the following are added.
JP31222797A 1997-11-13 1997-11-13 Standard refractory Expired - Fee Related JP3833800B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31222797A JP3833800B2 (en) 1997-11-13 1997-11-13 Standard refractory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31222797A JP3833800B2 (en) 1997-11-13 1997-11-13 Standard refractory

Publications (2)

Publication Number Publication Date
JPH11147755A true JPH11147755A (en) 1999-06-02
JP3833800B2 JP3833800B2 (en) 2006-10-18

Family

ID=18026720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31222797A Expired - Fee Related JP3833800B2 (en) 1997-11-13 1997-11-13 Standard refractory

Country Status (1)

Country Link
JP (1) JP3833800B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013151381A (en) * 2012-01-24 2013-08-08 Kurosaki Harima Corp Basic brick
CN110451993A (en) * 2019-07-06 2019-11-15 谢隆 A kind of preparation method of the artificial Spherical Sand of high temperature resistant complex phase
CN112723864A (en) * 2020-12-28 2021-04-30 郑州汇特耐火材料有限公司 Microcrystal periclase composite spinel titanium refractory material and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013151381A (en) * 2012-01-24 2013-08-08 Kurosaki Harima Corp Basic brick
CN110451993A (en) * 2019-07-06 2019-11-15 谢隆 A kind of preparation method of the artificial Spherical Sand of high temperature resistant complex phase
CN112723864A (en) * 2020-12-28 2021-04-30 郑州汇特耐火材料有限公司 Microcrystal periclase composite spinel titanium refractory material and manufacturing method thereof

Also Published As

Publication number Publication date
JP3833800B2 (en) 2006-10-18

Similar Documents

Publication Publication Date Title
JPH0737344B2 (en) Irregular refractory with basic properties
EP0733604A1 (en) Chromium-free brick
NO164283B (en) PROCEDURE AND APPARATUS FOR MANUFACTURE OF TRADE AND FILM PRODUCTS DIRECT FROM MELTED MATERIAL.
US6887810B2 (en) Synthetic, refractory material for refractory products, and process for producing the product
JP3609245B2 (en) Manufacturing method of refractory raw materials
JP3833800B2 (en) Standard refractory
JP4328053B2 (en) Magnesia-spinel brick
JP3751135B2 (en) Indefinite refractory
JPH07300361A (en) Refractory bricks
JP4408552B2 (en) Alumina-magnesia castable refractories using magnesium carbonate as a magnesia source
JP5448144B2 (en) Mug brick
JP4373509B2 (en) Basic refractory
JPH0633179B2 (en) Irregular refractory for pouring
JPH11278918A (en) Basic refractory raw material and basic refractory, its production and metal smelting furnace and baking furnace using the same
JPH10203862A (en) Magnesium-chromium brick fired at high temperature
JP3157310B2 (en) Refractory
JP2599870B2 (en) Amorphous refractory composition
JP2000263013A (en) Method for using aluminum dross residual ash, and alumina spinel castable refractory material
JPH11130548A (en) Basic monolithic refractory material
JP2596669B2 (en) Magnesia and calcia amorphous refractories
JPH07291716A (en) Basic refractory
JP2003128457A (en) Calcia clinker and refractory product obtained using the same
JP3400494B2 (en) Basic refractories for molten metal
JPH06172020A (en) Magnesia component-containing refractory material
JPH08231264A (en) Production of basic refractory and the refractory

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060720

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090728

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120728

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120728

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130728

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130728

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130728

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130728

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130728

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130728

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130728

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees