JPH11144726A - Non-sintered type nickel hydroxide electrode for alkaline storage battery - Google Patents

Non-sintered type nickel hydroxide electrode for alkaline storage battery

Info

Publication number
JPH11144726A
JPH11144726A JP9342327A JP34232797A JPH11144726A JP H11144726 A JPH11144726 A JP H11144726A JP 9342327 A JP9342327 A JP 9342327A JP 34232797 A JP34232797 A JP 34232797A JP H11144726 A JPH11144726 A JP H11144726A
Authority
JP
Japan
Prior art keywords
nickel
cobalt
nickel hydroxide
powder
cobalt compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9342327A
Other languages
Japanese (ja)
Inventor
Yukitaka Seyama
瀬山  幸隆
Hideki Sasaki
佐々木  秀樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP9342327A priority Critical patent/JPH11144726A/en
Publication of JPH11144726A publication Critical patent/JPH11144726A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To suppress the reduction in discharge capacity, accompanied by the reduction of utilization factor by adding a compound composed mainly of a cobalt having a valence exceeding 2 to an active material powder, composed mainly of nickel hydroxide and nickel oxyhydroxide. SOLUTION: A cobalt compound powder to be added to a nickel hydroxide electrode is a highly conductive high-order cobalt compound having a valence of cobalt exceeding 2. Therefore, high conductivity can be kept, without causing uneven presence of the cobalt compound by its oxidation by the nickel oxyhydroxide as a cobalt compound having a valence of 2 or less. Thus, a high active material utilization factor can be shown. Since it is required to prevent the oxidation of the cobalt compound by the nickel oxyhydroxide in order to make this effect more effective, the valence of the cobalt compound is preferably 2.5 or more. Thus, the capacity of the battery can be increased more effectively.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非焼結式水酸化ニ
ッケル電極を用いたアルカリ蓄電池の高容量化に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to increasing the capacity of an alkaline storage battery using a non-sintered nickel hydroxide electrode.

【0002】[0002]

【従来の技術】活物質として水酸化ニッケルを使用する
水酸化ニッケル電極は、ニッケル−カドミウム蓄電池や
ニッケル−金属水素化物蓄電池などのアルカリ蓄電池の
正極として用いられている。これらのアルカリ蓄電池は
携帯電子機器の電源として用いられ、その機能向上の手
段としてこれらのアルカリ蓄電池の高容量化が求められ
ているので、水酸化ニッケル電極の高性能化が不可欠で
ある。
2. Description of the Related Art A nickel hydroxide electrode using nickel hydroxide as an active material is used as a positive electrode of an alkaline storage battery such as a nickel-cadmium storage battery or a nickel-metal hydride storage battery. These alkaline storage batteries are used as a power source for portable electronic devices, and a high capacity of these alkaline storage batteries is required as a means for improving their functions. Therefore, it is essential to improve the performance of nickel hydroxide electrodes.

【0003】従来、水酸化ニッケル電極としては、ニッ
ケル粉末を多孔性のパンチングメタル上に焼結させて得
られた基板上に、水酸化ニッケル活物質を含浸させて製
作される焼結式のものが多く用いられてきた。しかし、
焼結式極板では、基板の多孔度が概ね80%と小さく、
多量の活物質を充填することが困難であるため、水酸化
ニッケル電極の高エネルギー密度化には不利であった。
Conventionally, as a nickel hydroxide electrode, a sintered type electrode manufactured by impregnating a nickel powder active material on a substrate obtained by sintering nickel powder on a porous punching metal. Has been widely used. But,
In the sintered type electrode plate, the porosity of the substrate is as small as approximately 80%,
Since it is difficult to fill a large amount of active material, it is disadvantageous for increasing the energy density of the nickel hydroxide electrode.

【0004】一方、基板に発泡状ニッケルや繊維状ニッ
ケルのマットを用いた非焼結式の水酸化ニッケル電極
は、基板の多孔度が95%以上と高く、前記焼結式極板
と比較して水酸化ニッケル電極の高エネルギー密度化に
有利である。そこで、最近のアルカリ蓄電池の高容量化
についての研究は、主に非焼結式極板を用いておこなわ
れている。この非焼結式水酸化ニッケル電極は基板の導
電性が低いため、導電剤として水酸化コバルトや一酸化
コバルト等のコバルト化合物を添加することが必要であ
る。添加したこのコバルト化合物は、化成初充電で電気
化学的に酸化されて、導電性の高いオキシ水酸化コバル
トに変換され、水酸化ニッケル電極中で有効な導電剤と
して作用するものと考えられている。
On the other hand, a non-sintered nickel hydroxide electrode using a foamed nickel or fibrous nickel mat for the substrate has a high porosity of 95% or more, which is higher than that of the sintered electrode plate. This is advantageous for increasing the energy density of the nickel hydroxide electrode. Therefore, recent studies on increasing the capacity of alkaline storage batteries have been conducted mainly using non-sintered electrodes. Since the non-sintered nickel hydroxide electrode has low conductivity of the substrate, it is necessary to add a cobalt compound such as cobalt hydroxide or cobalt monoxide as a conductive agent. This added cobalt compound is electrochemically oxidized at the initial charge of formation, converted to highly conductive cobalt oxyhydroxide, and is considered to act as an effective conductive agent in the nickel hydroxide electrode. .

【0005】アルカリ蓄電池の正極活物質である水酸化
ニッケルは、充電により酸化されてオキシ水酸化ニッケ
ルとなり、また放電により水酸化ニッケルに還元され
る。このオキシ水酸化ニッケルは、水酸化ニッケルより
も導電性が高い物質である。そこで、特開平2−262
245号公報に示すように、水酸化ニッケル電極の製作
時にあらかじめオキシ水酸化ニッケル粉末を均一に添加
することにより、正極の導電性を高めることが可能であ
る。
[0005] Nickel hydroxide, which is a positive electrode active material of an alkaline storage battery, is oxidized to nickel oxyhydroxide by charging and reduced to nickel hydroxide by discharging. This nickel oxyhydroxide is a substance having higher conductivity than nickel hydroxide. Therefore, Japanese Patent Application Laid-Open No. 2-262
As disclosed in Japanese Patent Publication No. 245, it is possible to increase the conductivity of the positive electrode by uniformly adding nickel oxyhydroxide powder in advance at the time of manufacturing the nickel hydroxide electrode.

【0006】ただし、オキシ水酸化ニッケルの添加量が
活物質全体の20wt%を越えると、アルカリ蓄電池の
放電時の容量制限極が負極となることが予想される。ま
た、オキシ水酸化ニッケル添加の効果を充分に得るため
にはオキシ水酸化ニッケルの添加量が多い方が望まし
い。これらのことから、オキシ水酸化ニッケルの添加量
は10〜20wt%程度であることが好ましい。
However, if the amount of nickel oxyhydroxide added exceeds 20 wt% of the entire active material, it is expected that the capacity-limiting electrode during discharge of the alkaline storage battery will be the negative electrode. In order to sufficiently obtain the effect of adding nickel oxyhydroxide, it is desirable that the amount of nickel oxyhydroxide added is large. For these reasons, it is preferable that the addition amount of nickel oxyhydroxide is about 10 to 20 wt%.

【0007】しかしながら、オキシ水酸化ニッケルを含
む水酸化ニッケル電極中に、非焼結式水酸化ニッケル電
極に必要なコバルト化合物を添加する際、水酸化コバル
トや一酸化コバルトのようなコバルトの価数が2価以下
の化合物を添加すると、活物質利用率の低下にともなう
放電容量の減少という問題があった。これは、2価以下
のコバルト化合物の一部がオキシ水酸化ニッケルによっ
て酸化されて高次コバルト化合物となるためにコバルト
化合物の偏在がおこりやすくなり、オキシ水酸化コバル
トの導電性ネットワークの形成の効果が小さくなること
に起因すると推定される。
However, when a cobalt compound required for a non-sintered nickel hydroxide electrode is added to a nickel hydroxide electrode containing nickel oxyhydroxide, the valence of cobalt such as cobalt hydroxide or cobalt monoxide is increased. However, when a compound having a valency of 2 or less is added, there is a problem that the discharge capacity decreases due to a decrease in the utilization rate of the active material. This is because part of the cobalt compound having a valence of 2 or less is oxidized by nickel oxyhydroxide to form a higher-order cobalt compound, so that the cobalt compound tends to be unevenly distributed. Is estimated to be smaller.

【0008】[0008]

【発明が解決しようとする課題】本発明は、オキシ水酸
化ニッケル粉末を添加する水酸化ニッケル電極におい
て、利用率の低下にともなう放電容量の減少がおこらな
いような非焼結式水酸化ニッケル電極を提供することを
目的とする。
SUMMARY OF THE INVENTION The present invention relates to a non-sintered nickel hydroxide electrode in which nickel oxyhydroxide powder is added, in which the discharge capacity is not reduced due to a decrease in utilization. The purpose is to provide.

【0009】[0009]

【課題を解決するための手段】本発明アルカリ蓄電池用
非焼結式水酸化ニッケル電極は、上記目的を解決するた
めに、活物質が水酸化ニッケルを主体とする粉末とオキ
シ水酸化ニッケルを主体とする粉末であり、これらの活
物質粉末と2価を越える価数のコバルトを主体とする化
合物粉末とからなることを特徴とする。
According to the present invention, there is provided a non-sintered nickel hydroxide electrode for an alkaline storage battery, wherein the active material comprises a powder mainly composed of nickel hydroxide and a nickel oxyhydroxide. Characterized by comprising these active material powders and a compound powder mainly composed of cobalt having a valence of more than 2 valences.

【0010】[0010]

【発明の実施の形態】本発明の水酸化ニッケル電極に添
加するコバルト化合物粉末は、コバルトの価数が2価を
越える高い導電性をもつ高次のコバルト化合物である。
そのため、2価以下のコバルト化合物のように、オキシ
水酸化ニッケルによって酸化されてコバルト化合物の偏
在がおこることなく高い導電性を維持できるため、高い
活物質利用率を示すものである。また、この効果をより
有効なものとするためには、オキシ水酸化ニッケルによ
るコバルト化合物の酸化を防止する必要があるため、上
記コバルト化合物の価数が2.5価以上であることが好
ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The cobalt compound powder to be added to the nickel hydroxide electrode of the present invention is a high-order cobalt compound having high conductivity in which the valence of cobalt exceeds two.
Therefore, as in the case of a divalent or lower valent cobalt compound, high conductivity can be maintained without being oxidized by nickel oxyhydroxide and uneven distribution of the cobalt compound. In order to make this effect more effective, it is necessary to prevent oxidation of the cobalt compound by nickel oxyhydroxide. Therefore, the valence of the cobalt compound is preferably 2.5 or more.

【0011】[0011]

【実施例】本発明に関する水酸化ニッケル電極につい
て、実施例および比較例をもって詳細に説明する。
EXAMPLES The nickel hydroxide electrode according to the present invention will be described in detail with reference to examples and comparative examples.

【0012】(実施例)特開平2―262245号公報
に示すように、以下の化学反応式(1)に従って、水酸
化ニッケルに対して重量比で約20倍のS.G.1.2
5(20℃)水酸化ナトリウム水溶液中に、水酸化ニッ
ケル粉末とペルオキソ二硫酸カリウム粉末をモル比2.
4:1の割合で分散させ、室温で10時間撹拌した。こ
の分散液をろ過して得られた黒色粉末を、洗浄液のpH
が7になるまで精製水で洗浄・乾燥して、オキシ水酸化
ニッケル粉末を得た。
(Example) As shown in JP-A-2-262245, according to the following chemical reaction formula (1), S.I. G. FIG. 1.2
Nickel hydroxide powder and potassium peroxodisulfate powder in a 5 (20 ° C.) aqueous sodium hydroxide solution at a molar ratio of 2.
It was dispersed at a ratio of 4: 1, and stirred at room temperature for 10 hours. The black powder obtained by filtering this dispersion is washed with the pH of the washing solution.
Was washed and dried with purified water until the value became 7. Nickel oxyhydroxide powder was obtained.

【0013】 2Ni(OH)2 +S2 8 2-+2OH- →2NiOOH+2SO4 2-+2H2 O (1) このようにして得られたオキシ水酸化ニッケルの平均価
数は、酸化還元滴定により2.98価を示すことが確認
された。
2Ni (OH) 2 + S 2 O 8 2− + 2OH → 2NiOOH + 2SO 4 2− + 2H 2 O (1) The average valence of the nickel oxyhydroxide thus obtained is determined by redox titration. It was confirmed to show 98 valence.

【0014】つぎに、2価を越えるコバルト化合物とし
て、水酸化コバルト粉末をS.G.1.25(20℃)
水酸化ナトリウム水溶液中、80℃で熱処理・洗浄・乾
燥して高導電性の3価のコバルト化合物を製作した。こ
の粉末10重量部と、前記オキシ水酸化ニッケル粉末1
5重量部と、水酸化ニッケル粉末85重量部と、カルボ
キシメチルセルロース粉末2重量部を精製水に加えて製
作したスラリー状試料を発泡ニッケル基板中に含浸・プ
レスした後、乾燥して、本発明による水酸化ニッケル電
極Aを得た。
Next, as a cobalt compound having more than two valences, cobalt hydroxide powder was added to S.I. G. FIG. 1.25 (20 ° C)
Heat treatment, washing and drying were performed at 80 ° C. in an aqueous sodium hydroxide solution to produce a highly conductive trivalent cobalt compound. 10 parts by weight of this powder and the nickel oxyhydroxide powder 1
5 parts by weight, 85 parts by weight of nickel hydroxide powder, and 2 parts by weight of carboxymethylcellulose powder were added to purified water, and a slurry sample produced was impregnated and pressed into a foamed nickel substrate, dried, and dried according to the present invention. A nickel hydroxide electrode A was obtained.

【0015】負極は、公知のAB5型水素吸蔵合金を主
成分とするスラリー状試料をパンチングメタル上に塗布
し、乾燥後、プレスして製作した。
The negative electrode was manufactured by applying a slurry sample containing a known AB5 type hydrogen storage alloy as a main component on a punching metal, drying and pressing.

【0016】以上で製作した正極板3枚と負極板4枚と
親水性を付与したポリオレフィン製セパレータとを用い
てエレメントを形成し、水酸化カリウム水溶液を主成分
とする電解液を注入した電池缶内に挿入し、電池缶と安
全弁を内蔵した蓋部分を溶接して本発明電池Aを得た。
A battery can in which an element is formed using the three positive electrode plates and the four negative electrode plates manufactured as described above and a polyolefin separator provided with hydrophilicity, and into which an electrolyte mainly containing an aqueous solution of potassium hydroxide is injected. The battery A of the present invention was obtained by welding the battery can and the cover part containing the safety valve.

【0017】(比較例)水酸化コバルト粉末10重量部
を用いたこと以外は、実施例の水酸化ニッケル電極Aと
同様にして水酸化ニッケル電極Bを製作し、さらに比較
電池Bを得た。
Comparative Example A nickel hydroxide electrode B was manufactured in the same manner as the nickel hydroxide electrode A of the example except that 10 parts by weight of cobalt hydroxide powder was used, and a comparative battery B was obtained.

【0018】これらの電池は、正極の理論容量がすべて
1000mAhである。
In these batteries, the theoretical capacity of the positive electrode is 1000 mAh.

【0019】以上の電池を、室温中で100mAで12
時間充電後、100mAで0.8Vまで放電するという
充放電サイクルを10回繰り返して、水素吸蔵合金負極
を充分活性化した後、以下の条件で放電容量を測定し
た。
The above battery was subjected to 12 mA at room temperature at 100 mA.
After charging for 10 hours, the charge / discharge cycle of discharging to 0.8 V at 100 mA was repeated 10 times to sufficiently activate the hydrogen storage alloy negative electrode, and then the discharge capacity was measured under the following conditions.

【0020】・充電……200mAで120%(6時
間) ・放電……200mAで0.8Vまで ・温度……25℃ 試験結果を図1に示す。水酸化ニッケル粉末とオキシ水
酸化ニッケル粉末と水酸化コバルト粉末を含有した比較
電池Bの放電容量は、約780mAhと小さかったのに
対し、水酸化ニッケル粉末とオキシ水酸化ニッケル粉末
と2価を越えるコバルト化合物粉末を含有した本発明電
池Aの放電容量は約980mAhと大きい値を示した。
比較電池Bの放電容量が小さい原因としては、2価のコ
バルト化合物である水酸化コバルト粉末の一部がオキシ
水酸化ニッケルによって酸化されてコバルト化合物の偏
在がおこり、オキシ水酸化コバルトの導電ネットワーク
が充分に形成されなかったことがあげられる。それに対
し本発明電池Aでは、コバルト化合物は2価を越える高
次コバルト化合物であるため、オキシ水酸化ニッケルに
よる酸化を受けることなく高い導電性を維持できるもの
と考えられる。
Charge: 120% at 200 mA (6 hours) Discharge: up to 0.8 V at 200 mA Temperature: 25 ° C. The test results are shown in FIG. The discharge capacity of the comparative battery B containing the nickel hydroxide powder, the nickel oxyhydroxide powder and the cobalt hydroxide powder was as small as about 780 mAh. The discharge capacity of the battery A of the present invention containing the cobalt compound powder showed a large value of about 980 mAh.
The reason why the discharge capacity of the comparative battery B is small is that part of the cobalt hydroxide powder, which is a divalent cobalt compound, is oxidized by nickel oxyhydroxide and the cobalt compound is unevenly distributed, and the conductive network of the cobalt oxyhydroxide is It was not formed sufficiently. On the other hand, in the battery A of the present invention, since the cobalt compound is a higher-order cobalt compound having more than two valencies, it is considered that high conductivity can be maintained without being oxidized by nickel oxyhydroxide.

【0021】なお、水酸化ニッケル粉末やオキシ水酸化
ニッケル粉末中に、少量の亜鉛やコバルトやカドミウム
等の水酸化物が含まれた場合であっても、本発明電極の
特性を低下させるものではない。また、オキシ水酸化ニ
ッケル粉末製作のための水酸化ニッケル粉末の酸化や、
2価を越えるコバルト化合物粉末を得る方法は、電気化
学的手法あるいは化学的手法のいずれでもよい。
Even if a small amount of a hydroxide such as zinc, cobalt or cadmium is contained in the nickel hydroxide powder or the nickel oxyhydroxide powder, it does not deteriorate the characteristics of the electrode of the present invention. Absent. Also, oxidation of nickel hydroxide powder for the production of nickel oxyhydroxide powder,
The method for obtaining a cobalt compound powder having more than two valencies may be any of an electrochemical method and a chemical method.

【0022】[0022]

【発明の効果】以上詳述したように、オキシ水酸化ニッ
ケル粉末と、水酸化ニッケル粉末と、2価を越える高次
コバルト化合物粉末とを用いることで、オキシ水酸化ニ
ッケルによるコバルト化合物の酸化に基づく放電容量の
低下を防止することができる。この効果により、水酸化
ニッケル電極にオキシ水酸化ニッケル粉末を添加するこ
とによるアルカリ蓄電池の高容量化を、より有効なもの
にすることが可能となる。
As described in detail above, the use of nickel oxyhydroxide powder, nickel hydroxide powder, and a high-order cobalt compound powder having more than two valences enables oxidation of a cobalt compound by nickel oxyhydroxide. Therefore, it is possible to prevent the discharge capacity from decreasing. This effect makes it possible to increase the capacity of the alkaline storage battery by adding nickel oxyhydroxide powder to the nickel hydroxide electrode, which is more effective.

【図面の簡単な説明】[Brief description of the drawings]

【図1】各種電池の放電特性の比較を示した図FIG. 1 shows a comparison of discharge characteristics of various batteries.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 活物質が水酸化ニッケルを主体とする粉
末とオキシ水酸化ニッケルを主体とする粉末であり、こ
れらの活物質粉末と2価を越える価数のコバルトを主体
とする化合物粉末とからなることを特徴とするアルカリ
蓄電池用非焼結式水酸化ニッケル電極。
1. An active material comprising a powder mainly composed of nickel hydroxide and a powder mainly composed of nickel oxyhydroxide, wherein the active material powder and a compound powder mainly composed of cobalt having a valence of more than 2 valences are used. A non-sintered nickel hydroxide electrode for an alkaline storage battery, comprising:
JP9342327A 1997-11-07 1997-11-07 Non-sintered type nickel hydroxide electrode for alkaline storage battery Pending JPH11144726A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9342327A JPH11144726A (en) 1997-11-07 1997-11-07 Non-sintered type nickel hydroxide electrode for alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9342327A JPH11144726A (en) 1997-11-07 1997-11-07 Non-sintered type nickel hydroxide electrode for alkaline storage battery

Publications (1)

Publication Number Publication Date
JPH11144726A true JPH11144726A (en) 1999-05-28

Family

ID=18352876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9342327A Pending JPH11144726A (en) 1997-11-07 1997-11-07 Non-sintered type nickel hydroxide electrode for alkaline storage battery

Country Status (1)

Country Link
JP (1) JPH11144726A (en)

Similar Documents

Publication Publication Date Title
KR100386519B1 (en) Non-Sintered Nickel Electrode for Alkaline Battery
JP3448510B2 (en) Nickel hydroxide powder for alkaline batteries and nickel hydroxide electrode using the same
JP4710225B2 (en) Method for producing nickel electrode material
JP3191751B2 (en) Alkaline storage battery and surface treatment method for positive electrode active material thereof
JP2002117842A (en) Positive electrode active material for alkaline storage battery and its manufacturing method, positive electrode for alkaline storage battery and alkaline storage battery
JP2002216752A (en) Cobalt compound, method for manufacturing the same, positive electrode plate for alkaline storage battery using the same and alkaline storage battery
JP4458725B2 (en) Alkaline storage battery
JP4474722B2 (en) Alkaline storage battery and positive electrode for alkaline storage battery used therefor
JP2889669B2 (en) Non-sintered nickel positive electrode plate for alkaline storage batteries
JPH0221098B2 (en)
JP2000340221A (en) Nickel electrode, nickel hydrogen storage battery using same as positive electrode
JPH11219701A (en) Unsintered nickel electrode for sealed alkaline storage battery and battery
JP4366722B2 (en) Nickel hydroxide active material for alkaline storage battery
JPH11144726A (en) Non-sintered type nickel hydroxide electrode for alkaline storage battery
JPH11144724A (en) Non-sintering nickel hydroxide electrode for alkaline storage battery
JP3229800B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JPH11144725A (en) Non-sintering nickel hydroxide electrode for alkaline storage battery
JP3263601B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP2003077469A (en) Nickel electrode material, its manufacturing method, nickel electrode and alkaline battery
JP3397216B2 (en) Nickel plate, method of manufacturing the same, and alkaline storage battery using the same
JP3414184B2 (en) Method for producing positive electrode plate for alkaline storage battery
JP2564172B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP4168293B2 (en) Paste type nickel hydroxide positive electrode plate for alkaline storage battery
JP3573885B2 (en) Method for producing nickel hydroxide active material for alkaline storage battery and alkaline storage battery
JPH1186858A (en) Nickel hydroxide active material for alkaline storage battery and paste-type nickel hydroxide positive pole plate with it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041108

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080827

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090105